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Abstract—This paper presents the development of a wavelet 

based algorithm, for distinguishing between magnetizing inrush 
currents and power system fault currents, which is quite adequate, 
reliable, fast and computationally efficient tool. The proposed 
technique consists of a preprocessing unit based on discrete wavelet 
transform (DWT) in combination with an artificial neural network 
(ANN) for detecting and classifying fault currents. The DWT acts as 
an extractor of distinctive features in the input signals at the relay 
location. This information is then fed into an ANN for classifying 
fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz 
laboratory transformer connected to a 380 V power system were 
simulated using ATP-EMTP. The DWT was implemented by using 
Matlab and Coiflet mother wavelet was used to analyze primary 
currents and generate training data. The simulated results presented 
clearly show that the proposed technique can accurately discriminate 
between magnetizing inrush and fault currents in transformer 
protection. 
 

Keywords—Artificial neural network, discrete wavelet transform, 
fault detection, magnetizing inrush current. 
 

I.  INTRODUCTION 
OWER transformers are important devices in the power 
system. Reliability and stability of the whole power 

system are the primary issues concerning transformers. 
Transformer relaying protection of automation system is 
critical for the safe operation of transformers. Therefore, the 
continuity of transformer operation is of vital importance in 
maintaining the reliability of power supply. Any unscheduled 
repair work, especially replacement of a faulty transformer is 
very expensive and time consuming [1]. 

Traditionally, the current differential technique based on 
power frequency measurements offers satisfactory overall 
performance. The protection demands during exciting inrush 
the protection system should be reliably disabled, which is a 
problem for existing current differential technique, because it 
introduces significant unbalanced current and the protection 
will surely response without inrush detection. The correct and 
effective identification between faults and exciting inrush 
remains a challenge for protection deployment [2]. 

Under transformer internal and external faults, the three-
phase current is mainly sinusoidal, except for some DC 
element and harmonics. However, under exciting inrush, the 
transformer response is featured by singular eruptions 
composed of high-frequency elements because of the non-
linearity of exciting core. It is possible to make use of this 
high-frequency eruption information to achieve satisfactory 
detection performance [3]. 
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Three kinds of schemes are currently used for this purpose. 
Some schemes make use of the information obtained only 
from the incoming currents of the transformer, such as the 
method based on the second harmonics restraint principle. 
Some schemes make use of the information obtained from the 
variation of the transformer terminal voltages, such as the 
method based on the voltage restraint principle. Other 
alternative schemes make use of the information obtained 
from both the currents and voltages of the transformers, such 
as the method based on the flux characteristic principle and the 
method based on the Low-Voltage acceleration criterion. 
However, the most widely used method in practice is still 
those which are based on the principle of the second harmonic 
restraint. The main drawback of this kind of method is that the 
harmonics existed in the long EHV transmission lines will 
cause the differential relay either not to operate or to operate 
with a long-time delay [4], [5]. 

Nevertheless, the current transformer’s (CT’s) saturation is 
an obstacle to the application of this scheme in the digital 
differential protection. Therefore, it is of importance to search 
a new scheme which can discriminate the inrush current and 
short circuit faster and more reliability.  

Differential algorithms such as discrete Fourier transform, 
least-square method, rectangular transforms, walsh functions 
and haar functions, etc. are used to calculate the current 
harmonic contents. The main drawbacks of this approach are 
that the second harmonic may also exist in some internal faults 
within transformer windings, and the new low-loss amorphous 
core materials in modern power transformers may produce 
lower 2nd harmonic content in the current. The mainly 
involving transformer inductance during saturation, artificial 
neural networks, fuzzy logic, etc. these approaches are 
dependent on the transformer parameters [6], [7]. 

Wavelet transform (WT), as a milestone of the development 
of the Fourier transform, has attracted great attention and been 
successfully used in many applications in the past decade. Its 
application in the power system is also under investigation in 
the recent years. The application in power systems includes 
analysis and detection of electromagnetic transients, power 
quality assessment, data compression, and fault detection [8], 
[9]. 

