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Abstract—Mining frequent tree patterns have many useful 

applications in XML mining, bioinformatics, network routing, etc. 
Most of the frequent subtree mining algorithms (i.e. FREQT, 
TreeMiner and CMTreeMiner) use anti-monotone property in the 
phase of candidate subtree generation. However, none of these 
algorithms have verified the correctness of this property in tree 
structured data. In this research it is shown that anti-monotonicity 
does not generally hold, when using weighed support in tree pattern 
discovery. As a result, tree mining algorithms that are based on this 
property would probably miss some of the valid frequent subtree 
patterns in a collection of trees. In this paper, we investigate the 
correctness of anti-monotone property for the problem of weighted 
frequent subtree mining. In addition we propose W3-Miner, a new 
algorithm for full extraction of frequent subtrees. The experimental 
results confirm that W3-Miner finds some frequent subtrees that the 
previously proposed algorithms are not able to discover. 
 

Keywords—Semi-Structured Data Mining, Anti-Monotone 
Property, Trees. 

I. INTRODUCTION 
INING frequent subtrees has many practical 
applications in areas such as computer networks, Web 

mining, bioinformatics, XML document mining, etc [2, 5]. 
These applications share a requirement for the more 
expressive power of labeled trees to capture the complex 
relations among data entities. Frequent subtree mining is a 
more complex task compared to frequent item-set mining. 
However most of existing frequent subtree mining algorithms 
borrows techniques from the relatively mature association rule 
mining area [1, 9]. So far, many algorithms have been 
developed for mining frequent subtrees from a collection of 
trees. In [2, 5 and 11] M.J. Zaki presented an algorithm, 
TreeMiner, to discover all frequent embedded subtrees, i.e., 
those subtrees that preserve ancestor-descendant relationships, 
in a forest or a database of rooted ordered trees. 
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This algorithm used a new data structure, scope-list, to 
efficiently count the frequency of candidate subtrees. The 
algorithm was further extended in [6] to build a structural 
classifier for XML data. Asai et al. in [4] presented an 
algorithm, FREQT, to find frequent rooted ordered subtrees. 
Also two algorithms were proposed by Asai et al. and Yun 
Chi et al. to mine rooted unordered subtrees, based on 
enumeration graph and enumeration tree data structures [7, 8]. 
Another work has been done in [3] where a model-validating 
approach for non-redundant candidate generation has been 
proposed. Almost all of these methods are based on the well-
known apriori algorithm and have used anti-monotone 
property for candidate generation. This property suggests that 
the frequency of a super-pattern is less than or equal to the 
frequency of a sub-pattern. However, none of these algorithms 
have verified the correctness of anti-monotone property in tree 
structured data when considering weighted support. 

In this paper, we investigate the correctness of anti-
monotone property in discovering frequent subtrees when 
considering weighted support. When the frequency of a 
subtree is based on weighted support, the previously proposed 
algorithms would probably miss some of the frequent 
subtrees. The reason is that the anti-monotone property does 
not necessarily hold in tree structured data. To ensure 
complete discovery of all possible frequent subtrees, we 
propose a new algorithm, named W3-Miner. In W3-Miner a 
new method is used to count the support of a candidate 
subtree. In addition a new join method is applied in the 
candidate generation phase. These improvements will 
guarantee the discovery of all of the valid frequent subtrees in 
a forest.  

 W3-Miner is an extension of the well-known TreeMiner 
[2, 5] algorithm to mine weighted frequent subtrees. For 
complete generation of k-subtree candidates, we extend the 
concept of scope-list data structure [2, 5] by adding a new 
component, called RootPath. Also a new join method is 
applied for k-subtree candidate generation. By means of many 
examples, the incorrectness of anti-monotone property and the 
solution proposed by our algorithm are fully demonstrated. 
We also compare W3-Miner with three other tree mining 
algorithms. The obtained results confirm that some frequent 
subtree patterns are only discovered by W3-Miner. 

This paper is organized as follows. In section II the tree 
mining problem statement is given. Section III describes the 
anti-monotone property in tree structured data. The extended 
scope-list is provided in section IV. Section V describes the 
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details of the proposed algorithm. We empirically evaluate the 
effectiveness of the algorithm in section VI and the paper is 
concluded in section VII. 

