
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2539

Abstract—Mining frequent tree patterns have many useful

applications in XML mining, bioinformatics, network routing, etc.
Most of the frequent subtree mining algorithms (i.e. FREQT,
TreeMiner and CMTreeMiner) use anti-monotone property in the
phase of candidate subtree generation. However, none of these
algorithms have verified the correctness of this property in tree
structured data. In this research it is shown that anti-monotonicity
does not generally hold, when using weighed support in tree pattern
discovery. As a result, tree mining algorithms that are based on this
property would probably miss some of the valid frequent subtree
patterns in a collection of trees. In this paper, we investigate the
correctness of anti-monotone property for the problem of weighted
frequent subtree mining. In addition we propose W3-Miner, a new
algorithm for full extraction of frequent subtrees. The experimental
results confirm that W3-Miner finds some frequent subtrees that the
previously proposed algorithms are not able to discover.

Keywords—Semi-Structured Data Mining, Anti-Monotone
Property, Trees.

I. INTRODUCTION
INING frequent subtrees has many practical
applications in areas such as computer networks, Web

mining, bioinformatics, XML document mining, etc [2, 5].
These applications share a requirement for the more
expressive power of labeled trees to capture the complex
relations among data entities. Frequent subtree mining is a
more complex task compared to frequent item-set mining.
However most of existing frequent subtree mining algorithms
borrows techniques from the relatively mature association rule
mining area [1, 9]. So far, many algorithms have been
developed for mining frequent subtrees from a collection of
trees. In [2, 5 and 11] M.J. Zaki presented an algorithm,
TreeMiner, to discover all frequent embedded subtrees, i.e.,
those subtrees that preserve ancestor-descendant relationships,
in a forest or a database of rooted ordered trees.

R. AliMohammadzadeh is with the Database Research Group, faculty of
ECE, School of Engineering, University of Tehran, Tehran, Iran (e-mail:
r.mohammadzadeh@ece.ut.ac.ir).

M. Haghir Chehreghani is with the Database Research Group, faculty of
ECE, School of Engineering, University of Tehran, Tehran, Iran (e-mail:
m.haghir@ece.ut.ac.ir).

A. Zarnani is with the Database Research Group, faculty of ECE, School of
Engineering, University of Tehran, Tehran, Iran (e-mail:
a.zarnani@ece.ut.ac.ir).

M. Rahgozar is with the Control and Intelligence Processing Center of
Excellence, faculty of ECE, School of Engineering, University of Tehran,
Tehran, Iran (e-mail: rahgozar@ut.ac.ir).

This algorithm used a new data structure, scope-list, to
efficiently count the frequency of candidate subtrees. The
algorithm was further extended in [6] to build a structural
classifier for XML data. Asai et al. in [4] presented an
algorithm, FREQT, to find frequent rooted ordered subtrees.
Also two algorithms were proposed by Asai et al. and Yun
Chi et al. to mine rooted unordered subtrees, based on
enumeration graph and enumeration tree data structures [7, 8].
Another work has been done in [3] where a model-validating
approach for non-redundant candidate generation has been
proposed. Almost all of these methods are based on the well-
known apriori algorithm and have used anti-monotone
property for candidate generation. This property suggests that
the frequency of a super-pattern is less than or equal to the
frequency of a sub-pattern. However, none of these algorithms
have verified the correctness of anti-monotone property in tree
structured data when considering weighted support.

In this paper, we investigate the correctness of anti-
monotone property in discovering frequent subtrees when
considering weighted support. When the frequency of a
subtree is based on weighted support, the previously proposed
algorithms would probably miss some of the frequent
subtrees. The reason is that the anti-monotone property does
not necessarily hold in tree structured data. To ensure
complete discovery of all possible frequent subtrees, we
propose a new algorithm, named W3-Miner. In W3-Miner a
new method is used to count the support of a candidate
subtree. In addition a new join method is applied in the
candidate generation phase. These improvements will
guarantee the discovery of all of the valid frequent subtrees in
a forest.

 W3-Miner is an extension of the well-known TreeMiner
[2, 5] algorithm to mine weighted frequent subtrees. For
complete generation of k-subtree candidates, we extend the
concept of scope-list data structure [2, 5] by adding a new
component, called RootPath. Also a new join method is
applied for k-subtree candidate generation. By means of many
examples, the incorrectness of anti-monotone property and the
solution proposed by our algorithm are fully demonstrated.
We also compare W3-Miner with three other tree mining
algorithms. The obtained results confirm that some frequent
subtree patterns are only discovered by W3-Miner.