This paper proposed a new wavelet based ANN method to 
identify inrush currents and to distinguish it from power 
system faults. The proposed algorithm extracts fault and 
inrush generated transient signals using DWT. The extracted 
information from transient signals are simultaneously in both 
time and frequency domains. In this study, Coiflet 6 wavelets 
are used to construct first level filter bank to extract the 
transients. In this paper, discontinuities in the current samples 
are mainly in the scope of the proposed algorithm. The output 
signal of the DWT module is then fed into a feed-forward, 
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back-propagation ANN that classifies the transient. The DWT 
considerably simplifies the input signal of the ANN; it reduces 
the volume of the input data of the ANN without lost of 
information. This dramatically reduces the training stage in the 
ANN and increases the overall performance of the digital 
relay. The construction of ANN has three inputs, a hidden 
layer with two neurons, and eight output neurons in the output 
layer. Extensive simulation studies have been conducted to 
verify the feasibility of proposed protection scheme under 
variety of energizing conditions with different source 
triggering angles, winding connections, and fault conditions 
with symmetrical and unsymmetrical faults.  

The next section aims to introduce wavelet transform into 
the power system protective relaying with the emphasis on the 
transformer inrush identification. 
 

II.  PRINCIPLE of WT 
Since Morlet first began to use wavelet analysis, it has been 

widely studied by many mathematicians, physicist, engineers, 
etc. today, its interest is spread out on not only theoretical but 
various applied fields, for example, speech or image signal 
processing, vibration analysis and so on. The wavelet analysis 
need not to use a single window function in all frequency 
components, or has linear resolution in the whole frequency 
domain that are weakpoints for Fourier analysis. There is 
enough reason that much interest concentrates on wavelet in 
time-frequency analysis [10].  

Wavelet analysis provides a basis for L2(R) and in many 
wavelet systems the elements of this basis are orthogonal to 
each other and normalized. Wavelet analysis providing a basis 
for L2(R) is similar to the set ( ) ( ){ }Ζ∈ntntn :sin,cos 00 ωω  
forming an orthogonal basis for periodic functions having 
frequency 0ω . Using a wavelet expansion, any function in 
L2(R) can be expressed as a sum of the basis elements 
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 Parameter j determines the scale or the frequency range of 
each wavelet basis function ψ . Parameter k determines the 
time translations. The defining characteristic of a wavelet or 
multi-resolution system is that )(tψ  satisfies a scaling 
equation such as 
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for some sequence ][kh  that is usually finite. The wavelet 
function )(tψ  is derived from )(tϕ . Each coefficient can be 
calculated as the inner product between )(tf  and the 
respective basis element. The L2 inner products and alternative 
notation for the coefficients in (1) are 
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The ][kc  are called approximation coefficients and the 

][kd j  are called detail coefficients. The approximation 
coefficients together are comparable to the null harmonic (DC) 
value in a Fourier expansion. The Haar wavelet system is the 
earliest and simplest. Its basis elements are translated and 
scaled versions of the following functions: 
 
    1)( =tϕ   for )1,0(∈t  and 0)( =tϕ , otherwise. 
    1)( =tψ   for )5.0,0(∈t  

1)( −=tψ   for )1,5.0(∈t  and 0)( =tψ , otherwise.          (4) 
 

The wavelet function )(tψ  is somewhat similar to one 

period of )2sin( tπ . At a particular j the translates )2( ktj −ψ  
line up right next to each without overlapping for Ζ∈k  [11], 
[12]. 

The wavelet function is localized in time and frequency 
yielding wavelet coefficients at different scales (levels). This 
gives the WT much greater compact support for the analysis of 
signals with localized transient components. The DWT output 
can be represented in a two-dimensional (2D) grid in a similar 
manner as the short time Fourier transformation (STFT), but 
with very different divisions in time and frequency, such that 
the windows are narrow at high frequencies and wide at low 
frequencies. In contrast with the STFT, the WT can isolate 
transient components in the upper frequency isolated in a 
shorter part of power frequency cycle. In discrete wavelet 
analysis of a signal, a time-frequency picture of the analyzed 
signal is set up. The time-frequency plane is a 2D space useful 
for idealizing a two properties of transient signals, localization 
in time of transient phenomena, and presence of specific 
frequencies. The signal is decomposed into segments called 
time-frequency tiles plotted on the plane. The position of the 
tiles indicates the nominal time, while the amplitude is 
indicated by shading. As shown in Fig. 1, two sinusoids with 
50Hz, 50Hz + 150Hz + 250Hz + 350Hz, and a sampling rate 
2kHz, are plotted below. This corresponds to 40 samples per 
cycle. 2 kHz is chosen in order to capture the high frequency 
components of the signals. 
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Fig. 1 Sinusoidal signals and their time-frequency tiles 

 
In Fig. 1, time-frequency tiles are obtained by using Morlet 

wavelet with the level of 5. The DWT is represented by the 
time-frequency tiles, and the mother wavelet function is 
dilated at low frequencies (level – 5) and compressed at high 
frequencies (level – 1) so that large windows are used to 
obtain the low frequency components of the signal, while 
small windows reflects discontinuities.  

