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Abstract—On-line (near infrared) spectroscopy is widely used
to support the operation of complex process systems. Information
extracted from spectral database can be used to estimate unmeasured
product properties and monitor the operation of the process. These
techniques are based on looking for similar spectra by nearest neigh-
borhood algorithms and distance based searching methods. Search
for nearest neighbors in the spectral space is an NP-hard problem,
the computational complexity increases by the number of points in
the discrete spectrum and the number of samples in the database. To
reduce the calculation time some kind of indexing could be used.
The main idea presented in this paper is to combine indexing and
visualization techniques to reduce the computational requirement of
estimation algorithms by providing a two dimensional indexing that
can also be used to visualize the structure of the spectral database.
This 2D visualization of spectral database does not only support
application of distance and similarity based techniques but enables the
utilization of advanced clustering and prediction algorithms based on
the Delaunay tessellation of the mapped spectral space. This means
the prediction has not to use the high dimension space but can be
based on the mapped space too. The results illustrate that the proposed
method is able to segment (cluster) spectral databases and detect
outliers that are not suitable for instance based learning algorithms.

Keywords—indexing high dimensional databases, dimensional re-
duction, clustering, similarity, k-nn algorithm.

I. INTRODUCTION

EAR Infrared spectroscopy with Topological Mapping
N(TOPNIR) is widely used in oil industry to estimate
product properties (e.g. aromatic components, cloud point,
flash point, density etc.) of products and process streams [11].
TOPNIR performs a two dimensional mapping of the spectral
space to visualize the operation regimes of the process. The
key idea of this paper similar to low dimensional mappings can
also be utilized to index the spectral database by giving small
number f primary key variables, and sophisticated prediction
and clustering algorithms [12], [14], [15] can be developed
based on this indexing.
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The performance of dimensional reduction based indexing
algorithms can be measured by the distance and neighborhood
preserving properties of the mappings. In this paper the
most important dimensional reduction techniques (aggregates,
PCA - Principal Component Analysis) are applied and
Metric error and trustworthy; properties of the mappings
are calculated.

The performance of instance based learning algorithms
highly depends on the quality of the database used for estima-
tion. Hence, data-driven modeling algorithms needs carefully
designed and maintained training data. The coverage of the
operating regimes and the structure of the indexed database
should be consistent to support the fast searching for the
nearest neighbors. The studied indexing techniques can also
be used to visualize the structure the database and detect dense
and compact operating regimes. For this propose a Delaunay
triangulation based measure has been developed where the area
of the triangles are indirectly proportional to the data coverage.
This information about the coverage of the dataset is impor-
tant because in spare areas the estimation models based on
nearest neighbors (like TOPNIR’s k-nn regression technique)
show usually bad modeling performance that necessitate the
insertion of new datapoints or removal of outliers.

The results illustrate that the proposed method is able to
segment (cluster) spectral databases and detect outliers that
are not suitable for instance based learning algorithms.

II. TOPOLOGICAL MAPPING FOR VISUALIZATION OF
SPECTRAL DATABASE

The TOPNIR algorithm utilizes spectral databases for the
prediction of product properties based on on-line measured
infrared spectra by utilizing the well known k-nn algorithm
[16]. The performance of the prediction is based on the
structure of the dataset of the reference spectra. TOPNIR uses
an additional technique to identify and separate the operating
ranges of the technology. For example fuels produced for sum-
mer and winter usage would have very different technological
parameters that require two separate models for the prediction
of the product properties. This additional visualization and
indexing method used by TOPNIR is referred as Topological
Mapping using Aggregates. [11]

The aggregates are equations that combine absorbances
measured at significant wavelengths. In ideal case aggregates
reflect product properties. Since these properties can be de-
pendent on different rages of the spectra each aggregate built
up to six wavelength to contain enough information related to
a certain chemical property.
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Fig. 1. Spectrums in sample database
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Fig. 2. Significant wavelengthes

The two main forms of the aggregates are shown by
equation (1) and (2).
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Fig. 3. Structure of KARO aggregate
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Fig. 4. Mappings using different aggregate pairs
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Fig. 5. Kene and Kox aggregates (Normalized values are shown)

For example the aromatic and the olefinic property have
own ranges in the spectrum (see Fig. 2).