This paper is organized as follows. In section II the tree
mining problem statement is given. Section III describes the
anti-monotone property in tree structured data. The extended
scope-list is provided in section IV. Section V describes the

R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, and M. Rahgozar

W3-Miner: Mining Weighted Frequent Subtree
Patterns in a Collection of Trees

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2540

details of the proposed algorithm. We empirically evaluate the
effectiveness of the algorithm in section VI and the paper is
concluded in section VII.

II. PROBLEM STATEMENT
To explain the problem of mining frequent subtrees in a

forest we provide the following definitions [1, 2 and 5]:

Definition 1. A rooted, labeled, tree,),(EVT = is a

directed, acyclic, connected graph with },...1,0{ nV = as the set
of vertices and },|),{(VyxyxE ∈= as the set of edges. One
distinguished vertex Vr ∈ is selected the root, and for
all Vx∈ , there is a unique path from r to x. Further,

LVl →: is a labeling function mapping vertices to a set of
labels ,...},{ 21 llL = .

Definition 2. A tree 'T with vertex set 'V and edge set 'E is

an induced subtree of T if and only if (1) VV ⊆' , (2) EE ⊆' ,
(3) the labeling of 'V is preserved in 'T , (4) '),(21 Evv ∈ ,

where 1v is the parent of 2v in 'T , only if 1v is a parent of 2v
in T. (5) if defined for rooted ordered trees, the left-to-right
ordering among the siblings in 'T should be a sub-ordering of
the corresponding vertices in T.

Definition 3. For a rooted unordered tree T with vertex set

V, edge set E, and no labels on the edges, a tree 'T with vertex
set V ′ , edge set 'E , and no labels on the edges, is an
embedded subtree of T if and only if (1) VV ⊆' , (2) the
labeling of the nodes of 'V in T is preserved in 'T and
(3) '),(21 Evv ∈ , where 1v is the parent of 2v in 'T , only if 1v

is an ancestor of 2v in T. If T and 'T are rooted ordered trees,
then for 'T to be an embedded subtree of T, a fourth condition
must hold: (4) for ', 21 Vvv ∈ , preorder(1v) < preorder(2v) in

'T if and only if preorder(1v) < preorder(2v) in T.

Definition 4. Let)(STδ indicate the number of occurrences

of the subtree S in a tree T. Let Td be an indicator variable,
with 1)(=SdT if 0)(>STδ and 0)(=SdT if 0)(=STδ . Let D
denote a database of trees. The support of a subtree S in the
database is defined as ∑ ∈

=
DT T SdS)()(σ . The weighted

support of S is defined as ∑ ∈
=

DT Tw SS)()(δσ . Support is

given as a percentage of the total number of trees in D.

Definition 5. An l-subtree S, which is a subtree with l
nodes, is frequent if its (weighted) support is more than or
equal to a user-specified minimum (weighted) support value.

The problem of mining frequent tree patterns in a forest of
tree-structures transactions is to find all of the frequent k-
subtrees, Mk ≤≤1 where M is the maximum number of nodes
in transactions. The desired type of frequent subtree patterns

which is aimed in the mining process can differ based on the
kind of application. In this paper, our goal is to generally mine
all frequent, labeled, ordered, and embedded subtrees in a
forest using weighted support, by proposing the W3-Miner
algorithm.

III. ANTI-MONOTONE PROPERTY IN TREE STRUCTURED DATA
Anti-monotone property says that the frequency of a super-

pattern is less than or equal to the frequency of a sub-pattern.
In this section we show that anti-monotone property does not
hold in tree patterns when using weighed support. As a result
tree mining algorithms based on this property are unable to
find all of the frequent tree patterns from a collection of trees.
An example of this case is shown in Fig. 1, where the
frequency of 1-subtree ‘a’ is equal to 1 but the frequency of 2-
subtree ‘a-c’ is equal to 2.

Fig. 1 Non-frequent subtree is
in root

Fig. 2 Non-frequent subtree is
in leaf

Fig. 1 shows the state where the non-frequent subtree is
placed in a higher level with respect to the frequent subtree of
the transaction. An example of the other state that the non-
frequent subtree is placed in a lower level with respect to the
frequent subtree is depicted in Fig. 2. As can be seen the
frequency of 2-subtrees ‘b-c’ and ‘b-a’ are equal to 2 but the
frequency of 1-subtree ‘a’ and ‘c’ are 1. Consequently we
suggest the following proposition:

Proposition 1. Anti-monotone property does not hold in
frequent tree mining when using weighted support.

