
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

573

 

 

  

Abstract—The legends about “user-friendly” and “easy-to-use” 
birotical tools (computer-related office tools) have been spreading 
and misleading end-users. This approach has led us to the extremely 
high number of incorrect documents, causing serious financial losses 
in the creating, modifying, and retrieving processes. Our research 
proved that there are at least two sources of this underachievement: 
(1) The lack of the definition of the correctly edited, formatted 
documents. Consequently, end-users do not know whether their 
methods and results are correct or not. They are not aware of their 
ignorance. They are so ignorant that their ignorance does not allow 
them to realize their lack of knowledge. (2) The end-users’ problem 
solving methods. We have found that in non-traditional programming 
environments end-users apply, almost exclusively, surface approach 
metacognitive methods to carry out their computer related activities, 
which are proved less effective than deep approach methods. 
Based on these findings we have developed deep approach 

methods which are based on and adapted from traditional 
programming languages. In this study, we focus on the most popular 
type of birotical documents, the text based documents. We have 
provided the definition of the correctly edited text, and based on this 
definition, adapted the debugging method known in programming. 
According to the method, before the realization of text editing, a 
thorough debugging of already existing texts and the categorization 
of errors are carried out. With this method in advance to real text 
editing users learn the requirements of text based documents and also 
of the correctly formatted text. 
The method has been proved much more effective than the 

previously applied surface approach methods. The advantages of the 
method are that the real text handling requires much less human and 
computer sources than clicking aimlessly in the GUI (Graphical User 
Interface), and the data retrieval is much more effective than from 
error-prone documents. 
 
Keywords—Deep approach metacognitive methods, error-prone 

birotical documents, financial losses, human and computer resources. 

I. INTRODUCTION 

N the Graphical User Interface (GUI), end users almost 
exclusively apply surface approach methods for computer-

related problem-solving. As a result they focus on providing 
outputs, instead of solving problems [1], [3], [4], [13], [15]. 
This approach has led to a high percentage of error prone 
administrative (birotical) documents, which are highly 
demanding of human and computer resources, causing serious 
financial losses both in the productive and retrieval processes 
[8], [12]–[16], [18]. It is not common knowledge that non-
traditional software environments are also algorithmically 
driven, and to solve problems in these programs the same 
approach should be applied as with “real” programming [2], 
[5], [17], [19]. 

 
M. Cs. is with University of Debrecen Faculty of Informatics (phone: +36-

52-512-900/75128; e-mail: csernoch.maria@inf.unideb.hu).  
P. B. is with University of Debrecen Faculty of Informatics (e-mail: 

biro.piroska@inf.unideb.hu). 

Faced with these problems, we have developed deep 
approach metacognitive methods for computer-related 
problem-solving in “birotical” environments, focusing on text 
management in the present paper. The methods are adapted 
from high level programming languages, and follow problem-
solving and debugging methods which have so far proved 
effective and efficient. 

II. THEORETICAL BACKGROUND 

A. Metacognitive Approaches to Computer-Related 

Problem-Solving 

To cover all computer related activities, both in traditional 
and non-traditional programming environments, Case and 
Gunstone's [6] well accepted system of metacognitive problem 
solving approaches had to be extended (Fig. 1) with one deep 
(CAAD, Computer Algorithmic and Debugging-based) and 
one surface approach (TAEW, Trial-and-Error Wizard-based) 
category [7]. 

B. Levels of Mastery 

Generally speaking, non-traditional software environments 
are not considered programming environments. The GUI and 
the support from the software companies suggest that user-
friendly environment does not require any algorithmic skills, 
and there is no need for any computational thinking [20]. 
However, this is not so; to work effectively in “birotical” 
environments, similar to programming, the order of the three 
levels of mastery should also be followed [7]: 
- Familiarity: The student understands what a concept is or 

what it means. 
- Usage: The student is able to use or apply a concept in a 

concrete way. 
- Assessment: The student is able to consider a concept 

from multiple viewpoints and/or justify the selection of a 
particular approach to solve a problem. 