Two aggregates are used in the same time to give a two
dimensional mapping of the spectral space.

There are 14 aggregates defined in the TOPWIN software
used as a framework of the TOPNIR algorithm. Fig. 4 shows
the mappings defined by the possible combination of these
aggregates. As can be seen, the database contains samples
from two different operating modes (summer and winter
diesel) and some of these mappings are able to separate these
operating regimes. It is interesting to see that there are also
paris of aggregates where correlation among them is to high to
provide informative mapping. Since two aggregates are used
for visualization, these two aggregates should contain enough
information about different rages of the spectra representing
all the studied properties. In case the prediction performance
related to a given product property is in the focus of the
indexing of the database it is important to select the optimal
pair of aggregates.
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III. PRINCIPAL COMPONENT ANALYSIS

One of the most widely applied dimensionality reduction
method is the Principal Component Analysis (PCA) [17],
[18]. PCA is also known as Hotteling or as Karhunen-Loéve
transformation [17], [18]. PCA differs from metric and non-
metric dimensionality reduction methods, because instead of
the preservation of the distances or the global ordering rela-
tions of the objects (in this case spectra) it tries to preserve
the variance of the data. PCA represents the data as linear
combinations of a small number of basis vectors. This method
finds the projection that stores the largest variance possible in
the original data and rotates the set of the objects such that
the maximum variability becomes visible. Geometrically, PCA
transforms the data into a new coordinate system such that the
greatest variance by any projection of the data comes to lie on
the first coordinate, the second greatest variance on the second
coordinate, and so on. If the data set (X) is characterized
with D dimensions and the aim of the PCA is to find the d-
dimensional reduced representation of the data set, the PCA
works as follows:

1) PCA subtracts the mean from each of the data dimen-
sions,

2) then it calculates the D x D covariance matrix of the
data set,

3) following this PCA calculates the eigenvectors and the
eigenvalues of the covariance matrix,

4) then it chooses the d largest eigenvectors,

5) and finally it derives the new data set from the significant
eigenvectors and from the original data matrix.

The corresponding d-dimensional output is found by linear
transformation: Y = QX, where Q is the d x D matrix of
linear transformation composed of the d largest eigenvectors
of the covariance matrix, and Y is the d x D matrix of the
projected data set. Independent Component Analysis (ICA)
[20] is similar to PCA, except that it tries to find components
that are independent.

The PCA is ideal for dimensional reduction but according to
the original idea only the first two principal component should
be used for indexing. This is ideal because these two principal
component are the most close to orthogonality so applicable
for visualization too.

IV. MAPPING QUALITY

Instance based prediction algorithms used for property esti-
mation are based on the assumption that similar spectra repre-
sent samples having similar product property. This concept is
illustrated by Fig. 7, where samples close to each other in the
spectral space are also neighbors in the space of the property
variables.

There are some measures of the spectral space (e.g Diaq
and %,,). The D,,,, is the maximum distance in the spectral
space, the 7,, is the minimum distance under that the samples
are not distinguished.

In this work is the classical MDS stress function, Sammon
stress function and residual variance are used to measure
the distance preservation of the mappings to be analyzed.
The neighborhood preservation of the mappings and the local
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and global mapping qualities are measured by functions of
trustworthiness and continuity. Kaski and Venna pointed out
that every visualization method has to make a tradeoff between
gaining good trustworthiness and preserving the continuity of
the mapping [19].

A projection is said to be trustworthy when the nearest
neighbors of a point in the reduced space are also close in
the original vector space. Let n be the number of the objects
to be mapped, Uy () be the set of points that are in the & size
neighborhood of the sample ¢ in the visualization display but
not in the original data space. The measure of trustworthiness
of visualization can be calculated in the following way:

My(k)=1-
_nk’(2n33k71) i1 2jeuny (1 (E,5) = k) 3)
where 7 (7, j) denotes the ranking of the objects in input space.
The projection onto a lower dimensional output space is said
to be continuous [19] when points near to each other in the
original space are also nearby in the output space. The measure
of continuity of visualization is calculated by the following
equation:
My(k)=1-—
nk(znzskﬂ) Doic1 2jeviqiy (8 (6:9) — k)., 4
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where s(i,j) is the rank of the data sample 4 from j in\{
output space, and V;(k) denotes the set of those data points
that belong to the k-neighbors of data sample ¢ in the original
space, but not in the mapped space used for visualization.

