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Abstract—In this paper, a wavelet based method is proposed to
identify the constant coefficients of a second order linear system and
is compared with the least squares method. The proposed method
shows improved accuracy of parameter estimation as compared to the
least squares method. Additionally, it has the advantage of smaller
data requirement and storage requirement as compared to the least
squares method.
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I. INTRODUCTION

THE identification of second order linear time invariant
system is of fundamental importance in many applica-

tions of science and engineering, including control systems,
electrical networks, vibration of spring etc[1]. A second order
time invariant linear system is defined by a second order
linear differential equation with constant coefficients. The
response of a second order linear system has two fundamental
parameters, a time constant decided by the damping and a
natural frequency of oscillation. The duration of the signal
depends upon the time constant, while the maximum frequency
of variation of the signal depends upon the natural frequency.
In signal analysis, it is useful to approximate the signal as
an expansion over some basis with only a few significant
nonzero coefficients. This motivated us to use the wavelet
transform for parameter estimation. The parameter estimation
can be done using the least squares method, however, this
would involve all the samples of the output signal over the
given observation range. This requires a lot of data storage.
On the other hand, we could choose an orthonormal basis
for the signal space and consider estimating the coefficients
appearing in the differential equation from knowledge of only
the inner product of the output signal with this basis. The
proper choice of the basis helps to get the information about
the output signal in the inner products. Such a good basis
can be chosen using the theory of wavelets, as the wavelet
coefficients contain information about the resolution as well
as the signal duration. Thus, if the parameter estimation is
based on these few wavelet coefficients, then with lesser data
storage, we could get improved estimates of the parameters.
The wavelet and the least squares method have been used
for system identification by different authors[2]-[4]. The pa-
rameters of second order system are estimated by matching
the theoretical expression with the noisy measurement using
the gradient search algorithm. The wavelet based identification
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method requires smaller amount of data as compared to the
least squares method and provides more accurate results as
compared to the least squares method. This paper is organized
as follows- Section II describes the parameter identification by
the least squares method and present brief theory of wavelet
transform and the identification of parameters by the wavelet
transform method. Section III provides simulation results.
Section IV presents conclusions.

II. METHODOLOGY

A. Identification of second order linear systems by the least
squares method

The least squares method is widely used to estimate the
numerical values of parameters and to characterize the statis-
tical properties of parameters. In this parameter identification
method, the unknown parameter is chosen to minimize the
total squared error between the system output and the predicted
value. It can be extended to more than one independent
parameter estimation. In the geometrical framework, the least
squares method can be interpreted as an orthogonal projection
of the data vector onto the space defined by the independent
variable. The projection error is orthogonal to the data on
which the estimation is based.

The general second order linear differential equation with
constant coefficients is given by:

d2y(t)
dt2

+ a
dy(t)
dt

+ by(t) = x(t) (1)

where x(t) is the input and y(t) is the output. The problem of
identifying such a system from input-output data taken over a
duration [0, T ] can be solved by noting that if y(0) = y′(0) =
0, then the solution to this equation is given by:

y(t) =
∫ t

0

h(τ, a, b)x(t − τ)dτ (2)

where:

H(s, a, b) =
∫ ∞

0

h(τ, a, b)exp(−sτ)dτ

=
1

s2 + as + b
=

1
(s + a/2)2 + b − a2/4

(3)

Setting:
γ = a/2, ω =

√
b − a2/4 (4)

gives on Laplace inversion:

h(t, a, b) =
sin(ωt)

ω
exp(−γt)u(t) (5)
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where u(t) is the unit step function. The parameters a, b can
be estimated when noisy measurements on y(t) are taken, by
minimizing:

F (γ, ω) =
∫ T

0

(
∫

h(τ, a, b)x(t − τ)dτ − d(t))2dt (6)

where:
d(t) = y(t) + w(t) (7)

w(t) is the noise. For example, if we apply an impulse input
x(t) = δ(t), the problem boils down to minimizing:

