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 Abstract—Flows over a harmonically oscillating NACA 0012 
airfoil are simulated here using a two-dimensional, unsteady, 
incompressibleNavier-Stokes solver.Both pure-plunging and 
pitching-plunging combined oscillations are considered at a Reynolds 
number of 5000. Special attention is paid to the vortex shedding and 
interaction mechanism of the motions. For all the simulations 
presented here, the reduced frequency (k) is fixed at a value of 2.5 
and plunging amplitude (h) is selected to be in the range of 0.2-0.5. 
The simulation results show that the interaction mechanism between 
the leading and trailing edge vortices has a decisive effect on the 
values of the resulting thrust and propulsive efficiency. 

 
Keywords—pithing and plunging airfoil, leading edge vortex, 

trailing edge vortex, vortex interaction, wake structure.1 

I. INTRODUCTION 
HE effective flight capabilities of birds and insects have 
inspired researchers and engineers to design aircrafts 

utilizing flapping mechanism for ages. Recently, flapping 
wing aerodynamics has generated a great deal of interest due 
to the increased design efforts of Micro Air Vehicles (MAV) 
and rapidprogressin computer capabilities [1]. MAV’s are 
defined as flying vehicles having wingspan no longer than 15 
cm and a flight speed in the range of 10-20 km/h [2]. Because 
of aroused interest in MAV, there are number of studies on 
flapping airfoils, and the generated thrust and lift. In nature, 
the flapping mechanism of a flying animal is a combination of 
pitching, plunging, and sweeping motions. Researchers carry 
out two dimensional analyses to understand the underlying 
physics of the flapping mechanisms before extending their 
study into the three dimensional analysis and the combined 
motion. 

Thrust generation with oscillating airfoils has been known 
since the first recorded studies by Knoller [3] and Betz[4]. 
These studies showed that an insect had an ability to generate 
a propulsive force by its oscillating wings. Karman and 
Burgers [5] provided the first theoretical explanation for this 
type of drag and thrust production and their relation with the 
location, and orientation of the wake vortices 

Taylor et al. [6] have shown a wide variety of animals 
operating within a narrow band of Strouhal number that is in 
the range of 0.2 and 0.4.  
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The Strouhal number is defined as 
ݐܵ ൌ ܣ݂ ܷஶ⁄            (1) 
 

wheref, A,and U∞ denote the flapping frequency (in Hertz), 
wake width, and flight speed, respectively. Platzer et al. [1] 
show that the Strouhal number range of 0.2-0.4 reported in 
Taylor’s study is equivalent to a reduced frequency (k) times 
plunging amplitude (h) range of 0.3-0.6 for a pure-plunging 
motion. 

Jones et al. [7], and Lai and Platzer [8] utilized a flow 
visualization method for an oscillating NACA0012 airfoil to 
illustrate the wake vortex patterns under various reduced 
frequencies, k. The harmonic motion of the airfoil generates 
vortices shedding from the leading and trailing edges. The 
interaction between the vortices, and flow kinematics result in 
a formation of pattern of large-scale eddies were shown  in the 
study of Koochesfahani[9], Oshima&Natsume and 
Anderson[7,10]. Young and Lai, Percin[11-13] showed 
variation of propulsive efficiency versus kh values. They 
observed that propulsive efficiency reached a peak, and then 
started to decrease as the khwas increased. Although, there 
have been numerous studies on the effects of the plunging 
amplitude, frequency, thrust coefficient, and propulsive 
efficiency, the studies focusing on the vortex interaction 
mechanism are limited. The vortex dynamics of flapping 
MAV is crucial in terms of to determine the appropriate 
configuration and to understand the flight characteristics. 

The main objective of present study is to understand 
theformation and interaction mechanisms of the vortices 
shedding from the leading and the trailing edges of an airfoil 
in pure-plunging and pitching-plunging combined motions. 

II. DESCRIPTION OF THE MODEL 

A. Kinematics 
In this study, two different types of simple harmonic motion 

are considered for NACA 0012. While the first one consists of 
pure plunging, the second one is a combination of pitching and 
plunging. The pitchingtakes place about a pivot point at a 
quarter chord behind the leading edge. In order to simulate the 
plunging motion of the airfoil as well as the mesh movement, 
the following expression is used: 

 
ሻݐሺݕ ൌ  ݄ s i n  ሺ ߱ ݐ ሻ        (2) 

 

with chord), ω is the angular frequency, and y is the 
instantaneous position of the airfoil center. For the pitching, 
the rotational motion is expressed as 
 

ሻݐሺߙ ൌ ଴ߙ  ൅ ݐ௠௔௫sin ሺ߱ߙ ൅  ߮ሻ    (3) 
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where ݄ is the dimensionless plunging amplitude (normalized 
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However, the weaker vortices diffuse later and the same 
signed LEV-TEV pair is convected by the freestream. The 
TEV is stronger than the LEV here. 
 

 
Fig. 11 Vorticity contour snapshots of a NACA 0012 airfoil 

pitching and plunging atan amplitude ofߙ௠௔௫ ൌ 10° and h=0, 

 
The vorticity contours of the combined motion with h=0.4 

are shown in Fig. 12. Although the vortex shedding 
mechanism is very similar to the case with h=0.3, downstream 
vortex patterns are quite different. This discrepancy is resulted 
from appearance of relatively stronger shear layers formed on 
the two sides of the airfoil. While one of these shear layer 
extends from the airfoil and feeds the TEV, the other with 
opposite signed cuts this extending layer more than once. This 
mechanism forms more than 2 vortex cores in addition to the 
LEV and TEV, and they do not diffuse quickly. Later, the 
LEV catches the TEV and coalescence of them forms a 
relatively bigger single core in downstream. In comparison to 
pure plunging case with h= 0.4, combined motion weakens the 
LEV and additional vortices but reduces the time taken to 
merge of the LEV and TEV  

 
Fig. 12 Vorticity contour snapshots of a NACA 0012 airfoil plunging 

and pitching with an amplitude of h=0.4 and ߙ௠௔௫ ൌ 10° 

IV. CONCLUSIONS 
The wake structure and corresponding force coefficients of 

a NACA 0012 airfoil in pure-plunging and pitching-plunging 
combined motions have been studied here. In pure-plunging 
motion, there is only TEV at small plunging amplitudes 
(h൑0.2) but there are both LEV and TEV at large amplitudes 
(h൒0.3). It is seen that the developed LEV has a major 
influence on the wake region such as formation of Karman 
Vortex Street. In addition to vortex structure, we have 
examined the effect of the amplitude on force coefficients. 
The thrust increases linearly with increasing amplitude and 
propulsive efficiency reaches a maximum value at about the 
plunging amplitude of 0.35. Moreover, increasing the 
plunging amplitude can take the airfoil from drag generating 
to thrust generating. In combined motion, the pitching 
mechanism weakens the LEV and the additional vortices. 
Pitching-plunging combined motion introduces relatively 
complex vortex formation mechanism and vortex interaction. 
Although the vortex dynamics of the simulated cases are 
analyzed here, there is a need to extend this study to cover 
wider ranges of pitching amplitude and phase lag. 
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