In our analysis when the mapping algorithms are based on
geodesic distances, the ranking values of the objects in both
cases (trustworthiness and continuity) are calculated based on
the geodesic distances.

Both trustworthiness and continuity functions are function
of the number of neighbors k. Usually, the qualitative measures
of trustworthiness and continuity are calculated for & =
1,2,..., kmaz, Where ko, denotes the maximum number
of the objects to be taken into account. At small values of
parameter k the local reconstruction performance of the model
can be tested, while at larger values of parameter % the global
reconstruction is measured.

The non-metric stress can be formulated as follows!:

N N
Eronmetric = Z(diyj - diyj)2/ Zdlzyj’ ®)
1<j i<y

where cTZ ;j yields the disparity of x; and x;, and d; ; denotes
the distance between the vectors y; and y;.

V. DELAUNAY TRIANGULATION

In mathematics and computational geometry, a Delaunay
triangulation for a set P of points in a plane is a triangulation
DT(P) such that no point in P is inside the circumcircle
of any triangle in DT'(P) [13]. Delaunay triangulations max-
imize the minimum angle of all the angles of the triangles
in the triangulation; they tend to avoid skinny triangles. The
triangulation is named after Boris Delaunay for his work on
this topic from 1934.

For a set of points on the same line there is no Delau-
nay triangulation (the notion of triangulation is degenerate
for this case). For four or more points on the same circle
(e.g., the vertices of a rectangle) the Delaunay triangulation
is not unique: each of the two possible triangulations that
split the quadrangle into two triangles satisfies the “Delaunay
condition”, i.e., the requirement that the circumcircles of all
triangles have empty interiors. By considering circumscribed
spheres, the notion of Delaunay triangulation extends to three
and higher dimensions. Generalizations are possible to metrics
other than Euclidean. However in these cases a Delaunay
triangulation is not guaranteed to exist or be unique.

The Fig. 8 shows the triangulation of the mapped plain
using the the PCA’s first two component. As it can be seen the
spectral database contains samples in two separable samples.
The separation can be done where the triangular area is larger
than in the center of the clusters.

The distribution of the triangles’ helps to cluster the sam-
ples. The Fig. 9 show the distribution of the triangles’ area.
One can se that the expected value is really small in term
of the maximal area. The red line shows the expected value.
There are about 700 triangles but less than 150 is larger than
this average area.

1'l'raditionally, the non-metric stress is often called Stress-1 due to Kruskal
[19]
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VI. RESULTS

The indexing of the spectral database of MOL was made
by four different approaches. In the first three cases three
aggregate parings were studied. These aggregates are built in
the TOPWIN software. These spectrums were taken in Duna
refinery of MOL Ltd. (Szazhalombatta). The database has 651
samples from winter and summer operation.

Table I shows the quality measures of the mapping tech-
niques. The FNN rate is the rate of false Nearest Neighbors in
case of two different properties. (The details of this measure
are given in the appendix.)

As can be seen from the results given in Table I, the
proposed mappings can be effectively applied when property
based indexing is necessary. Among the presented mappings
in most of the cases PCA produces the best indicators.

The outlier samples and the spare areas of the database can
be identified easily by the proposed Delaunay triangulation
based technige. Where the area of the triangles are large the
coverage is low. So new samples should be inserted in the
database (to increase the density of the data in the related
region which will improve the prediction performance of the
model).
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Fig. 8. Delaunay triangulation of mapped plain

The outlier samples are on the corners of the enclosing
polygon. The prediction of these samples is problematic,
because their neighbors are in one direction. If we predict
these points using sample only from one direction (target
angle is lass than 180) the prediction will not follow the plain
determined the samples.

The distribution of the triangles’ area shows that most of
triangles are in the same range but there are some much larger
triangles than the expected value. Triangles having larger
area than a given threshold will be ignored. Fig. 9 shows
the distribution of the triangles area and the horizontal line
signs the threshold value which above the triangles should be
ignored.