II. PROBLEM STATEMENT 
To explain the problem of mining frequent subtrees in a 

forest we provide the following definitions [1, 2 and 5]: 
 
Definition 1. A rooted, labeled, tree, ),( EVT =  is a 

directed, acyclic, connected graph with },...1,0{ nV = as the set 
of vertices and },|),{( VyxyxE ∈= as the set of edges. One 
distinguished vertex Vr ∈ is selected the root, and for 
all Vx∈ , there is a unique path from r to x. Further, 

LVl →: is a labeling function mapping vertices to a set of 
labels ,...},{ 21 llL = .  

 
Definition 2. A tree 'T with vertex set 'V  and edge set 'E is 

an induced subtree of T if and only if  (1) VV ⊆' , (2) EE ⊆' , 
(3) the labeling of 'V  is preserved in 'T , (4) '),( 21 Evv ∈ , 

where 1v  is the parent of 2v  in 'T , only if 1v  is a parent of 2v  
in T. (5) if defined for rooted ordered trees, the left-to-right 
ordering among the siblings in 'T  should be a sub-ordering of 
the corresponding vertices in T. 

 
Definition 3. For a rooted unordered tree T with vertex set 

V, edge set E, and no labels on the edges, a tree 'T with vertex 
set V ′ , edge set 'E , and no labels on the edges, is an 
embedded subtree of T if and only if (1) VV ⊆' , (2) the 
labeling of the nodes of 'V in T is preserved in 'T and 
(3) '),( 21 Evv ∈ , where 1v  is the parent of 2v  in 'T , only if 1v  

is an ancestor of 2v  in T. If T and 'T are rooted ordered trees, 
then for 'T to be an embedded subtree of T, a fourth condition 
must hold: (4) for ', 21 Vvv ∈ , preorder( 1v ) < preorder( 2v ) in 

'T if and only if preorder( 1v ) < preorder( 2v ) in T. 
 
Definition 4. Let )(STδ indicate the number of occurrences 

of the subtree S in a tree T. Let Td be an indicator variable, 
with 1)( =SdT if 0)( >STδ and 0)( =SdT  if 0)( =STδ . Let D 
denote a database of trees. The support of a subtree S in the 
database is defined as ∑ ∈

=
DT T SdS )()(σ . The weighted 

support of S is defined as ∑ ∈
=

DT Tw SS )()( δσ . Support is 

given as a percentage of the total number of trees in D.  
 

Definition 5. An l-subtree S, which is a subtree with l 
nodes, is frequent if its (weighted) support is more than or 
equal to a user-specified minimum (weighted) support value.  

The problem of mining frequent tree patterns in a forest of 
tree-structures transactions is to find all of the frequent k-
subtrees, Mk ≤≤1  where M is the maximum number of nodes 
in transactions. The desired type of frequent subtree patterns 

which is aimed in the mining process can differ based on the 
kind of application. In this paper, our goal is to generally mine 
all frequent, labeled, ordered, and embedded subtrees in a 
forest using weighted support, by proposing the W3-Miner 
algorithm.   

III. ANTI-MONOTONE PROPERTY IN TREE STRUCTURED DATA 
Anti-monotone property says that the frequency of a super-

pattern is less than or equal to the frequency of a sub-pattern. 
In this section we show that anti-monotone property does not 
hold in tree patterns when using weighed support. As a result 
tree mining algorithms based on this property are unable to 
find all of the frequent tree patterns from a collection of trees. 
An example of this case is shown in Fig. 1, where the 
frequency of 1-subtree ‘a’ is equal to 1 but the frequency of 2-
subtree ‘a-c’ is equal to 2. 

 
 

Fig. 1 Non-frequent subtree is 
in root 

Fig. 2 Non-frequent subtree is 
in leaf 

Fig. 1 shows the state where the non-frequent subtree is 
placed in a higher level with respect to the frequent subtree of 
the transaction. An example of the other state that the non-
frequent subtree is placed in a lower level with respect to the 
frequent subtree is depicted in Fig. 2. As can be seen the 
frequency of 2-subtrees ‘b-c’ and ‘b-a’ are equal to 2 but the 
frequency of 1-subtree ‘a’ and ‘c’ are 1. Consequently we 
suggest the following proposition: 
 
Proposition 1. Anti-monotone property does not hold in 
frequent tree mining when using weighted support. 