The GUI-support approaches leave out the first level of 
mastery, and the focus is on the usage. However, with this 
approach there are at least two fundamental problems: 
- The one mentioned earlier; the high number of error prone 

documents and the wasted human and computer 
resources, 

- Even more series the other consequence; leaving out the 
first level of mastery, we would never have a chance to 
reach the third level, the assessment. 

We have to note here that there are sources which claim that 
our failure in teaching Informatics and Computer Sciences are 
rooted in Word and Excel [21]. However, we are convinced 
that Word and Excel should not be blamed. They are harmless, 
algorithmic based pieces of software. The popular and widely 
accepted surface approach methods and those who teach and 

Wasting Human and Computer Resources 
Mária Csernoch, Piroska Biró 

I



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

574

 

apply them are responsible. We claim that instead of Word, 
Excel and PowerPoint we should teach text and spreadsheet 
 

Fig. 1 Metacognitive approaches to computer
approaches to computer

Fig. 2 The text is loaded with layout erro
 

III. RESULTS 

Computer assisted natural language text management is still 
a great challenge and will continue to be both in the short and 
long term. The complexity of the problem makes it clear that 
surface approach methods to text management will not 
succeed; instead, deep approach methods are needed to carry 
out text handling and data retrieval effectively and efficiently. 
The method introduced in this paper, entitled Error
Recognition and Classification (ERaC), is a CAAD
method (Fig. 1) [9], adapted from programming languages for 
handling text-based “birotical” documents [2], [5], [17], [19].

A. Correctly Formatted Text 

To apply the ERaC deep approach metacognitive method to 
computer assisted text management – regardless of whether 
the output is paper-based or in an electronic format
necessary to define the correctly edited and formatted text. 
Any lack of this definition would lead to a different 
understanding of mastery and knowledge, and indeed this is 
the case at present (Fig. 2). The author of the text in 

 

them are responsible. We claim that instead of Word, 
Excel and PowerPoint we should teach text and spreadsheet 

management, we should teach the different aspects of the 
correctly designed and formatted documents [21].

Metacognitive approaches to computer-related problem-solving. We have extended Case and Gunstone's original typology with 
approaches to computer-related activities (in Italics) 

 

The text is loaded with layout errors. Its author is a confident but ignorant end-user, who is unaware of their ignorance

Computer assisted natural language text management is still 
a great challenge and will continue to be both in the short and 

oblem makes it clear that 
surface approach methods to text management will not 
succeed; instead, deep approach methods are needed to carry 
out text handling and data retrieval effectively and efficiently. 

in this paper, entitled Error 
ecognition and Classification (ERaC), is a CAAD-based 

[9], adapted from programming languages for 
based “birotical” documents [2], [5], [17], [19]. 

the ERaC deep approach metacognitive method to 
regardless of whether 

based or in an electronic format–, it is 
necessary to define the correctly edited and formatted text. 

ould lead to a different 
understanding of mastery and knowledge, and indeed this is 

). The author of the text in Fig. 2 

states that he has a “sound knowledge of all common word 
processing”, which is obviously not so. The reason for this 
misunderstanding is the lack of 
edited, formatted text [8], [10]
author of Fig. 2 prevents them to realize their lack of 
knowledge. They do not know that any changes to the body of 
the text would evoke further unplanned sequence of changes, 
which requires additional time, human and computer 
resources. 
Definition: A test is correctly edited and formatted if it is 

invariant to modification and fulfills the requirements of 
printed text-based materials. 
The definition allows and supports modification of the body 

of the text, but only those modifications are accepted which 
conform to the intentions of the user. Any correction 
typing (including deleting) and formatting 
original intention is not allowed. The definition also considers 
rules related to any printed materials 
[13] (for details see Chapter B)
The text in Fig. 2 cannot bear

management, we should teach the different aspects of the 
correctly designed and formatted documents [21]. 

