International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:4, No:5, 2010

Visual Hull with Imprecise Input
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Abstract—Imprecision is a long-standing problem in CAD design
and high accuracy image-based reconstruction applications. The vi-
sual hull which is the closed silhouette equivalent shape of the objects
of interest is an important concept in image-based reconstruction.
We extend the domain-theoretic framework, which is a robust and
imprecision capturing geometric model, to analyze the imprecision in
the output shape when the input vertices are given with imprecision.
Under this framework, we show an efficient algorithm to generate the
2D partial visual hull which represents the exact information of the
visual hull with only basic imprecision assumptions. We also show
how the visual hull from polyhedra problem can be efficiently solved
in the context of imprecise input.
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I. INTRODUCTION

MAGE-BASED reconstruction investigates how to generate

stereo objects from their projections. It has been broadly
used in many inter-disciplinary applications, for example
computer aided design (CAD), computed tomography (CT),
robotic vision, face recognition, satellite imaging and so on.
Among all the image-based reconstruction methods, whether
it is a multi-camera system [25], [26], [10], [35] or camera-
projector system [38], [33], [16], the precision of the results
is not thoroughly discussed. In many research works, the
reconstruction accuracy is shown either as visual comparison
of pictures or as statistical data like standard deviation of
multiple experimental results. However, in the application for
industrial measurement, the accuracy of a single reconstruction
is precisely required, i.e. we want to know which region is
definitely inside or outside the objects of interest. Actually,
under parallel projection, because of the limitation in the
sensors, we can only know that the actual 3D point lies within
a convex polyhedra which is given by a finite number of
lower and upper bounds in a finite and fixed set of directions.
The limited precision of computer data types cause similar
inaccuracy in the result of reconstruction.

The real RAM machine model [31] which is the model
used to prove the correctness of computational geometry
algorithms, cannot handle the computer data structure which
can only store a floating point number to a finite precision.
Even though the basic arithmetic operators and analytic func-
tions are Turing-computable [12], comparison between two
real numbers is only semi-decidable [36]. This imprecision
accumulates as a result of the combinatorial computations in
most of classical computational geometric algorithms. Many
research works have addressed this problem through different
means, including the exact computation model [9], [6], [7],
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[17], [3], [18], [37], [1], e-geometry [32], interval geome-
try [34], [22], [21] and so on.

The geometric (solid) domain [13], [14] is a robust frame-
work which has been used to analyze many computational
geometric problems with imprecise input, namely partial con-
vex hull [15], partial Delaunay triangulation [11], [23], [24],
[30] and partial Voronoi diagram [11]. All of the adapted
algorithms prove to be computable operations in the context
of recursion theory [8]. Therefore, it is a suitable framework
for imprecision analysis in image-based reconstruction. Under
this framework, each classical geometric object is obtained by
a sequence of partial geometric objects [13] approximating it.

A visual hull is the closest approximation we can extract
from the silhouettes (i.e. shape-from-silhouette) of a group of
objects [27]. Many image-based algorithms for reconstruction
are based on the visual hull of the objects. Classically, the
visual hull is generated in an aspect graph manner [20], [19],
[28], a key step of which is to build a partition of the space
in which each region is numbered with its ways of visibility.
Afterwards, the union of regions with visual number O is the
visual hull. The 3D visual hull is more complicated than the
2D one since the boundary of regions with different visual
numbers can be either planar or quadratic surface. There are
external and internal visual hulls defined in [27] depending on
whether the view point can enter the convex hull of the objects.
However, when we mention the visual hull in this paper, we
are referring to the former.

We aim at combining the advantages of geometric domain
and image-based reconstruction to build a framework in which
imprecision in the input can be exactly captured, preserved and
reflected in the reconstructed results for demonstration or as
the input for further analysis.

II. PARTIAL GEOMETRIC FRAMEWORK

Following the framework established in [13], each partial
geometric object (A, B) consists of two disjoint open sets:
A, the interior, and B, the exterior of the partial object,
representing the sets of points which are definitely in the inner
and outer regions of the object no matter how the input data
is refined to a precise value.

A. 2D Elements

The basic element of our model is the partial point, which
represents an imprecise point. As in [12], we fix say k&
approximating lines /1, I, ..., [y through the origin, which give
us 2k oriented directions dy, d», . .., dy; labeled anti-clockwise.
Two lines with outward normals d;, d; (i.e. perpendicular to
the approximating line /;) form an infinite strip S; . The partial
point is defined as
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Fig. 1: A partial point determined by interval approximation on 3

fixed lines. (a) The 3 fixed lines (6 oriented directions) (b) A partial
point (c) A partial point with coincident corner types

Figure 1 (a) and (b) give an example of a partial point with
three approximating lines.

