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quantify any possible trends between breaker vortex 
parameters and incoming wave conditions.  

II.  PUBLISHED VORTEX PARAMETER PREDICTORS 
In the first detailed study based on the suggestions of 

Longuet-Higgins and New, Mead and Black [2] fitted a cubic 
function to 46 pre-published images of wave vortex profiles at 
23 plane emergent beaches and barred reefs worldwide. 
Resulting vortex ratios varied between 1.73 and 3.43 and 
vortex angles between 29° and 58°.  Given that no direct wave 
data were collected, they proposed that the vortex ratio is 
independent of wave characteristics and depends only on the 
orthogonal slope, according to:  

 
 0.065 0.821      (2) 

 
where cos , m’ is the seafloor slope normal gradient 
and φ is the peel angle of the wave measured with respect to 
the wave ray [14]. The seafloor slopes 2 - 3m shallower and 2 
- 3m deeper than an estimated break point were averaged to 
estimate the effective seafloor slope.  Table I details the 
breaking intensity categories.  
 

TABLE I 
BREAKING INTENSITY CATEGORIES 

Intensity Extreme Very High High Medium 
High 

Medium 

Vortex 
Ratio (Y) 

1.6 – 
1.9 

1.9 – 
2.2 

2.2 – 
2.5 

2.5 – 
2.8 

2.8 – 
3.1 

 
Mead and Black found a coefficient of correlation (R2) 

value of 0.71 using their collected data and Eq. (2),  
illustrating the possibility that the vortex ratio may be a 
defining breaking wave intensity characteristic. Mead and 
Black were unable to find dependence between the vortex 
angle and any combination of slope and vortex parameters.  
No direct wave measurements were collected. 

In 1997, Grilli, Svendsen and Subramanya [6] presented 
breaking wave profiles from a fully non-linear potential flow 
wave model (FNPM), which input three offshore solitary wave 
steepness (Ho/Lo) values over four different seafloor slopes.  
Numerical analysis of the published figures conflicts with 
Mead and Black’s Eq. (2), with average vortex ratios of 2.7, 
2.9 and 2.1 for the 1/100, 1/35 and 1/15 slopes respectively. 
No vortex ratio or angle dependence on any wave 
characteristic could be found. 

In 2007, Blenkinsopp and Chaplin [5] preformed 41 
different wave flume tests over a constant 1/10 seafloor slope. 
The resulting vortex ratios varied between 1.46 and 2.28, 
despite the constant slope.  Blenkinsopp and Chaplin were 

unable to find any vortex ratio dependencies. They note that 
waves with lower offshore steepness values resulted in higher 
vortex cavity areas yet were unable to quantify this trend due 
to significant data scatter. 

In 2008, Fairley and Davidson [15] investigated a single 
steepness monochromatic wave  train breaking over constant 
seafloor slope with varying bathymetric step sizes. In 
contradiction to Eq. (2), the average vortex ratios varied 
between 1.6 and 2.6.  Their data showed vortex ratio and 
vortex area increased with step size. They theorized these 
effects are caused by lower localized seafloor slopes yet note 
that return flow over the steps created irregularities within 
their results. A poor correlation of decreasing vortex angle 
with increasing step size was noted.  

Johnson [16] conducted detailed laboratory analysis 
investigating the application of the vortex ratio and vortex 
angles as predictors for breaking intensity. His experiments 
covered 4 different slopes and 72 different regular wave height 
and period variations. Johnson found no dependence between 
the vortex ratio or vortex angle and the seafloor slope, in 
contradiction to Eq. (2). Additionally, neither wave period nor 
breaking depth found correlation with the vortex ratio or 
angle. Only wave height was found to play a role, with smaller 
waves creating lower vortex ratios.   

III. FIELD, IRREGULAR BREAKING WAVE PARAMETER STUDY  
In order to fully  investigate the applicability of vortex 

parameters as indicators of breaking intensity in field 
conditions, a complete suite of breaking wave parameters, 
including breaking wave height, breaking water depth, wave 
period, seafloor slope, vortex angle and vortex ratio, were 
collected.  During the fall of 2011, detailed breaking wave 
field studies were completed at The Hook and Sewers Peak in 
Santa Cruz, California and at Tropicana beach, Barbados. The 
aim was to collect the most accurate and detailed set of field-
based, irregular wave breaking data ever assembled.  

For each study location, a video camera was installed over 
viewing the surf zone, and recorded all wave breaking events 
during the study periods. The captured video footage was used 
to extract the position and height of individual waves at the 
instant their front profiles became vertical. These images were 
georectified, using the Matlab imtransform function and four 
collected ground control points, in order to transfer assign 
each camera pixel with real world latitude and longitude 
position. Hence, any manually chosen pixel from the overview 
video camera image could be transformed into real world co-
ordinates. An example image georectification is shown in Step 
#1 of Fig. 2.  
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vertical bars in the presented plots indicate the maximum 
possible ( ) and minimum possible ( ) vortex ratios as 
an indication of possible individual vortex ratio variations. 