 

Case and Gunstone's original typology with 

 

who is unaware of their ignorance 

nd knowledge of all common word 
processing”, which is obviously not so. The reason for this 
misunderstanding is the lack of the definition of the correctly 
edited, formatted text [8], [10]–[14]. The ignorance of the 

prevents them to realize their lack of 
knowledge. They do not know that any changes to the body of 
the text would evoke further unplanned sequence of changes, 
which requires additional time, human and computer 

st is correctly edited and formatted if it is 
invariant to modification and fulfills the requirements of 

 
The definition allows and supports modification of the body 

of the text, but only those modifications are accepted which 
conform to the intentions of the user. Any correction – i.e. 
typing (including deleting) and formatting – beyond the user's 
original intention is not allowed. The definition also considers 

any printed materials – paper or e-output [12], 
(for details see Chapter B). 

bear any modification – deleting or 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

575

 

 

adding pieces of text – or any formatting; even a simple 
change of font size would ruin the arrangement of the text (see 
Figs. 4 and 7). 

B. Classification of Errors 

To provide error free texts, users have to be familiar with 
the different kinds of errors and the nature of these errors. 
However, the high number of possible errors does not allow 
them to be handled individually. Considering these 
requirements, the following major error classes are defined: 
- layout (break up), 
- formatting, 
- syntactic, 
- semantic, 
- typographic. 
However, we must note that these error groups are not 

exclusive; one error of a certain type would indicate another 
type (Figs. 4, 5, and 7, 9; layout errors and formatting errors 
cause typographic errors, respectively). 

C. Examples of Errors and Their Classification 

Layout errors: Layout errors are those which break the text 
into meaningless chunks to imitate formatting. These are the 
most demanding errors, because they prevent any modification 
and proper formatting of the text. There are some automated 
corrections available in order to lessen the number of these 
errors, but only a very few are successful. The non-printable 
characters clearly present the most common layout errors in 
text management: extra spaces (Figs. 2-5, 9, 11, 12), extra tabs 
(Figs. 2, 3 B), extra end of paragraph marks (enters) (Figs. 2, 3 
A, 4 A, 5, 9 B, 11), and manual paragraph numbering (Figs. 3 
A, 5, 9 B, 11). 
Layout, formatting, and most of the typographic errors are 

independent of languages. In the figures we use the authentic 
texts with the original languages to demonstrate that these 
errors are not the specialties of the English language. Not only 
the problems but handling them is also language independent. 

To demonstrate the consequences of the incorrectly used 
end of paragraph character we selected a sample presented in 
Fig. 4. In the first section there is one enter at the end of the 
paragraph (following Picture ID), while in the second sections 
enters are typed at the end of each line (available, and, must 
be, respectively, blue arrows). After decreasing and increasing 
the font size (samples B and C, respectively) the second 
section does not hold the original arrangement of the text. 
Beyond this error, the extra enters between paragraphs –
 replacing spacing before and/or after paragraph – are 
resizable (Fig. 4, red arrows and boxes), consequently with a 
change in font size the space between the paragraphs is also 
changed. 
Fig. 5 is an example of high level bricolage. Instead of 

using the equation editor, the fraction is typed as text: the 
numerators and the denominators are placed in separated 
paragraphs and further “tricks” are applied. 
It is also common that layout errors evoke syntactic and 

typographic errors. The incorrectly used spaces in Figs. 3, 4, 9, 
11, 12 (lower sample) generated syntactic errors, and some of 
these errors evoked typographic errors, also.  
Syntactic and semantic errors: Most end-users are familiar 

with the concept of syntactic errors, and even spellcheckers 
provide assistance in avoiding some, but not all of them. The 
most frequent syntactic errors occur in connection with 
punctuation marks and other special characters (Fig. 4). 
However, semantic errors, which are in close connection with 
the syntactic errors, are less known and recognizable. In the 
sample of Fig. 4 we can find marked and unmarked examples 
of syntactic errors, caused by the incorrect use of spaces, and 
there is one marked semantic error. 
Fig. 6 shows two examples of semantic errors which were 

overlooked by the spellchecker. The reason for this failure is 
that both words incorrect in the context are in the dictionary of 
the spellchecker: here instead of hear and boat instead of coat, 
respectively. 