IV. EXTENDED SCOPE-LIST 
We propose a new data structure named extended scope-list 

that will be exploited by W3-Miner. M.J. Zaki in TreeMiner 
algorithm [2, 5] introduced a new data structure called scope-
list. Scope-list is generated for each candidate subtree c and is 
used to efficiently count its frequency. In scope-list of c, each 
element I s a triple ),,( smt  , where t is a tree id in which c 
occurs, m is a match label of the k-1 length prefix of c in its 
string representation format, and s is the scope of the last node 
of c. The match label gives the positions of nodes in 
transaction tree (t) that match the prefix [2]. The scope of a 
node determines the range of vertices under that node. We 
extend the definition of scope-list by adding a new 
component, RootPath, to its element. RootPath is an array of 
tuples (x ,y), where x is the label of a node and y is preorder 
number of that node in transaction tree (t). (x, y) is generated 
for the root of the transaction tree (t) and all nodes between it 
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and the root of the candidate tree (c) but not for the root of c 
itself. Fig. 3 shows an example of extended scope list. 

 
(a) t0: a transaction tree 

 

 
(b) 

 
RootPath 

t0, 2 
3, [3,3] 

(1,1) 
(7,0)  

(c) 
 

RootPath 
t0, 4 

6, [6,7] 
(1,1) 
(7,0)  

(d) 
  

 
Fig. 3 (a) a sample transaction tree, (b) a sample candidate subtree 

which has 2 instances in t0, one of them is indicated by vertical lines 
and another is indicated by horizontal lines , (c) the extended scope-

list of the first instance (marked with vertical lines) and (d) the 
extended scope-list of the second instance 

V. W3-MINER ALGORITHM 
W3-Miner uses TreeMiner algorithm to generate k+1 

candidate subtrees from frequent k subtrees. A join operation 
is applied on the generated candidates to construct their 
extended scope-lists. Then the algorithm trims non-frequent 
k+1 subtrees by using in-scope and out-scope tests. For more 
details about this process, the interested reader can refer to [2, 
5]. To generate the k+1 candidate subtrees that are missed by 
TreeMiner algorithm when using weighted support, W3-
Miner joins a 1-tree with a k-tree in two steps as follows. 

A. Extending Candidate Subtrees with RootPath Elements 
For each element e in the extended scope-list of k-frequent 

subtree k and for each tuple in the RootPath array of e, the 
node of that tuple is joined to k by considering it as the root of 
k. For each obtained frequent (k+1)-subtree we generate its 
extended scope-list called h, by first copying extended scope-
list of k. Then for each element e in h and for each element r 
in RootPath of e, we append the preorder number of r to the 
beginning of e’s match label. After this, the RootPath of each 
element in h is updated as follows. Each element r in 
RootPath of e in h is deleted if its preorder number y is greater 
or equal to the number appended to the match label of e. In 
Fig. 4 node 1 is added to the root of candidate tree shown in 
Fig. 3. 
 
 

 
(a) 

 
 

RootPath 
t0, 

1 2 3, 
[3,3] 

(1,1) 
(7,0)   

 
RootPath 

t0, 
1 2 3, 
[3,3] 

(7,0)  
 

RootPath 

t0, 
1 4 6, 
[6,7] 

(1,1) 
(7,0)  

(b) 

RootPath 

t0,
1 4 6, 
[6,7] 

(7,0)  

(c)  

Fig. 4 A new node is added to the root of tree. (a) The new candidate 
subtree. (b) Updating scope-list (c) the final extended scope-list of 

the new subtree 

B. Extending Candidate Subtrees by using 1F  Elements 
1F  is an array of triples (x, y, z), where x is the label of non-

frequent node and y is number of that node in preorder 
traversal and z is the preorder number of last node in tree 
rooted by x. 1F  contains all of the non-frequent nodes. After 
generating (k+1)-trees by Step 1 of W3-Miner, it is possible 
that some frequent (k+1)-Trees have not been generated yet 
(consider figure 2). To solve this problem each node in 1F  is 
added to the last node of frequent k-subtree k, if its scope is a 
proper subset of the scope of the last node of k. 