A nice property of this imprecise point model is that the
intersection of two partial points is still a partial point. Note
that a corner ¢; of a partial point is the intersection point
of two lines which give the boundaries of the partial point.
These two lines have outward normals d; and d;; . Thinking
of a line moving along its normal d,, which lies in between
d; and d;11, from infinity towards origin, ¢; is the first point
on the partial point it will touch. Therefore, we can say c; is
the furthest point along the direction d,. However, there are
cases that one or more directions are skipped over. As shown
in Figure 1 (c), when the skipping-over happens, the closed
corner is chosen as the corresponding corner type to maintain
the equality of the corner type quantities and the furthest point
property mentioned above. Therefore, a partial point is the best
convex polygonal approximation of the imprecise point with
the given approximation lines.

This model is also consistent with the imprecision caused by
image sensors (cameras or projectors) and measuring devices.
Under parallel projection, each approximating line actually
corresponds to a projection plane. The infinite stripe is actually
the best knowledge about the point from the corresponding
projection. Figure 2 (a) gives an example of a partial point
limited by projections on 3 planes. If the input data are
coming from measuring devices, the imprecision is generally
embedded in the coordinates. In this framework, such a point
is modeled as a partial point with interval approximation along
the coordinate axis, i.e. a rectangle (cuboid). For the simplicity
of presentation, in the rest of the paper, we use the rectangular
(cuboid) partial points. All the results can be easily generalized
to objects formed by polygonal (polyhedral) partial points.

The partial line segment (PLS) of two partial points is
the union of line segments with endpoints lying in the two
partial points as in Figure 3 (a). A selection of a partial
geometric object (or partial geometric object selection) is
a classical geometric object with exactly one point in each
partial points and connected in the same order as the partial
geometric object. Figure 3 (a) shows a partial edge selection.
To understand the shape of a partial line segment, we have the
following two propositions.

Proposition 1. Each PLS is the convex hull of its two partial
points.

In fact, each point in the partial point is a linear combination

(2)

(®)

Fig. 2: The approximation of a point based on its projections on 3
planes Pj, P,, P; under (a) parallel projection and (b) perspective
projection.

of its corners. Each point on a line segment is also a linear
combination of its two end points. Therefore, each point in the
PLS is actually a linear combination of the corners of its two
end partial points, which is the convex hull of the corners.

For each partial point, there are four corner types: top
left, top right, bottom left, bottom right. A line or line
segment passing through corners of the same type is defined
as same-type corner line or same-type corner line segment.
The opposite-type corner line or opposite-type corner line
segment is a line or line segment passing through opposite
corners of the two end partial points (e.g. top left from one
and bottom right from the other). Given 2 partial point A and
B, the same-type half corner line AB (respectively, opposite-
type half corner line ﬁ) is a half-infinite line satisfying: (a) it
is a part of a same-type corner line (respectively, opposite-type
corner line) formed by A and B, (b) its original is a corner
of B and (c) it does not coincide with any same-type corner
line segment (respectively, opposite-type corner line segment)
with respect to A and B.

Similarly, given two partial points, we can define the partial
line (PL), which is the union of lines passing through two
points, one from each partial point. See Figure 3 (b). Also, a
partial half line E (PHL[A, B]) (Figure 3 (c)) can be defined
as the union of half lines with respect to partial points A and
B satisfying: (a) it is a part of a line selection with respect to
the PL formed by A and B, (b) its original lies in B and (c) it
does not coincide with any partial line segment selection with
respect to the PLS formed by A and B. Note that there are
only two same-type corner lines or opposite-type corner lines
that do not intersect with the given two partial points.

Proposition 2. Given two partial points A and B, the PLS
(respectively, PHL[A, B]) formed by them is bounded by two
kinds of classical edges:

1) two same-type corner line segments (respectively,
opposite-type half corner lines AB) which are parts of
two same-type corner lines (respectively, opposite-type
corner lines) without any intersection with A or B;

2) the edges of partial points with their end points being
either (i) the corner types whose opposite-type corner
line segments do (respectively, don’t) intersect with the
two given partial points or (ii) end points of same-type
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Fig. 3: (a) a partial line segment (PLS) (b) a partial line (PL) (c) two
partial half lines (PHL)

corner line segments in 1.