 

A 

B 

 

Fig. 3 Layout errors: Manual paragraph numbering, extra spaces, end of paragraph marks in the middle of the sentences, and manual 
hyphenation (A), incorrectly used spaces and tabulator characters instead of positioned tabulators (B) 

  



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

576

 

A 

B 

C 

Fig. 4 The consequences incorrectly used end of paragraph marks, enters
 

Fig. 5 Fractions created as text; high level bricolage
 

A 

B 

Fig. 6 Examples of unnoticed semantic errors
 
Formatting errors: Formatting errors 

 

The consequences incorrectly used end of paragraph marks, enters

 

high level bricolage 

 

 

es of unnoticed semantic errors 

Formatting errors occur when a 

formatting command is carried out but it is not correct
type of formatting errors results texts which
modified without any unintended formatting or typing
7-12). The other type causes
(upper sample), Figs. 13-16))
Fig. 7 presents five consecutive pa

corresponding rulers. We can read from the ruler
five paragraphs center alignment is i
indentation. The indentations are carefully set in each 
paragraph, which is an extremely tire
changing the font size of these paragraphs (
sample) it is clear that the left indentation cannot be used for 
centering paragraphs. The fabrication of these paragraphs is 
only waste of time. 
There are other formatting errors in this text:

- The margins are set to zero.
- The line spacing is set to a constant value. Consequently, 

the upper part of the characters do not n
the high offered by the line spacing.

We cannot go unnoticed by the fact that this text is the 
production of a textbook publisher. 
is irrelevant, since we focus on the fo

 

 

 

The consequences incorrectly used end of paragraph marks, enters 

formatting command is carried out but it is not correct. One 
type of formatting errors results texts which cannot be 

without any unintended formatting or typing (Figs. 
The other type causes typographic errors (Figs. 8, 12 

). 
presents five consecutive paragraphs and their 

e can read from the rulers that in these 
alignment is imitated by left 

The indentations are carefully set in each 
extremely tire-some process. By 

changing the font size of these paragraphs (Fig. 7, button 
left indentation cannot be used for 

he fabrication of these paragraphs is 

formatting errors in this text: 
The margins are set to zero. 

to a constant value. Consequently, 
e upper part of the characters do not necessarily fits into 

the high offered by the line spacing. 
We cannot go unnoticed by the fact that this text is the 

textbook publisher. (The language of the text 
relevant, since we focus on the formatting errors.)  



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

577

 

Fig. 7 The formatting errors of five consecutive paragraphs

The most frequent formatting errors occur in connection 
with the following activities: 
- Setting picture layout (Figs. 8, 9), 
- Setting vertical and horizontal alignments

positioned left tabulator at the left edge of the paper),
- Selecting newspaper instead of parallel columns (

and the other way around. 
- Setting the table rows and columns incorrectly (
The layout of the picture in Fig. 8 is set to 

which is not correct. The picture in the left sample
the top of the text in spite of the numerous, but obviously not 
enough, empty paragraphs. The picture should be placed in a 
separated paragraph, with the layout In line with text
often meet the same problem with creating space holders (
8, right sample). 
In Fig. 9, just the other way around, the picture

 

ormatting errors of five consecutive paragraphs and the results of changing the font size in all the five paragraphs
 

 

Fig. 8 Incorrectly set picture layouts 
 

The most frequent formatting errors occur in connection 

Setting vertical and horizontal alignments (Figs. 7, 3 B, a 
positioned left tabulator at the left edge of the paper), 

parallel columns (Fig. 10), 

Setting the table rows and columns incorrectly (Fig. 11). 
is set to In front of text, 

in the left sample is placed on 
the top of the text in spite of the numerous, but obviously not 
enough, empty paragraphs. The picture should be placed in a 

In line with text. We 
often meet the same problem with creating space holders (Fig. 

nd, the picture layout is 

incorrectly set to In line with text
In Figs. 10, 11 imitated parallel columns are presented. 