Coiflet wavelets are designed for the purpose of maintaining 
a close match between the trend values and the original signal 
values. Following a suggestion of Coifman, these wavelets 
first constructed by Daubechies, who called them “coiflets”. 
All of the coiflet wavelets are defined in a similar way; so this 
paper shall concentrate on the simplest case of Coif6 wavelets 
[13], [14]. The scaling numbers for the Coif6 scaling signals 
are listed below: 
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Using these scaling numbers, the first level Coif6 scaling 

signals defined by 
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where N is the number of samples. 
 

As a generalized expression, (5) can be re-written as: 
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The Coif6 wavelet numbers are defined by β1 = α6, β2 = -

α5, β3 = α4, β4 = -α3, β5 = α2,       β6 = -α1 and these wavelet 
numbers determine the first – level Coif6 wavelets as 
follows: 
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As a generalized expression, (7) can be re-written as: 
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Inverse wavelet transform for Coif6 is expressed as: 

 
11 DAF +=                                        (9) 

 
In (9), A is called the approximation and D is called the 

detail signal where F is the synthesized signal. 
 
At level 1, A is defined as 
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At level 1, D is defined as 
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Inverse wavelet transform for Coif6 at level 2 is expressed as 
122 DDAF ++=                                     (12) 

At level 2, A is defined as: 
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(a) 

(b) 
Fig. 2 (a) Coif6 wavelet and scale function, (b) wavelet 

decomposition tree 
 

III.  BACK-PROPAGATION NEURAL NETWORK 
Neural network have been trained to perform complex 

functions in various fields of application including pattern 
recognition, identification, classification, speech, vision and 
control systems. The most widely used neural network is 
back-propagation. Back-propagation attempts to minimize 
error by adjusting each value of a network proportional to the 
derivative of error with respect to that value. This is called 
gradient descent. In the back-propagation learning, the actual 
outputs are compared with the target values to derive the error 
signals, which are propagated backward layer by layer for the 
updating of the synaptic weights in all the lower layers. 

One of the most critical problems in constructing the ANN 
is the choice of the number of hidden layers and the number of 
neurons for each layer. Using too few neurons in the hidden 
layer may prevent the training process to converge, while 
using too many neurons would produce long training time, 
and/or result in the ANN to lose its generalization attribute. In 
this paper, a number of tests were performed varying with the 
one or two hidden layers as well as varying the number of 
neurons in each hidden layer with full connections between 
the neurons. A hidden layer with two neurons was assumed 
adequate for classifying eight outputs. Total iteration number 
was set to 2000. 

To discriminate inrush current and short circuit current, the 
typical three layer architecture are used as follows: it has one 
input layer with three neurons, a hidden layer with two 
neurons and an output layer with eight neurons. Hidden layer 
has sigmoidal neurons which receive inputs directly and then 
broadcast their outputs to a layer of linear neurons which 
compute the network output.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 A feed-forward, back-propagation ANN structure  
 
This architecture has been proven capable of approximating 

any function with a finite number of discontinuities with 
arbitrary accuracy. It is used to discriminate inrush current and 
short-circuit current here.  

Number of neurons has been optimized by neglecting very 
low coefficients. The input data of the ANN is organized in a 
sliding-window of a quarter of cycle (5ms, 10 samples of 
primary and secondary currents). The DWT splits the signal in 
details and broad signals, each with 10 coefficients. The 
ANNs are fed with the three detail signals; thus, the input 
vector has 30 elements. The detection ANN has eight output 
neurons which indicate the existence of magnetizing inrush, 
normal operating condition, phase to phase fault, two phase to 
ground fault, three phase short circuit fault, phase to phase 
fault, overload condition and circuit breaker operating. All the 
output neurons have binary decisions such as 1 and 0. in case 
of a fault condition and overload condition the output neuron 
of circuit breaker is set to 1 otherwise 0. 