We can easily see that for each point in a PLS there is a
partial edge selection going through it. However, not every
line segment within the PLS is a partial edge selection. The
reason is that there are inner structure inside the PLS. If we
only use its exterior information (PLS has empty interior), its
inner structure is lost. Therefore, the PLS over simplifies the
cases. When we want to use PLS as input, we need a data
structure which stores its shape (interior and exterior) as well
as its inner structure (end points separately lying in the two
partial points). The same can be said for PL or PHL or any
partial geometric object formed by partial points.

Proposition 3. A PL is exactly bounded by:
1) two same-type corner line segments without any inter-
section with the two given partial points;
2) four opposite-type half corner lines, which are parts of
two opposite-type corner lines without any intersection
with the given two partial points;

This proposition basically says that we do not need to con-
sider the boundary lines of the partial points while generating
a PL. If E, an edge of a partial point is part of a boundary line
segment of the PL, then we can select a line passing through
a point P in the interior of E (i.e. P is not an end point) and
any point Q in the other partial point to generate a partial line
selection PQ. It intersects E at P, which therefore contradicts
with E being a boundary line of the PL.

B. Fartial Polygon

Following the definitions above, a partial polygon (PPG)
that is defined as the union of all possible polygons which
may generate the same input data in the given reconstruction
configuration environment.

We assume now that a PPG has the following properties: (i)
Its partial vertices are pairwise non-overlapping. (ii) Its partial
edges are given as a directed cycle. (iii) It is simple i.e., any
polygon selection with respect to it is a simple polygon.

See Figure 4 (a) for an example of partial polygon and
polygon selection. Note that the shaded area labeled with I is
its interior and the area outside the dashed-line labeled with E
is its exterior. In the practice, assumption (i) can be eliminated
by a pre-process, in which if two partial points intersect, they
will be replaced by their intersection.

A corner selection is a polygon bounded by any com-
bination of same-type corner line segments, one from each
partial edge, and boundary lines of partial points to generate
an enclosed region. See Figure 4 (b) for an example of corner
selection.

()

Fig. 4: (a) a partial polygon and a partial polygon selection (PPG)
(b) a corner selection

Lemma 4. The interior (exterior) of a PPG (PPG;, PPGEg) is
the intersection of inner (outer) areas of all corner selections.
Le.

PPG| = (ﬂ{P\P is a conner selection})®

PPGg = ﬂ{P"|P is a conner selection}

where P and P° are respectively the complement and the
interior of a geometric object P.

As it is shown in [13], if the polygon is guaranteed convex,
i.e. each polygon selection is convex, then the PPG is equal
to its partial convex hull.

2n
PPG; = () T({cij|1 <i<N}))°
j=1

PPGg = (T({c|c is a corner of C;, 1 <i<N}))°

where T'(C) is the convex hull of a point list C and ¢;; is
the jth corner of the ith partial point C;.

In the context of PPG, a partial edge is a PLS formed
by two partial vertices. Therefore, a partial edge contains
all the possible edge selections. Since any point on an edge
is an indeterminant point (i.e. we cannot decide whether it
is inside or outside the PPG). Therefore, the partial edges
of a PPG contain all the points that are indeterminant. The
remaining points are either in the interior or exterior of the
PPG. Therefore, the interior and exterior are bounded by the
boundary lines of partial edges which are either edges of the
partial vertices or same-type corner line segments. Using the
Lemma 4, we have the following theorem.

Theorem 5. The interior of a PPG is the topological interior
of the corner selection with the smallest area, and the exterior
of the PPG is the complement of the corner selection with the
biggest area.

Theorem 5 tells us that in order to find the interior and
exterior of a PPG, it suffices to identify the boundary lines of
its partial edges. After generating partial edges and labeling
their boundary same-type corner line segments. we have the
PPG generation algorithm:
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Algorithm 1 Interior and Exterior of a PPG

Require: Two boundary line lists of interior and exterior.
Each list contains n edges in the format of py;p;;1x,,» which
means an edge connecting the k;th corners of partial points
iand i+ 1.

Ensure: Two vertex lists for polygon approximations of inte-
rior and exterior of the PPG
for i =1 to n do

Pick pix, pit1x; from the interior list
if p;y1x; is the same as p;iy,,, then
Add pjy 1y, into the vertex list
else if Py, pi1x; intersects with pii ik, Pivok,
Add the intersection point into the vertex list
else
Add all vertices between p;y 1k, and piy1g,., (the order
of adding vertices reverses to the order of partial edges)
on partial point P, into the vertex list
end if
end for
The vertex list contains the vertices of the polygon ap-
proximation of the interior in the same order as the partial
polygon
{The exterior can be generated in a similar way}

then

Since the boundary lines of a partial edge can be identified
in O(1) time, for a simple polygon (no self-intersection),
we have the PPG generation function with the same time
complexity as the classical method.