There is confusion between newspaper and parallel columns. 
The difference between newspaper and parallel columns is 
order of the reading. In newspaper columns we finish reading 
a column before we advance to the next one. In parallel 
columns we read the contents related to each other in one 
block, placed side by side, and we only return to the first 
column when a block is completely read.
In Fig. 10 instead of parallel columns newspaper columns 

with column breaks are used. With this extremely tiresome 
solution the text is fragile, and cannot bear any modification.
In Fig. 11 sample A and B

than needed, respectively. In 
to create parallel columns a table is needed. The number of 
columns is set correctly, how

 

 

 

 

 

 

of changing the font size in all the five paragraphs 

 

In line with text, instead of Square. 
imitated parallel columns are presented. 

There is confusion between newspaper and parallel columns. 
The difference between newspaper and parallel columns is the 
order of the reading. In newspaper columns we finish reading 
a column before we advance to the next one. In parallel 
columns we read the contents related to each other in one 
block, placed side by side, and we only return to the first 

ck is completely read. 
instead of parallel columns newspaper columns 

with column breaks are used. With this extremely tiresome 
solution the text is fragile, and cannot bear any modification. 

A and B there are less and more rows 
In Fig. 11 A, the user realized that 

to create parallel columns a table is needed. The number of 
ns is set correctly, however, the number of rows is not, 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

578

 

 

consequently, the text is broken into meaningless chunks, so it 
cannot be modified. In Fig. 11 B, there is one row for the title 
of the table – loaded with layout errors for imitating horizontal 

and vertical alignments – and one more row for all the other 
contents, using numerous tricks to separate the logical blocks. 

 

A 

 

B 

 

Fig. 9 Formatting errors caused by setting improper picture layout 
 

 

Fig. 10 Formatting error by selecting newspaper columns instead of parallel columns, realized in the sample by table 
 

A 

 
 
 
 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

579

 

 

B 

 

Fig. 11 The number of rows set incorrectly in a parallel column structure 
 

 

 

Fig. 12 Errors of one type evoking another type 
 
Typographic errors: Typography provides the rules and 

advices governing the final appearance of the documents. 
Unfortunately, these rules and advices are not as widely 
known as they should be, and frequently violated not only by 
the end-users but also by the software companies who provide 
formatting buttons on center stages. End-users, not knowing 
any better and not caring, frequently use these buttons and 
create documents both for paper and e-output. 
Typographic errors are frequently evoked by formatting or 

layout error. One of the most commonly found typographic 
error is the underlined text (Fig. 12, upper sample), which is 
carried out by a formatting. The samples of Figs. 13-16 are 
overloaded with different kind of typographic mistakes. 
Overleaping errors: As it was mentioned and demonstrated 

in the previous chapters, there are errors which belong to more 
than one class. In addition to them the lower sample of Fig. 10 
presents a very common method: normal and non-breaking 
spaces used to substitute Character spacing. This error is a 
layout error, however, it can be considered either as a 
syntactic or a typographic mistake. 
 

 

Fig. 13 Typographic errors caused by the ill-use of character 
formatting 

 

Fig. 14 Overused formatting of different kinds makes the text 
difficult to read 

 
The errors and error classes are not exclusively the 

characteristics of the printed documents. The very same errors 
can appear in documents designed for e-output. The results are 
similar; creating these documents is highly demanding and 
they do not serve their original purposes, since they do not 
reach the desired public. Fig. 16 presents samples from 
presentations, demonstrating typographic errors.  
We have to note, however, that at present there are no tools 

which can indicate either typographic or formatting errors. 
Consequently, end-users should be responsible for these rules, 
and they should be able to recognize and avoid them. 