In Fig. 4, the three phase transformer is connected in star-
ground/star-ground and fault begins at 200ms and ends at 
240ms with a fault resistance of Ω1 . To simulate high 
impedance faults, different values of fault resistances were 
selected and analyzed.  
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Fig. 4 Single phase to ground fault on secondary side 

 
A total of 300 simulations were generated, half of them 

were used for training, and the other half for testing. The 
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current signal of the faulty phase, the detail and the broad 
signal are displayed on Fig. 5.  

 
Fig. 5 Single phase to ground fault and wavelet decompositions 

 
In Fig. 5, the left column represents secondary phase current 

on rated load, the middle column represents A coefficients 
while the right one represents D coefficients. As seen from the 
D coefficients of the faulty phase, the magnitudes of the spikes 
are higher than the others. In this case, the simulation 
continues 0.5 second. The DFT solution of the fault current 
gives only fundamental harmonic component (3.6A, 50 Hz), 
but it can be observed the detail signal (D) clearly shows 
distinctive features of the transients, i.e., immediately after the 
fault occurrence several sharp spikes appear in the detail 
signal indicating the occurrence of a fault. For all simulations, 
the step length of the moving window is ¼ cycle (5ms at 
50Hz) and sampling frequency is 2kHz.  

In a similar way, Fig. 6 and Fig. 7 show the simulations of 
magnetizing inrush and normal operating condition on rated 
load, respectively, and their DWT solutions. 

 

 
Fig. 6 Magnetizing inrush condition and variation of D coefficients 

 

 
Fig. 7 Normal operating condition on rated load and variation of D 

coefficients 
 
The overall fault detection flowchart diagram is shown in 

Fig. 8. Transformer currents are obtained through CTs and 
sampled by NI- Data Acquisition Card (16 Bits) with a sample 
frequency of 2000 Hz. Acquired current samples are sliding-
windowed for discrete wavelet transform. Wavelet transform 
at level 1 with Coif 6 is processed at the next stage. Obtained 
data is prepared for neural network computation with 3 inputs 
and 8 outputs. If inrush current is detected, the relay is 
restraint and, otherwise, in case of internal fault detection, the 
relay sends a trip signal immediately.    

 
Fig. 8 The overall fault detection flowchart 

 
IV.  RESPONSE EVALUATION 

In this section, the ANN responses will be seen from tables. 
The input is a set of D1, D2, and D3 of inrush current or short-
circuit current of each phases using discrete wavelet  
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TABLE I 
TRAINING VALUES DURING MAGNETIZING INRUSH 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
TABLE II 

THE ANN RESPONSE AFTER 2000 ITERATION FOR MAGNETIZING INRUSH CONDITION 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

transform. In Table I, transformer is switched on at 0.5ms after 
the simulation starts, therefore the four values of D1, D2, and 
D3 are zero. Since magnetizing inrush is assumed as normal 
operation, the output neurons of mag and normal are set to 1, 
while the others 0.  

 
In Table I; 
The output neuron “mag”  refers to “magnetizing inrush 

condition”, 
The output neuron “normal”  refers to “normal operating 

condition”, 
The output neuron “pg”  refers to “single phase to ground 

fault”, 
The output neuron “ppg”  refers to “two phase to ground 

fault”, 
The output neuron “tp”  refers to “three phase short-circuit”, 
The output neuron “pp”  refers to “phase to phase fault”, 
The output neuron “ol”  refers to “over-load condition”, and 
The output neuron “cb”  refers to “circuit breaker position”. 

 
In Table II, T refers to target value and C refers to ANN 

response.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 9 RMS error history during magnetizing inrush 

 
Fig. 9 shows the RMS network error when using back-

propagation neural network training. Training is ended when  
the RMS error reaches the value of 0.0003. 
 