C. 3D Extension

The 3D case is far more complex. In 2D, we only deal with
points and lines in the plane, but in 3D we need to work on
points and lines in space, planes and even quadratic surfaces.
In this section, we present the 3D domain-theoretic framework
of computational geometry which is an extension of the 2D
framework. As in the 2D case, we assume the topology of the
object is known.

The 3D partial points can be considered as polyhedra. In
parallel projection, each pixel in the projection image is a
small square. Therefore, a partial point is now the intersection
of a finite number of infinite rectangular tubes. A more formal
definition is obtained by fixing k approximating lines [y, I, ...,
I through the origin, which give us 2k oriented directions d,
dy, ..., dy. Two planes with outward normals d;, di¢ (i.e.
perpendicular to approximating line /;) form an infinite thick
plane 7;. The partial point C is define as

k
C=T
i=1

Actually, each corner of a partial point is the intersection
point of three planes. Their outward normals have three
intersection points with a unit sphere (Figure 5 (a)). Think
of a plane moving along its normal d,, which lies within the
spherical triangle [2] formed by those three intersection points,
from infinity towards origin. ¢; is the first point on the partial
point it will touch, and therefore the furthest point along the
direction d,. Please refer to Figure 5 (b) for an illustration.

(@) (b)

Fig. 5: (a) a unite sphere and 3 plane normals d;, dp and d3; (b) p123
being the furthest point along d,;

Since each edge of a partial point is the intersection of two
planes with outward normals d; and d;, the edges of the same
type on different partial points are parallel, therefore coplanar.
Similarly, the edges of the opposite types (intersection of
planes with opposite normals) are also parallel and coplanar.
Therefore, we can have the 3D same-type corner line (or same-
type corner line segment or same-type half corner line) and 3D
opposite-type corner line (or opposite-type corner line segment
or opposite-type half corner line) with the same definition
as their 2D counterparts but in the 3D context. We also
have partial same-type edge line (or partial same-type edge
line segment) or partial opposite-type edge line (or partial
opposite-type edge line segment) which are respectively the
union of lines (or line segments) have intersections with two
edges of the same or opposite types of the two end partial
points. Given 2 partial points A and B, the partial same-
type half edge line AB (respectively, partial opposite-type half
edge line AB) is the union of half-infinite lines satisfying: (a)
it is a part of a line which has intersection with two same
(respectively, opposite) type edges of A and B, (b) its original
is on B and (c) it does not coincide with any partial same-type
(respectively, opposite-type) edge line segment with respect to
A and B.

Actually, on the plane which passes through the two edges
of the same type, if we think these edges as degenerated 2D
partial points, the partial same-type edge line (or partial same-
type edge line segment or partial same-type half edge line 1@)
is actually the 2D PL (or PLS or PHL[A,B]) formed by them.
The same can be said for partial opposite-type edge line (or
partial opposite-type edge line segment or partial opposite-type
half edge line AB). See Figure 6 (a).

3D PSL (or PL or PHL[A,B]) has the same definition with
the 2D one but in 3D context. Following the proposition 1, 2
and 9 we have the following corollaries.

Corollary 6. Each PLS is the convex hull of its two end partial
points.

Corollary 7. Given 2 partial points A and B, let N be the num-
ber of partial same-type edge lines without any intersection
with the partial points. Then the PLS (respectively, PHL[A,B])
is bounded by two kinds of classical surfaces:
(1) N partial same-type edge line segments (respectively,
partial opposite-type half edge line E) which are parts
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Fig. 6: (a) the planar view of an partial same-type edge line segment
(forward-slash shading), two partial same-type half edge lines (grid
shading) and a partial same-type edge line (both) (b) a reversed PV-
PE face (c) a partial face (PF)

of N partial same-type edge lines (respectively, partial
opposite-type edge lines) without any intersection with
A or B;

(ii) the faces of partial points with their edges being either
(i) the edge types whose partial opposite-type edge line
segments do (respectively, don’t) intersect with the two
given partial points or (ii) edges of partial same-type
edge line segments (respectively, partial opposite-type
half edge lines) in 7;