IV. CONCLUSION 

In general, we can conclude that there are a great number of 
rules to consider during the process of handling text, and only 
a limited number of automated helps are available, and they 
are not necessarily reliable. Considering the complexity of text 
management, CAAD-based approaches are required in order 
to solve these kinds of problems. With CAAD-based methods, 
end-users would be able to build algorithms to carry out the 
steps involved in (1) building, (2) formatting, and finally (3) 
debugging the texts. With the Error Recognition and 
Classification deep approach method, adapted from 
programming, we would reduce the number of error-prone 
documents, and lessen the time and human and computer 
resources needed to carry out the creation-modification of the 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

580

 

 

texts, and the information retrieval based on them. 
 

 

Fig. 15 Unfitted illustrations to programming tasks 
 
Building algorithms and caring about debugging play 

crucial roles in a CAAD-based process of text management, 
supported by computational thinking. On the other hand, 
coding in GUI is easy; there is nothing else to do except click 
on the buttons to carry out the commands. At present, the 
emphasis is on the coding, providing an extremely high 
percentage of error-prone documents. However, we argue that 
for effective text management, end-users must switch the 
focus from coding to building algorithms and thoroughly 
debugging, and to this end we propose the Error Recognition 
and Classification method. 
 

 

 

 

Fig. 16 Typographic errors in presentations 

ACKNOWLEDGMENT 

The research was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. The project has been 
supported by the European Union, co-financed by the 
European Social Fund. 
The research was supported partly by the Hungarian 

Scientific Research Fund under Grant No. OTKA K-105262. 

REFERENCES 

[1] M. Ben-Ari, “Bricolage Forever! PPIG 1999”. 11th Annual Workshop. 
5–7 January 1999. Computer-Based Learning Unit, University of Leeds, 
UK. Retrieved April 12, 2014 from http://www.ppig.org/papers/11th-
benari.pdf. 

[2] P. Biró, and M. Csernoch, “Deep and surface structural metacognitive 
abilities of the first year students of Informatics.” 4th IEEE International 
Conference on Cognitive Info-communications, Proceedings, Budapest, 
2013, pp. 521–526. 

[3] P. Biró, M. Csernoch, K. Abari, and J. Máth, „First year students’ 
algorithmic skills in tertiary Computer Science education.” KICSS 2014. 
Springer Series: Advances in Intelligent Systems and Computing 
(AISC), 2014, ISSN 2194-5357. Accepted. 

[4] P. Biró, M. Csernoch, J. Máth, and K. Abari, „Measuring the level of 
algorithmic skills at the end of secondary education in Hungary.” 
Procedia - Social and Behavioral Sciences (2015), IETC 2014. 
Accepted. www.elsevier.com/locate/procedia. 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

581

 

 

[5] S. Booth, “Learning to program: A phenomenographic perspective.” 
Gothenburg, Sweden: Acta Universitatis Gothoburgensis, 1992. 

[6] J. M. Case, and R. F. Gunstone, “Metacognitive development as a shift 
in approach to learning: an in-depth study.” Studies in Higher Education, 
27(4), 2002, pp. 459–470. 

[7] Computer Science Curricula, “The Joint Task Force on Computing 
Curricula Association for Computing Machinery” (ACM) IEEE 
Computer Society. 2013, http://dx.doi.org/10.1145/2534860. Retrieved 
April 18, 2014. 

[8] M. Csernoch, and P. Biró, “Digital Competency and Digital Literacy is 
at Stake.” ECER 2014, The Past, the Present and the Future of 
Educational Research. Porto, 2–5 September 2014. http://www.eera-
ecer.de/ecer-programmes/conference/19/contribution/31885/ 

[9] M. Csernoch, and P. Biró, “Spreadsheet misconceptions, spreadsheet 
errors.” Oktatáskutatás határon innen és túl. HERA Évkönyvek I., ed. 
Juhász Erika, Kozma Tamás, Publisher: Belvedere Meridionale, Szeged, 
2014, pp. 370-395. 