IV. EXTENDED SCOPE-LIST
We propose a new data structure named extended scope-list

that will be exploited by W3-Miner. M.J. Zaki in TreeMiner
algorithm [2, 5] introduced a new data structure called scope-
list. Scope-list is generated for each candidate subtree c and is
used to efficiently count its frequency. In scope-list of c, each
element I s a triple),,(smt , where t is a tree id in which c
occurs, m is a match label of the k-1 length prefix of c in its
string representation format, and s is the scope of the last node
of c. The match label gives the positions of nodes in
transaction tree (t) that match the prefix [2]. The scope of a
node determines the range of vertices under that node. We
extend the definition of scope-list by adding a new
component, RootPath, to its element. RootPath is an array of
tuples (x ,y), where x is the label of a node and y is preorder
number of that node in transaction tree (t). (x, y) is generated
for the root of the transaction tree (t) and all nodes between it

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2541

and the root of the candidate tree (c) but not for the root of c
itself. Fig. 3 shows an example of extended scope list.

(a) t0: a transaction tree

(b)

RootPath

t0, 2
3, [3,3]

(1,1)
(7,0)

(c)

RootPath
t0, 4

6, [6,7]
(1,1)
(7,0)

(d)

Fig. 3 (a) a sample transaction tree, (b) a sample candidate subtree

which has 2 instances in t0, one of them is indicated by vertical lines
and another is indicated by horizontal lines , (c) the extended scope-

list of the first instance (marked with vertical lines) and (d) the
extended scope-list of the second instance

V. W3-MINER ALGORITHM
W3-Miner uses TreeMiner algorithm to generate k+1

candidate subtrees from frequent k subtrees. A join operation
is applied on the generated candidates to construct their
extended scope-lists. Then the algorithm trims non-frequent
k+1 subtrees by using in-scope and out-scope tests. For more
details about this process, the interested reader can refer to [2,
5]. To generate the k+1 candidate subtrees that are missed by
TreeMiner algorithm when using weighted support, W3-
Miner joins a 1-tree with a k-tree in two steps as follows.

A. Extending Candidate Subtrees with RootPath Elements
For each element e in the extended scope-list of k-frequent

subtree k and for each tuple in the RootPath array of e, the
node of that tuple is joined to k by considering it as the root of
k. For each obtained frequent (k+1)-subtree we generate its
extended scope-list called h, by first copying extended scope-
list of k. Then for each element e in h and for each element r
in RootPath of e, we append the preorder number of r to the
beginning of e’s match label. After this, the RootPath of each
element in h is updated as follows. Each element r in
RootPath of e in h is deleted if its preorder number y is greater
or equal to the number appended to the match label of e. In
Fig. 4 node 1 is added to the root of candidate tree shown in
Fig. 3.

(a)

RootPath
t0,

1 2 3,
[3,3]

(1,1)
(7,0)

RootPath

t0,
1 2 3,
[3,3]

(7,0)

RootPath

t0,
1 4 6,
[6,7]

(1,1)
(7,0)

(b)

RootPath

t0,
1 4 6,
[6,7]

(7,0)

(c)

Fig. 4 A new node is added to the root of tree. (a) The new candidate
subtree. (b) Updating scope-list (c) the final extended scope-list of

the new subtree

B. Extending Candidate Subtrees by using 1F Elements
1F is an array of triples (x, y, z), where x is the label of non-

frequent node and y is number of that node in preorder
traversal and z is the preorder number of last node in tree
rooted by x. 1F contains all of the non-frequent nodes. After
generating (k+1)-trees by Step 1 of W3-Miner, it is possible
that some frequent (k+1)-Trees have not been generated yet
(consider figure 2). To solve this problem each node in 1F is
added to the last node of frequent k-subtree k, if its scope is a
proper subset of the scope of the last node of k.

We say that scope ys is proper subset of scope xs if and
only if yx ll ≤ and yx uu ≥ , where l indicates the lower bound
of a scope and u is its upper bound. We append the lower
bound of each element of extended scope-list to its match
label and the lower bound of the scope is set to y and the
upper bound is set to z.

VI. EXPERIMENTAL RESULTS
M.J. Zaki developed three variants of TreeMiner in [2, 5,

10 and 11]: VTreeMiner, HTreeMiner and TreeMinerD. In the
current work we compare our proposed algorithm (W3-Miner)
with HTreeMiner and VTreeMiner in terms of generated
frequent subtrees. Our sample input forest is shown in Figure
5. This forest consists of three (tree-structured) transactions.
The total number of nodes is 32 and the number of distinct
nodes is 9. We tested these algorithms with minimum
weighted support being equal to 3. The results are presented in
Table I.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2542

Fig. 5 Sample input forest containing 3 transactions

TABLE I

COMPARISON BETWEEN RESULTS OF THREE DIFFERENT ALGORITHMS
HTreeMiner VTreeMiner W3-Miner