Network Statistics during training stage for the case of 
magnetizing inrush can be summarized as below: 

 
Network Name:  mag 
Iterations:    2000 
 

 

D1 D2 D3 mag normal pg ppg tp pp ol cb 
0 0 0 1.0 1.0 0 0 0 0 0 0 
0 0 0 1.0 1.0 0 0 0 0 0 0 
0 0 0 1.0 1.0 0 0 0 0 0 0 
0 0 0 1.0 1.0 0 0 0 0 0 0 
-0.0001 0.0006 -0.0005 1.0 1.0 0 0 0 0 0 0 
-0.0003 0.0018 -0.0015 1.0 1.0 0 0 0 0 0 0 
0.0004 -0.0022 0.0018 1.0 1.0 0 0 0 0 0 0 
0.0021 -0.0116 0.0095 1.0 1.0 0 0 0 0 0 0 
-0.0006 0.0032 -0.0026 1.0 1.0 0 0 0 0 0 0 
-0.0079 0.0432 -0.0354 1.0 1.0 0 0 0 0 0 0 

T C T C T C T C T C T 
1.0 1.000017 1.0 1.000026    0.0 0.000021 0.0 0.000022   0.0 0.000024 1.0 
1.0 1.000017 1.0 1.000026    0.0 0.000021 0.0 0.000022   0.0 0.000024 1.0 
1.0 1.000017 1.0 1.000026    0.0 0.000021 0.0 0.000022   0.0 0.000024 1.0 
1.0 1.000017 1.0 1.000026    0.0 0.000021 0.0 0.000022   0.0 0.000024 1.0 
1.0 1.000057    1.0 1.000052    0.0 0.000057 0.0 0.000051   0.0 0.000058 1.0 
1.0 1.000135    1.0 1.000106    0.0 0.000127 0.0 0.000108   0.0 0.000126 1.0 
1.0 0.999860    1.0 0.999920    0.0 -0.000120 0.0 -0.00009   0.0 -0.00011 1.0 
1.0 0.999196    1.0 0.999470    0.0 -0.000719 0.0 -0.00057    0.0 -0.00068 1.0 
1.0 1.000253    1.0 1.000185    0.0 0.000234 0.0 0.000194   0.0 0.000228 1.0 
1.0 1.003160    1.0 1.002145    0.0 0.002851 0.0 0.002309   0.0 0.002742 1.0 
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 TRAINING DATA: mag1.txt 
 Node     Std. Dev     Bias             Max Error    Correlation 
 ----         -------         ----                ---------         ----------- 
 mag.   0.00031    7.0244e-06       0.00076     0.0000e+00 
 normal 0.00041  1.0478e-05        0.00101     0.0000e+00 
 pg        0.00034  9.4074e-06        0.00084     2.8612e-05 
 ppg     0.00031   1.1909e-05        0.00077     1.9501e-05 
 tp       0.00041   1.0126e-05        0.00100      3.0889e-05 
 pp      0.00046   1.2509e-05        0.00112      3.3033e-05 
 OL    0.00043    1.0733e-05        0.00107      2.6865e-05 
 cb      0.00064    1.2544e-05        0.00157      3.0736e-05 

 
Network Statistics during testing stage for the case of 

magnetizing inrush can be summarized as below: 
Network Name:  mag 
  
 RECALL DATA: mag1_test.txt 
 Node           Std Dev          Bias     Max Error   Correlation 
 -------               ----             -----       -----------         -------- 
 mag               0.00022      -3.6681e-05   0.00066     0.0 
 normal          0.00086       -0.00018        0.00260     0.0 
 pg                  0.00092       -0.00020       0.00277     0.0 
 ppg                0.00217       -0.00050       0.00657     0.0 
 tp                   0.00073       -0.00015       0.00221     0.0 
 pp                  0.00130       -0.00029       0.00392     0.0 
 over_load      0.00075       -0.00016       0.00226     0.0 
 cb                7.6618e-05   1.3982e-05   0.00019      0.0 

 
As stated in Section I, approximately 170 series of 

simulations are performed to see the performance of the 
proposed algorithm during magnetizing inrush.  