F (γ, ω) =
∫ T

0

(h(t, a, b) − d(t))2dt (8)

The same method can be applied to identifying the parameters
with zero input. The response is then decided by the initial
conditions, i.e., we can write the general solution to the
homogeneous differential equation:

y′′(t) + ay′(t) + by(t) = 0 (9)

as:
y(t) = Aexp(−γt)sin(ωt + φ) (10)

where the constants A,φ are determined from the initial condi-
tions y(0), y′(0). The parameters γ, ω and the initial conditions
A,φ can then be estimated from noisy measurements on y(t)
by minimizing the function:

F (A,φ, γ, ω) =
∫ T

0

(Aexp(−γt)sin(ωt+φ)−d(t))2dt (11)

The minimization can be carried out using the gradient search
algorithm. The practical implementation of this method in-
volves discretizing the differential equation with a step size of
Δ to get the difference equation:

d[n + 2] − 2d[n + 1] + d[n]
Δ2

+ a
d[n + 1] − d[n]

Δ

+bd[n] = 0 (12)

The noise is assumed to be white Gaussian with zero mean and
variance σ2, where σ is much smaller that the nominal value
of y[n]. The nominal value of y[n] is taken as y[0] and the
condition that the noise is small is expressed as σ = y[0]/10.
We take the duration of simulation as ten times of the time
constants. Simulations have been done using γ = 1/10 and
2π/ω = 1. The nominal duration of the signal is then 10
seconds and the nominal time period is one second which
is one tenth of the duration. This means that in the nominal
duration, we have approximately ten cycles. We take y[0] = 1
and σ = 1/10 and simulate the above difference equation.
The time step Δ of discretization has been taken as 1/100,
which is one hundredth of the nominal time period. We let
N = 10/Δ = 1000 and simulate the above equation to obtain
y[n], n = 0, 1, ..., N−1. This is then matched to exact sampled
response of the original continuous time system, i.e., to:

y(nΔ) = Aexp(−γΔn)sin(ωΔn + φ) (13)

by minimizing:

F (A,φ, γ, ω) =
N−1∑
n=0

(y(nΔ) − d[n])2

=
N−1∑
n=0

(Aexp(−γΔn)sin(ωΔn + φ) − d[n])2 (14)

with respect to A,φ, γ, ω. This minimization can be carried
out either using a search method or the gradient method. The
amount of data storage is N = 1000 samples. To carry out
the gradient search we use the following partial derivatives:

∂F

∂A
= 2

N−1∑
n=0

[(Aexp(−γΔn)sin(ωΔn + φ) − d[n])

exp(−γΔn)sin(ωΔn + φ)] (15)

∂F

∂φ
= 2

N−1∑
n=0

(Aexp(−γΔn)cos(ωΔn + φ) − d[n]) (16)

∂F

∂γ
= −2

N−1∑
n=0

[(Aexp(−γΔn)sin(ωΔn + φ) − d[n])

AΔnexp(−γΔn)sin(ωΔn + φ)] (17)

∂F

∂ω
= 2

N−1∑
n=0

(Aexp(−γΔn)sin(ωΔn + φ) − d[n])

AΔnexp(−γΔn)cos(ωΔn + φ)] (18)

The gradient search algorithm then starts with an initial guess
(A0, φ0, γ0, ω0) and performs the update:

Ak+1 = Ak − μ
∂F (Ak, φk, γk, ωk)

∂Ak
(19)

φk+1 = φk − μ
∂F (Ak, φk, γk, ωk)

∂φk
(20)

γk+1 = γk − μ
∂F (Ak, φk, γk, ωk)

∂γk
(21)

ωk+1 = ωk − μ
∂F (Ak, φk, γk, ωk)

∂ωk
(22)

B. Wavelet Transform

Wavelets are families of functions generated from one single
function called mother wavelet, by scaling and translating
operations[5]. It cuts up data or functions into different fre-
quency components and then studies each component with
a resolution matched to its scale. A wavelet owns many
attractable properties including the essential properties such
as compact support, vanishing moments, dilating relation and
other preferred properties such as smoothness and being a
generator of an orthonormal basis of function spaces L2(R).
Compact support guarantees the localization of wavelets; van-
ishing moments guarantee wavelets can distinguish essential
features of a signal from non-essential features and dilating
relation leads to fast wavelet algorithms. We used Daubechies
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(D4) wavelet. Daubechies wavelets have good compression
property for wavelet coefficients. They are efficient for com-
pact representation of signal details[7]-[9].