Fig. 10 shows a clustering of the PCA mapped plain. This
clustering was made by removing the triangles which were
larger than the upper quartile of the areas’ distribution.
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TABLE I
VISUALIZATION QUALITY OF DATA SET

Method M, M. Metric Error ~ FNN rate (CFPPO)  FNN rate (Density)
Kene vs. Kox 0.87286 094273 11402.6385  0.15126 0.14286
Karo vs. Kiso 07513 0.82782 152465048  0.13445 0.17087
Nolef vs Naro 0.67636  0.74684  15608.9904 0.20168 0.070028
PCA 2D Reduction  0.97084  0.98736  2614.6212 0.15686 0.12325
Distribution of trinagle area VII. CONCLUSION
80 . : : . . : :

Expected value: 24952 To reduce the computational requirement of searching and
nor 1 predicting in spectral databases dimensional reduction tech-
wol ] niques were proposed. Two methods (Aggregates and PCA)

were applied to index high dimensional spectral spaces onto
50t 1 into a two dimensional map to support prediction processes.
. These methods are able to visualize spectral space. The combi-
E 1 nation of indexing and visualization reduces the computational
2ol | requirement because only one algorithm is needed for both

functions.
20 1 Measures and indicators were defined to evaluate the quality
of the mappings. The proposed metric error represents how the
10r 1 mapping preserves the distances during the transformation. As
o —— - the results show the 2D PCA indexing provides the smallest er-
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Fig. 10. Clustering based on Delaunay trinagulation

Using this clustering the search in the spectral database can
become more effective since it can be used to segment the
database and remove outliers that could worsen the prediction
performance.

ror. The neighborhood preserving property was also evaluated
(M; and M.). These indicators show the same performance.
The PCA’s neighborhood preserving is greater than 0.97 which
means a really good result.

To visualize and explore the hidden structure of the spectral
database a novel tool based on Delaunay triangulation was
proposed. Using this tool the dense and compact operating
regimes can be identified. Due to the the area of the triangles
are indirectly proportional to the data coverage the spare areas
of operating regimes can be found easily which information
can be used to support model validation and development (e.g.
experiment design).

The presented framework can support the development
data driven models of on-line analyzers using Near-Infrared
spectroscopy.
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APPENDIX A
FALSE NEAREST NEIGHBOR (FNN) METHOD

The main idea of the FNN algorithm stems from the basic
property of a function. If there is enough information in the
regression vector to predict the future output, then any of two
regression vectors which are close in the regression space will
also have future outputs which are close in some sense. For
all regression vectors embedded in the proper dimensions, for
two regréssio vectors that are close in the regression space
and their corresponding outputs are related in the following
way:

= df (x;) [xi — x;] + o ([xi — x;])° (6)

where df (x ) is the jacobian of the function f(.) at x;.
Ignoring higher order terms, and using the Cauchy-Schwarz
inequality the following inequality can be obtained:

lyi = sl < lldf (x0)ll2 lIxi —x;ll, Q)
lyi —
Vi Z Yl (s @®)

If the above expression is true, then the neighbors are recorded
as true neighbors. Otherwise, the neighbors are false neigh-
bors.

Based on this theoretical background, the outline of the
FNN algorithm is the following. [21]

1) Identify the nearest neighbor to a given point in the
regressor space. For a given regressor: x; find the nearest
neighbor x; = x(; 1)

2) Determine if the following expression is true or false

|yi —yj|

<R
l[%i — x;]|2

where R is a previously chosen threshold value. If the
above expression is true, then the neighbors are recorded
as true neighbors. Otherwise, the neighbors are false
neighbors.

3) Continue the algorithm for all times ¢ in the data set.

The FNN algorithm is sensitive to the choice of the R
threshold. In the threshold value was selected by trial and error
method based on empirical rules of thumb, 10 < R < 50.
However, choosing a single threshold that will work well for
all data sets is impossible task. In this case, it is advantageous
to estimate R based on 8 using the the maximum of the
Jacobian, R = max; ||df (x;), as it was suggested by Rhodes
and Morari.

While this method uses data based models for the estimation
of |ldf (x )|, the performance and the capabilities of this
identified model can deteriorate the estimate of max(df).
When df is over estimated the model orders could be under
estimated, and vice-versa. Hence, the modeler has to be careful
at the construction of this model (e.g. the model can be over
or under parameterized, etc.).
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