 
TABLE III 

THE ANN RESPONSE AFTER 2000 ITERATION FOR SINGLE PHASE TO GROUND 
FAULT IN TRAINING STAGE 

Pg (T) Pg (C) Cb (T) Cb (C) 
1.0 0.999011 1.0 0.999072 
1.0 0.998445 1.0 0.998582 
1.0 1.002006 1.0 1.001838 
1.0 0.999448 1.0 0.999483 
1.0 0.999689 1.0 0.999715 
1.0 1.000136 1.0 1.000127 
1.0 0.999624 1.0 0.999633 
1.0 1.001861 1.0 1.001806 
1.0 0.998737 1.0 0.998774 
1.0 0.997940 1.0 0.997990 

 
In Table III, Pg (T) refers to target value of phase to ground 

fault neuron, Pg (C) refers to calculated value of phase to 
ground fault neuron, Cb (T) refers to target value of circuit 
breaker operating neuron, and Cb (C) refers to calculated 
value of circuit breaker operating neuron. Since this proposed 
method works in a quarter cycle, only ten samples are shown 
in Table III. In this case study, the laboratory transformer is 
connected inYnYn0 and R phase to ground fault occurs 
between the time 0.2s and 0.23s in secondary side. 

In testing stage, the laboratory transformer is connected in 
YnD5 and single phase to ground fault occurs in S phase. The 
proposed algorithm easily detects single phase to ground fault 

and sets the circuit breaker condition 1 in ¼ cycle (5ms) as 
seen below: 
 

mag      =     -0.00013 
normal  =     -0.00019 
pg         =      0.99979 (defective phase) 
ppg       =     -0.00016 
tp          =     -0.00016 
pp         =     -0.00017 
ol          =     -0.00018 
cb         =      0.99981 (circuit breaker operation) 

 
Approximately 100 series of studies involving many 

practically encountered different system and fault condition 
have shown that the protection technique based on a combined 
DWT and ANN is very effective in accurately discriminating 
between magnetizing inrush and short-circuit faults. It is 
apparent that an ANN with three layers with two neurons in 
hidden layer, when combined with DWT, gives the best 
performance. 

The following example gives the performans results of the 
proposed algorithm under the 35% overload condition for the 
model transformer.  

Network Statistics during testing stage for the case of 
overload condition can be summarized as below: 

 
Network Name:  overload 
  
 RECALL DATA: overload_test.txt 
  
Node   Std Dev   Bias     Max Error    Correlation 
 ----      -------      ----         ---------       ----------- 
 1       0.00027     6.6204e-05        0.00079     0.0 
 2       0.00021     3.8196e-05        0.00059     0.0 
 3       0.00030     8.9594e-05        0.00065     0.0 
 4       0.00027     4.5546e-05        0.00076     0.0 
 5       0.00029     8.4952e-05        0.00058     0.0 
 6       0.00019     4.6949e-05        0.00054     0.0 
 7       0.00031     9.0182e-05        0.00083     0.0 
 8       0.00031     8.8906e-05        0.00077     0.0 
 
Targets and network outputs for the case of overloaded 

transformer are shown at below: 
 

Network Name:  overload 
                                  Target  Calculated 
Output Node 1   (target,output) =      0.0      0.00004 
Output Node 2   (target,output) =      0.0     -0.00011 
Output Node 3   (target,output) =      0.0      0.00043 
Output Node 4   (target,output) =      0.0     -0.00017 
Output Node 5   (target,output) =      0.0      0.00045 
Output Node 6   (target,output) =      0.0      0.00003 
Output Node 7   (target,output) =      1.0      1.00027 
Output Node 8   (target,output) =      1.0      1.00033 
 
As stated before; output node 7 refers to OL (overload) and 

output node 8 refers to cb (circuit breaker operating condition) 
and proposed algorithm easily detects overload condition and 
sends a trip signal.    
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V.  CONCLUSION 
This paper presents a novel technique for distinguishing 

between inrush currents and short-circuit currents in 
transformer systems by combining wavelet transform and 
neural network technique. The ability of wavelets to 
decompose the signal into frequency bands in both time and 
frequency allows accurate fault detection. Since this method is 
used for discontinuity analysis of the signals, even if the fault 
occurs at the lowest time space with high impedance at the 
fault location, detail coefficients of the signal give us faulty 
condition. The required calculations are very simple, it is only 
necessary to perform a wavelet decomposition at level 1 for 
Coif 6. The proposed wavelet has proved optimal performance 
within tested faults.  

The ANN correctly classifies the fault with advantages in 
accuracy and speed upon classical algorithms. A faster 
response is obtained since only a quarter of cycle from the 
occurrence of the fault is required. The performance shown 
demonstrates that the proposed technique gives a very high 
accuracy in classification of the transients ( %99≈ ). The 
proposed technique can be used as an attractive and effective 
approach for alternative protection algorithm for large power 
transformers. 
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