[10] M. Csernoch, and P. Biró, “The power in digital literacy and algorithmic 
skill.” International Conference on New Horizons 2014. Paris, France 
25-27 June, 2014, Procedia - Social and Behavioral Sciences 2014, 
INTE 2014. Accepted, www.elsevier.com/locate/procedia. 

[11] M. Csernoch, and Gy. Bujdosó, “Quality text editing.” Journal of 
Computer Science and Control Systems. 2/2, 2009, pp. 5–10. 

[12] M. Csernoch, “Teaching word processing – the theory behind.” 
Teaching Mathematics and Computer Science. 2009/1. pp. 119–137. 

[13] M. Csernoch, “Teaching word processing – the practice.” Teaching 
Mathematics and Computer Science. 8/2, 2010, pp. 247–262. 

[14] M. Csernoch, “Clearing Up Misconceptions About Teaching Text 
Editing”, Proceedings of ICERI2011 Conference, ICERI 2011, 4th 
International Conference of Education, Research and Innovation, 11-14 
November 2011, Madrid, ISBN 978-84-615-3324-4. 

[15] R. Panko, and S. Aurigemma, “Revising the Panko-Halverson taxonomy 
of spreadsheet errors.” Decision Support Systems 49, 2, 2010, pp. 235–
244. 

[16] S. G. Powell, K. R. Baker, and B. Lawson, “Impact of errors in 
operational spreadsheets.” Decision Support Systems, 47(2), 2009, pp. 
126–132.  

[17] R. Lister, B. Simon, E. Thompson, J. L. Whalley, and C. Prasad, “Not 
seeing the forest for the trees: novice programmers and the SOLO 
taxonomy”, in Proceedings of the 11th annual SIGCSE conference on 
Innovation and technology in computer science education, New York, 
NY, USA, 2006, pp. 118–122. 

[18] A. Van Deursen, and J. Van Dijk, “CTRL ALT DELETE. Lost 
productivity due to IT problems and inadequate computer skills in the 
workplace.” 2004, Enschede: Universiteit Twente. Retrieved May 18, 
2014. http://www.ecdl.ch/fileadmin/ECDL/CH/Dokumente/ 
Studie_CTRL-ALT-DELETE-en.pdf.  

[19] P. Warren, “Learning to program: spreadsheets, scripting and HCI”, in 
Proceedings of the Sixth Australasian Conference on Computing 
Education – vol. 30, Darlinghurst, Australia, 2004, pp. 327–333. 

[20] J. M. Wing, “Computational Thinking.” Communications of the ACM, 
March 2006/Vol. 49, No. 3. 

[21] M. Gove, “Michael Gove speech at the BETT Show 2012”. Published 
13 January 2012. Retrieved 15 July 2014 from https://www.gov.uk/ 
government/speeches/michael-gove-speech-at-the-bett-show-2012. 

 

 

 

Mária Csernoch was born in 1963 in Szentes, Hungary. She received her 
MSc in 1986 at Kossuth Lajos University, PhD in 2006 and Habil. in 2012. 
Currently she works as associate professor at the University of Debrecen, 
Faculty of Informatics in Hungary. 
Her research interests are didactics of Informatics – specialized in 

developing algorithmic skills, computational thinking, and teaching 
programming languages –, computational linguistics and computer aided 
language teaching and learning. 
 

Piroska Biró was born in 1983 in Ditro, Romania. She received her M.Sc. 
degree in Computational Mathematics in University of Babes-Bolyai, Faculty 
of Mathematics-Informatics. Currently she works as assistant lecturer in the 
University of Debrecen, Faculty of Informatics in Hungary. 
Her research interests are didactics of Informatics, algorithmic thinking, 

high level programming languages and computer aided education. 