Corollary 8. Given 2 partial point A and B, let N be the num-
ber of partial same-type edge lines without any intersection
with the partial points. Then the PL is exactly bounded by:
(1) N partial same-type edge line segments which are parts
of N partial same-type edge lines without any intersec-
tion with A or B;
(ii) 2N partial opposite-type half edge lines which are
parts of N partial opposite-type edge lines without any
intersection with A or B;

We only consider 3D objects given as triangular meshes
since a polygonal mesh can always be further divided into a
triangular mesh, although different triangulations may result
in different partial triangular meshes. The same-type corner
face is defined as a face connecting same-type corners of the
partial vertices. Also, a cross PV-PE face is a face passing
through: (1) the corner of a type on one partial vertex and
(2) a same-type corner line segment connecting corners of the
opposite type on the other two partial vertices which form a
partial edge. See Figure 6 (b). A partial face (PF) is the union
of all possible faces, each of which passes through exactly
one point in each partial vertex. Also, a partial face is also the
convex hull of its three partial vertices. Figure 6 (c) gives an
example. Actually, as an extension to theorem 2, we have the
following corollary

Corollary 9. Each PF is bounded by three kinds of surfaces:

o 1two same-type corner faces that have not intersection with
any of its three partial vertices;

o partial same-type edge line segments whose two boundary
same-type corner lines are either (1) whose cross PV-PE
face has intersections with the given three partial points
or (2) boundary lines of same-type corner faces in 9;

e faces of a partial point which are boundary faces of all
the partial edges it forms;

Similar to PLS, for each point in a PF there is a PF selection
passing through it. Also a corner selection is a combination of

same-type corner faces (one from each PF), necessary partial
same-type edge line segments and faces of partial points to
make it an enclosed polyhedron. A partial polyhedron (PPH)
is actually the union of all possible polyhedra with a given
list of partial points and the topology of the polyhedron. We
assume the PPH satisfies the same assumptions of PPG in the
3D context.

Corollary 10. The interior of a PPH is the topological interior
of its corner selection with the smallest volume, and the
exterior of the PPG is the complement of its corner selection
with the biggest volume.

A PF with three partial points can be generated in constant
time. Therefore, the generation of a simple PPH (no self-
intersection), which is an analogy to the PPG generation
algorithm, is of the similar time complexity with the classical
partial polyhedron generation method.

III. VISUAL HULL WITH IMPRECISE INPUTS

The visual hull from polygons or polyhedra is a classical
algorithm for generating the maximum silhouette equivalent
structure from a set of objects. If the known shape is com-
ing with imprecision, our framework can cover it while the
classical algorithm becoming non-robust.

A. 2D Visual Hull with Imprecise Inputs

A partial visual hull of PPGs is a partial geometric ob-
ject whose interior (exterior) is the set of points which are
definitely inside (outside) the visual hull with respect to any
polygon selection.

We will generate the partial visual hull of the objects of
interest when they are given as PPGs. In the case that shapes
are given as a set of imprecise vertices and their relationships
(topology), the visual number for a view point may not be
unique, i.e. regions of different visual numbers may overlap
with each other. Like the classical visual hull algorithm [27],
To have the partial visual hull, we need to have the partial
visual number partition (partial partition for short) of the space
allowing overlapping. Then we can extract the interior and
exterior of the partial visual hull from it. In this partition, any
region of the partial partition can have several possible visual
numbers.

For simplicity, we assume no three partial points are
collinear, i.e., no straight line intersects all three partial points.
A large number of collinear cases indicate that the data are
not refined enough with respect to the scale of the objects.
This problem can be tackled by either refining the input data
until there is no collinearity, or isolating the collinear cases
and solving them by brute-force algorithms.

In order to construct the partial partition of R?, we need to
consider the three cases of partial active segments as shown
in Figure 7. They are actually PHLs and PLSs with arrows
on their boundary lines. A partial active segment (PAS) is the
union of all possible active segments [27]. The arrows show
the direction from a region with lower possible visual numbers
to a region with higher possible visual numbers. These arrows
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Fig. 7: Three situations of the partial active segments (PASs) the
arrow shows the ascending direction of the visual numbers, i.e. the
visual number increases when crossing over the boundary following
the arrow direction

determine the entering and the exiting edges of a PAS as
indicated in Figure 7.

Proposition 11. Given a group of PPGs, the PASs contain
all the points with multiple visual numbers, i.e. the PAS is the
overlapping area of regions with different visual numbers.