We say that scope ys  is proper subset of scope xs  if and 
only if yx ll ≤ and yx uu ≥ , where l  indicates the lower bound 
of a scope and u is its upper bound. We append the lower 
bound of each element of extended scope-list to its match 
label and the lower bound of the scope is set to y and the 
upper bound is set to z. 

VI. EXPERIMENTAL RESULTS 
M.J. Zaki developed three variants of TreeMiner in [2, 5, 

10 and 11]: VTreeMiner, HTreeMiner and TreeMinerD. In the 
current work we compare our proposed algorithm (W3-Miner) 
with HTreeMiner and VTreeMiner in terms of generated 
frequent subtrees. Our sample input forest is shown in Figure 
5. This forest consists of three (tree-structured) transactions. 
The total number of nodes is 32 and the number of distinct 
nodes is 9. We tested these algorithms with minimum 
weighted support being equal to 3. The results are presented in 
Table I. 
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Fig. 5 Sample input forest containing 3 transactions 

 
TABLE I 

COMPARISON BETWEEN RESULTS OF THREE DIFFERENT ALGORITHMS 
HTreeMiner VTreeMiner W3-Miner 

F1 F1 F1 
1 – 3 
2 – 3 
3 – 3 
4 – 3 
5 – 3 

1 – 3 
2 – 3 
3 – 3 
4 – 3 
5 – 3 

1 – 5 
2 – 5 
3 – 7 
4 – 4 
5 – 4 
6 - 3 

F2 F2 F2 
1 2 – 3 
1 3 – 3 
1 4 – 3 
1 5 – 3 
3 4 – 3 
3 5 – 3 

 

1 2 – 3 
1 3 – 3 
1 4 – 3 
1 5 – 3 
3 4 – 3 
3 5 – 3 

 

1 2 – 6 
1 3 – 9 
1 4 – 4 
1 5 – 5 
3 4 – 4 
3 5 – 3 
1 6 -- 4 
2 5 – 3 
3 2 – 3 

F3 F3 F3 
1 3 4 – 3 
1 3 5 – 3 

 

1 3 4 – 3 
1 3 5 – 3 

 

1 3 4 – 4 
1 3 5 – 3 
1 3 2 – 3 
1 3 3 – 3 
1 3 6 –5 
1 2 5 – 4 

1 3 -1 3 – 5 
1 2  -1 3 – 6 

 
In column 1 and 2 of Table I the frequent subtrees 

discovered by HTreeMiner and VTreeMiner are displayed 
respectively.  The results obtained from these two algorithms 
are equal. However, as can be seen in column 3, W3-Miner 
discovers three frequent 2-subtrees and six frequent 3-subtrees 
(shown in bold) that are missed by the other algorithms. The 
weighted support of subtree ‘2 5’ is equal to 3 (1 instance in t2 
and 2 instances in t1) thus must be considered as a valid 
frequent subtree. Also subtree ‘1 2 -1 3’ has four instances in 
t1 and two instances in t3 making its weighted support equal 
to 6, W3-Miner can find this frequent tree but the other 
algorithms (i.e. HTreeMiner and VTreeMiner) can not.  

We believe that these frequent patterns can be of high 
importance in many applications such as RNA structure mining 
and phylogenetic tree analysis [2, 12]. 
 
 

VII. CONCLUSION 
In this paper we investigated the anti-monotone property in 

tree structured data when weighted support is required. We 
showed that this property does not hold in this context. 
Consequently we proposed a novel algorithm, W3-Miner, to 
find all of the weighted frequent tree patterns in a database of 
trees. We extended the scope-list data structure by adding a 
new component, called RootPath, and applied a new candidate 
generation procedure on this data structure. In each stage of 
this two step procedure, we cover a set of candidate subtrees 
that would not be considered by other algorithms (i.e. 
HTreeMiner, VTreeMiner and FREQT). The experimental 
results confirmed that W3-Miner can find some frequent 
subtrees missed by other algorithms. 

The next step to the current work will be to conduct a 
performance comparison study on W3-Miner and other 
frequent tree mining algorithms. We are currently 
investigating the application of weighted frequent subtree 
mining and W3-Miner in real application areas such as RNA 
structure mining and web mining. 
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