F1 F1 F1
1 – 3
2 – 3
3 – 3
4 – 3
5 – 3

1 – 3
2 – 3
3 – 3
4 – 3
5 – 3

1 – 5
2 – 5
3 – 7
4 – 4
5 – 4
6 - 3

F2 F2 F2
1 2 – 3
1 3 – 3
1 4 – 3
1 5 – 3
3 4 – 3
3 5 – 3

1 2 – 3
1 3 – 3
1 4 – 3
1 5 – 3
3 4 – 3
3 5 – 3

1 2 – 6
1 3 – 9
1 4 – 4
1 5 – 5
3 4 – 4
3 5 – 3
1 6 -- 4
2 5 – 3
3 2 – 3

F3 F3 F3
1 3 4 – 3
1 3 5 – 3

1 3 4 – 3
1 3 5 – 3

1 3 4 – 4
1 3 5 – 3
1 3 2 – 3
1 3 3 – 3
1 3 6 –5
1 2 5 – 4

1 3 -1 3 – 5
1 2 -1 3 – 6

In column 1 and 2 of Table I the frequent subtrees

discovered by HTreeMiner and VTreeMiner are displayed
respectively. The results obtained from these two algorithms
are equal. However, as can be seen in column 3, W3-Miner
discovers three frequent 2-subtrees and six frequent 3-subtrees
(shown in bold) that are missed by the other algorithms. The
weighted support of subtree ‘2 5’ is equal to 3 (1 instance in t2
and 2 instances in t1) thus must be considered as a valid
frequent subtree. Also subtree ‘1 2 -1 3’ has four instances in
t1 and two instances in t3 making its weighted support equal
to 6, W3-Miner can find this frequent tree but the other
algorithms (i.e. HTreeMiner and VTreeMiner) can not.

We believe that these frequent patterns can be of high
importance in many applications such as RNA structure mining
and phylogenetic tree analysis [2, 12].

VII. CONCLUSION
In this paper we investigated the anti-monotone property in

tree structured data when weighted support is required. We
showed that this property does not hold in this context.
Consequently we proposed a novel algorithm, W3-Miner, to
find all of the weighted frequent tree patterns in a database of
trees. We extended the scope-list data structure by adding a
new component, called RootPath, and applied a new candidate
generation procedure on this data structure. In each stage of
this two step procedure, we cover a set of candidate subtrees
that would not be considered by other algorithms (i.e.
HTreeMiner, VTreeMiner and FREQT). The experimental
results confirmed that W3-Miner can find some frequent
subtrees missed by other algorithms.

The next step to the current work will be to conduct a
performance comparison study on W3-Miner and other
frequent tree mining algorithms. We are currently
investigating the application of weighted frequent subtree
mining and W3-Miner in real application areas such as RNA
structure mining and web mining.

REFERENCES
[1] Y. Chi, S. Nijssen, R.R. Muntz, J. N. Kok, “Frequent Subtree Mining An

Overview,” Fundamental Informatics, Special Issue on Graph and Tree
Mining, 2005.

[2] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest: Algorithms
and Applications,” in IEEE Transaction on Knowledge and Data
Engineering, vol. 17, no. 8, pp. 1021-1035, 2005.

[3] H. Tan, T.S. Dillon, L. Feng, E. Chang, F. Hadzic, “X3-Miner: Mining
Patterns from XML Database,” In Proc. Data Mining '05. Skiathos,
Greece, 2005.

[4] K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa, “Optimized
Substructure Discovery for Semi-structured Data,” In Proc. PKDD’02,
1–14, LNAI 2431, 2002.

[5] M. J Zaki,.. Efficient Mining of Trees in the Forest. SIGKDD '02,
Edmonton, Alberta, Canada, ACM. 2002.

[6] M. J. Zaki and C. C. Aggarwal. XRules: An effective structural classifier
for XML data. In Proc. of the 2003 Int. Conf. Knowledge Discovery and
Data Mining, 2003.

[7] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent
substructures in large unordered trees. In Proc. of the 6th Intl. Conf. on
Discovery Science, 2003.

[8] Y. Chi, Y. Yang, and R. R. Muntz. Mining frequent rooted trees and free
trees using canonical forms. Technical Report CSD-TR No. 030043,
UCLA, 2003.

[9] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri
Verkamo, “Fast Discovery of Association Rules,” Advances in
Knowledge Discovery, and Data Mining, U. Fayyad et al., eds.,pp. 307-
328, Menlo Park, Calif.: AAAI Press, 1996.

[10] M.J. Zaki, “Fast Vertical Mining Using Diffsets,” In. Proc. of Int. Conf.
Knowledge Discovery and Data Mining (SIGKDD’03), 2003.

[11] M. Zaki. Efficiently mining frequent embedded unordered trees.
Fundamental Informatics, 65:1-20, 2005.

[12] B. Shapiro and K. Zhang, “Comparing Multiple RNA Secondary
Structures Using Tree Comparisons,” Computer Applications in
Biosciences, vol. 6, no. 4, pp. 309-318, 1990.