Firstly it was noted that every incident wave at each 
location did not create a plunging profile despite a relatively 
constant effective seafloor gradient, in contradiction to Eq. (2).  
As shown in Fig. 5, lower seafloor gradient vortex ratios find 
agreement with Mead and Blacks’ relationship, but increasing 
variation occurs as the gradient increases. The dashed 
regression line illustrates increasing vortex ratios with 
increased gradient (R2 = 0.27) for all data points, yet when 
individual sites are plotted the opposite trend is evident. See 
Fig. 6 for an example at Tropicana. The associated vortex ratio 
uncertainty bars indicate large levels of uncertainty in possible 
trends for both plots. 

 

 
Fig. 5 Vortex Ratio vs. Seafloor Gradient 

 

 
       Fig. 6 Tropicana Vortex Ratio vs. Seafloor Gradient 

 
Fig. 7 and Fig. 8 illustrate a weak decreasing vortex ratio 

trend with increasing non-dimensionalised wave height and 
breaking water depth and associated R2 values of only 0.22 
and 0.18 respectively. These trends contradict the findings of 
Johnson [16], who found smaller waves creating lower vortex 
ratios. Visual analysis of maximum and minimum possible 
vortex ratios illustrates large variation bounds and a 
subsequent lack of confidence in regression trends.  

 

 
Fig. 7 ND Depth vs. Vortex Ratio Relationship 

 

 
Fig. 8 ND Height vs. Vortex Ratio Relationship 

 
Despite the regression line in Fig. 9 indicating that 

increasing wave periods result in small increasing vortex 
ratios, the R2 value of only 0.18 indicates substantial 
uncertainty in this trend. The associated vortex ratio 
uncertainty bars indicate no significant dependence between 
the vortex ratio and wave period. No published studies have 
found correlation between period and vortex ratios. 

 

 
Fig. 9 Vortex Ratio Period Relationship 

 
The Surf Similarity Parameter (SSP) differentiates between 

different breaking wave types and increasing SPP values are 
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theorised to give lower vortex ratios.  As shown in Fig. 10a, a 
corroborating trend may be apparent within the data scatter yet 
the fitted trend line features an R2 of only 0.14. However, a 
binned box plot of Fig. 10a shows no definite trend with 
respect to the SSP (Fig. 10b) and parameter independence.  

 

 
Fig. 10a Vortex Ratio VS SSP Relationship 

                          

 
Fig. 10b Binned Vortex Ratio VS SSP plot 

 
As summarized in Table III, the vortex ratio was rigorous 

analysed against all breaking wave and local bathymetric 
characteristics. No trend line found a correlation of 
determination above 0.28. As a result, no defining and 
significant relationships could be drawn from the collected 
data, corroborating the findings of Johnson [16], Blenkinsopp 
[29] and Grilli et al. [6]. These findings bring the suggestion 
that breaker vortex ratios may be good descriptor of breaking 
intensity into doubt. 

In order to assess the application of the vortex angle as a 
breaking intensity predictor, a similar set of comparative plots 
were analysed. As shown in Table V, none of the relationships 
featured an R2 value above 0.02 and all featured large RMSE.  

 
 
 
 

TABLE V 
 VORTEX ANGLE DEPENDENCE OVERVIEW 

 Wave Vortex Angle Relationships 

  Constant Slope R-Square 
Linear 
RMSE 

ND Depth 46.76 -416.36 0.00 4.99 

ND Wave Height 46.02 183.21 0.00 4.99 

Seafloor Slope 44.46 54.05 0.02 4.93 

Breaker Index 46.02 0.22 0.00 4.99 

Period 48.27 -0.15 0.01 4.96 

ND Height*Slope 45.70 12357.5 0.00 4.98 

ND Depth*Slope 46.31 -1200 0.00 4.99 

Breaker Steepness 43.27 83.85 0.01 4.96 

SSP 44.14 5.58 0.02 4.94 

 
The highest co-efficient of correlation values were found 

for seafloor slope and SSP plots, yet a basic visual analysis 
Fig. 11 and Fig. 12 show the high degree of data scatter and a 
lack of dependence. These findings corroborate previous 
laboratory investigations into breaker vortex angles have also 
indicate no significant trends [2, 5, 16]. It is suggested that the 
lack of angle dependence is due to increasing vortex angles, θ, 
during the progression of the breaking event, as theoretically 
predicted by Vinje and Brevig [30] and Longuet-Higgins [7]. 

 

 
Fig. 11 Vortex Angle vs. Slope Relationship  

  

 
Fig. 12 Vortex Angle vs. SSP Relationship 
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