Therefore, after generating all PASs, the plane R? is par-
titioned into two types of regions PASs and regions limited
by boundary lines of PASs (these regions can be bounded or
half-bounded). This is a generalized partition of the space in
the sense that PASs may overlap with each other. We need to
find the set of visual numbers of each region, i.e., its possible
visual numbers for all possible polygon selections with respect
to the PPGs.

Note that each region has at least one same-type corner line
from some PAS as its boundary line.

Theorem 12. The set of possible visual numbers of a region is
a set of consecutive non-negative integers. If a PAS A borders a
region B on its entering or exiting edge, A has one more visual
number than B which respectively equals to the maximum or
minimum visual number of A plus or minus one.

Therefore, we have the rules of labeling as follows:

1) Start from an interior of a PPG and label it as {0}.

2) If the current region is labeled as {n,n+1,...,m},
expand by labeling all regions which borders the current
labeled region on a same-type corner line as follows:

(i) If expanding in a PAS following the arrow direction,
label the new region as {n,n+1,...,m+1}.
(i) If expanding out a PAS following the arrow direc-
tion, label the new region as {n+1,n+2,...,m}.
(iii) If expanding in a PAS against the arrow direction,
label the new region as {n—1,n,...,m}.
(iv) If expanding out a PAS against the arrow direction,
label the new region as {n,n+1,....m—1}.
By repeating step 2, we will label all regions of the partition.
See Figure 8 as an example of a partial partition of R,
Finally, we merge all regions labeled with {0} as the interior

Fig. 8: A partial visual number partition of R2

and all regions with labels not containing O as the exterior of
the partial visual hull.

B. 3D Visual Hull with Imprecise Inputs

In the classical algorithm, the 3D visual hull is generated
with a brute force algorithm. The visual number of 3D case
in [27] is not a natural extension of the 2D visual number. It is
defined with respect to the topology of the shapes. However,
in our framework, the topologies of the interior and exterior
of a PPG may vary greatly which will cause inconsistency in
the visual numbers. But the areas with visual number O are
not affected so the interior and exterior of the visual hull can
still be determined. Despite the pruning algorithms which can
improve the efficiency of the computing, here are two main
steps in the classical method:

(i) Identify the potential active surfaces, i.e. potential bound-
aries of regions with different visual numbers.

(ii) Pick any point in each cell and calculate its visual number.
It is therefore the visual number of the whole cell.

And for item (i), there are two cases. VE surface which is
a plane and EEE surface which is a quadratic surface.

We have 2 conjectures for each step respectively

Conjecture 13. The partial VE and EEE surface are bounded
by classical surfaces generated by the corners and boundary
lines of the objects’ partial point and partial edges.

Conjecture 14. For any view point, the zeroness of its partial
visual number with respects to a given list of polyhedra, can
be calculated by only considering the corner selections of the
PPHs.

If both conjectures are true, the complexity of the algorithm
for the partial case is only multiples of the classical one which
means that the time complexity remains the same.

IV. FUTURE WORKS

In the future, following problems should be addressed to
complete the framework and provide a thorough answer to
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the visual hull problem

o Currently we only consider cases under parallel projec-
tion. However, with perspective projection (Figure 2 (b)),
properties like parallelism and coplanarity may not exist
and problem can get more complicated. In the 3D case,
the perspective partial point is the intersection of a
number of infinite square pyramids.

o The partial visual hull of Solids of Revolution [29],
smooth curved objects [4] or even piecewise smooth
objects [5] are more complicated than the polygonal cases
and will be studied in depth.

o The 3D partial visual hull problem should be fulled solved
by either proving our conjectures.

« Study the cases where topology of the shape is unknown.
Existing partial Delaunay triangulation algorithm [11]
can be used to build the triangular mesh from a list of
reconstructed partial points. This is quite useful if we
want to analyze the precision of some 3D reconstruction
configuration.

V. CONCLUSION

In this paper, we first present the geometric framework
including the basic 2D partial geometric objects (Partial point,
PL, PLS, PHL etc.) and their properties, some of which are
established in [13], [14]. Then we discuss how to establish
more complicated objects like partial polygons. Nevertheless,
we extend the 2D framework to 3D and show how 3D basic
geometric objects can be defined and modeled. The definition,
properties and generating methods of the partial polyhedron
are discussed.

To demonstrate the imprecision analysis based on this
framework, we adapt the classical 2D visual hull generation
methods to robustly process imprecise input data. The visual
hull from partial polyhedra is discuss and 2 conjectures are
provided. The proof of them will be studied in the near future.
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