In this paper the Daubechies mother wavelet function
is constructed starting using the scaling function sequence
u(k)[6]. The scaling function is obtained by solving the
scaling relation:

φ(x) =
∑
k∈Z

u(k)φ1,k(x)

=
∑
k∈Z

u(k)φ(2x − k) (23)

The Fourier transform of both sides of the scaling identity
gives

φ̂1,k(ξ) =
1√
2
e−ikξ/2φ̂(ξ/2) (24)

where φ̂(ξ) is the Fourier transform of φ(x). Interchanging the
sum and the integral in the definition of the Fourier transform
of the right side of equation (23)

φ̂(ξ) =
1√
2

∑
k∈Z

u(k)e−ikξ/2φ̂(ξ/2) (25)

Defining:

mo(ξ) =
1√
2

∑
k∈Z

u(k)e−ikξ (26)

Then equation (24) gives:

φ̂(ξ) = mo(ξ/2)φ̂(ξ/2) (27)

The above equation can be iterated. Applying equation (26)
with ξ replaced by ξ/2, we get:

φ̂(ξ/2) = mo(ξ/4)φ̂(ξ/4) (28)

One can continue this and obtain, for any n ∈ N :

φ̂(ξ) = mo(ξ/2)mo(ξ/4)..........mo(ξ/2n)φ̂(ξ/2n) (29)

To generate the mother wavelet we used:

v(k) = (−1)k−1u(1 − k) (30)

where u(1 − k) is the complex conjugate of u(1−k). Defining
the wavelet by:

ψ =
∑
k∈Z

v(k)φ1,k (31)

Taking the Fourier transform of both sides of the above
equation:

ψ̂(ξ) =
1√
2

∑
k∈Z

v(k)e−ikξ/2φ̂(ξ/2) (32)

Defining:

m1(ξ) =
1√
2

∑
k∈Z

v(k)e−ikξ (33)

we get:
ψ̂(ξ) = m1(ξ/2)φ̂(ξ/2) (34)

Iterating equation (26) we get:

ψ̂(ξ) = m1(ξ/2)
∞∏

j=2

mo(ξ/2j) (35)

using the normalization that φ̂(0) = 1. Taking the inverse
Fourier transform we obtained the mother wavelet function.

C. Identification of second order linear systems using wavelet
transform method

Different parametric and non-parametric methods have been
used for system identification purpose[10]-[14]. Wavelet trans-
form can be used to identify the above second order system.
Suppose that the mother wavelet ψ(t) is concentrated over the
interval [p, q]. Then ψn,k(t) = 2n/2ψ(2nt−k) is concentrated
over the interval [(k + p)/2n, (k + q)/2n). Let N1 and N2 be
respectively the minimum and the maximum resolution indices
of the wavelets. These must be chosen so that the durations
of support (q− p)/2N1 and (q− p)/2N2 of the corresponding
wavelets are respectively of the order of the signal duration
and the reciprocal of the maximum signal frequency, i.e.,
(q−p)/2N1 = 10, (q−p)/2N2 = 1. For a given n, we allow k
to range from k1(n) = −p to k2(n) = 2n10− q. The number
of wavelet coefficients needed are:

N2∑
n=N1

(2n10 − q + p)

which is much smaller than 1000. There exist nonzero wavelet
coefficients for n ≤ N1 and n ≥ N2 but these will not
be significant. N1 and N2 have been chosen in accordance
with the signal duration and maximum frequency and hence
only if the resolution falls in the range (N1, N2), the wavelet
coefficients will be significant. By the wavelet method we
will be able to identify the system with lesser data storage
as compared to the least squares method. The first step is to
compute the wavelet coefficients:

c(n, k), N1 ≤ n ≤ N2, k1(n) ≤ k ≤ k2(n) (36)

using the formula:

c(n, k) =
∫ T

0

y(t)ψn,k(t)dt ≈
N−1∑
m=0

y(mΔ)ψn,k(mΔ)Δ

=
N−1∑
m=0

Aexp(−γΔm)sin(ωΔm + φ)ψn,k(mΔ)Δ (37)

This computation must be carried out for different values of the
parameters A,φ, γ, ω over the range where these parameters
are likely to fall. To emphasize the fact that these coefficients
will be dependent upon the values of these parameters, we de-
note these by c(n, k|A,φ, γ, ω). Having done so, we simulate
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the noisy system and for the given realization, estimate the
wavelet coefficients:

ĉ(n, k) =
N−1∑
m=0

d[m]ψn,k(mΔ)Δ (38)

The values of the parameters for the simulated process are
assumed to be unknown and to be estimated. This is done by
minimizing:

F (A,φ, γ, ω) =
∑

(n,k)∈E

(c(n, k|A,φ, γ, ω) − ĉ(n, k))2 (39)

where:

E = {(n, k) : N1 ≤ n ≤ N2, k1(n) ≤ k ≤ k2(n)} (40)

The minimization is carried out by using a search from
the look up table that gives the wavelet coefficients
c(n, k|A,φ, γ, ω) as a function of A, φ, γ, ω.

III. SIMULATIONS

The proposed methods are experimented on second order
linear time invariant system. Numerical simulation has been
done using MATLAB. For simulation, white Gaussian noise
with zero mean and small variance is used. To find the
minimum value of F (A,φ, γ, ω) the look up table is performed
using the range of values where they are likely to fall. The
wavelet method is performed using 256 samples and the least
squares method is performed using 1000 samples. The signal is
reconstructed using the values of (A,φ, γ, ω) obtained by both
methods that corresponds to minimum value of F (A,φ, γ, ω).
Fig. 1-4 show the error in estimating the parameters. These
figures show that the result of the wavelet-based method is
closer to the theoretical one, while the result of the least
squares method has greater estimation error.

The Signal to Noise ratio obtained by both methods is given
below:

SNR =
∑ |ŷ(n)|2∑ |(d̂(n) − ŷ(n))|2

(41)

where ŷ(n) is obtained using true values of a, b and d̂(n) is
obtained using estimated values of a, b.
Table 1 Signal to Noise Ratio using the least squares method
and the wavelet method

Least squares method Wavelet method
0.315 2.0

IV. CONCLUSIONS

This paper presents a wavelet based method for identifica-
tion of second order linear system. The wavelet method gives
larger value of signal to noise ratio as compared to the least
squares method. Additionally, it gives very much smaller value
of F (A,φ, γ, ω) as compared to the least squares method.
This is due to compact representation of signal details using
Daubechies wavelet. In the least squares method, samples are
used, which causes information loss contained in the signal. In
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Fig. 1. Plot of error in numerical value of φ with respect to theoretical value.
The dashed line shows the least squares method and the solid line shows the
wavelet method.
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Fig. 2. Plot of error in numerical value of φ with respect to theoretical value.
The dashed line shows the least squares method and the solid line shows the
wavelet method.
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Fig. 3. Plot of error in numerical value of γ with respect to theoretical value.
The dashed line shows the least squares method and the solid line shows the
wavelet method.

the wavelet method, by choosing a sufficient high resolution
level, we can retain most of the signal features(local as well
as global). To obtain better signal to noise ratio large amount
of data is required by the least squares method. The wavelet
method requires fewer samples as compared to the least
squares method because the inherent time frequency resolution
of the signal structure is taken into account.
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Fig. 4. Plot of error in numerical value of ω with respect to theoretical value.
The dashed line shows the least squares method and the solid line shows the
wavelet method.
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