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Abstract—As business environments are rapidly changing, 

the manufacturing system must be reconfigured to adapt to 
various customer needs. In order to cope with this challenge, it 
is quintessential to test industrial control logic rapidly and 
easily in the design time, and monitor operational behavior in 
the run time of automated manufacturing system. Proposed 
integrated model for virtual prototyping and operational 
monitoring of industrial control logic is to improve limitations 
of current ladder programming practices and general discrete 
event simulation method. Each plant layout model using HMI 
package and object-oriented control logic model is designed 
independently and is executed simultaneously in integrated 
manner to reflect design practices of automation system in the 
design time. Control logic is designed and executed using UML 
activity diagram without considering complicated control 
behavior to deal with current trend of reconfigurable 
manufacturing. After the physical installation, layout model of 
virtual prototype constructed in the design time is reused for 
operational monitoring of system behavior during run time. 

 
Keywords—automated manufacturing system, HMI, 

monitoring, object-oriented, PLC, virtual prototyping 

I. INTRODUCTION 
OWADAYS the unpredictability of market changes, the 
growing product complexity and continuous pressure on 

costs force enterprises to develop the ability to respond and 
adapt to change quickly and effectively. To cope with these 
challenges, most enterprises are installing automated 
manufacturing systems (AMSs) for their competitive 
advantages to survive the global business environment. As the 
level of automation increases, material flows and process 
control methods of the shop floor become more complicated. 
Currently, programmable logic controllers (PLC) are mostly 
adopted as controllers of automated manufacturing systems, 
and the control logic of PLC is usually programmed using a 
ladder diagram (LD).  
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More recently, manufacturing trends such as flexible 
manufacturing facilities and shorter product life cycles have led 
to a heightened demand for reconfigurable control systems. 
Therefore, the control system must be reconfigured timely and 
correctly. To meet these requirements, it is quintessential to 
design and execute industrial control logic rapidly and easily 
during the life cycle of manufacturing system. 

Currently, in the automation project, it takes long time to 
execute the control specification. Logic verification is usually 
conducted during a trial run stage of a project. As a result, it is 
difficult to timely reflect the control logic changes occurred in 
the design and implementation stages. Moreover, in order to 
verify the control logic, it is still necessary to write a program 
code by low-level language such as ladder diagram. However, 
PLC ladder logic gives only microscopic view of the system 
processes, and lacks semantic and conceptual integrity. Due to 
this limitation, it is difficult for factory automation (FA) 
engineers to have overall perspectives about the interaction of 
system components intuitively.  

For verifying and analyzing the design of control logic 
before its real implementation, quite a few methods based on 
mathematical formalism or computer simulation are adopted in 
manufacturing industries. Among these, computer simulation 
methods are widely used because mathematical formalisms 
have a problem of solution space explosion as the size of 
system increases. However, since current simulation methods 
have mainly focused on the overall performance evaluation of 
manufacturing systems such as factory layouts, resource 
utilization, and throughput time, they have limitations with 
regard to the modeling capabilities of detail logic for the 
input/output signal level control.  

Another problem is that plant layout model and control 
model are closely coupled in the existing discrete event 
simulation software.  In the shop floor, mechanical engineers 
and control engineers conduct their own work independently. 
Therefore, it is needed that plant layout modeling and control 
logic modeling must be separated. 

Moreover, simulation model for verification constructed at 
the design stage is discarded after the real implementation of 
AMs. It is no more used in the operational stage. 

The new requirements for the design, verification and 
monitoring of control logic are as follows: 1) it is necessary to 
have the functionality of modeling the interactions between a 
system controller and a plant for describing detail control logic 
on the shop floor. However, as current simulation methods 
adopt the ‘process view’ of work pieces or the ‘activity view’ of 
system resources, it is difficult to represent the interactions of 
system components. 2) For the verification of control logic in 
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an earlier stage of automation project, control logic must be 
modeled by high-level language which is intuitively 
understandable. But, current industrial control logic 
programming is written using low-level language such as 
ladder diagram. 3) For the simultaneous processing of plant 
layout modeling and control logic modeling by different 
disciplines, these two models must be built independently. 
After construction of each model, control logic verification is 
conducted by integrating and investigating two models 
concurrently. 4) In order to support the concept of virtual 
manufacturing, it is necessary that virtual prototype constructed 
at the design stage is reused to monitor the system behavior 
remotely after the real implementation of AMS. 

The main objective of this paper is to propose an integrated 
model for virtual prototyping and operational monitoring of 
industrial control logic to improve the above mentioned 
limitation of the current general discrete event simulation 
method and ladder logic programming. A proposed integrated 
model during the entire life cycle of AMS in this paper is 
depicted in Figure 1. First of all at the design time, control 
engineers design control logic using high-level language called 
UML (Unified Modeling Language) based on the system 
requirements. Concurrently, mechanical engineers design plant 
layout model using HMI (Human Machine Interface) software. 
After that, two models are interfaced, and control logic is 
executed in the form of UML activity diagram and is animated 
in the plant model. During the concurrent execution of two 
models, FA engineers can evaluate and verify the PLC control 
logic easily and rapidly.  During the run time, HMI layout 
model constructed at the design time is reused for operational 
monitoring with slight modification. 

 The rest of the paper is organized as follows.   Section 2 
reviews related works. Section 3 describes a proposed O-O 
control logic design and execution preparation method. Section 
4 presents virtual prototyping and operational monitoring of 
control logic using illustrative example. Finally, the last section 
summarizes results and suggests directions for future research.  

 
 

 
Fig. 1. Integrated model for the life cycle of AMS 

II. RELATED WORKS 
Several researches were made regarding the manufacturing 

system modeling methods: Calvo et al. proposed an O-O 
method for the design of automation system, but they only 
showed the static structure comprised of a class diagram and a 
use case diagram [4]. Young et al. proposed UML modeling of 
AMS and its transformation into PLC code, but they didn’t 
present the method of PLC code generation [12].  Bruccoleri 
and Diega presented UML modeling of FMS (Flexible 
Manufacturing System) and its simulation implementation, but 
they restricted the control level to the supervisory control level 
[2]. Bruccoleri compared ladder diagram based-method to O-O 
modeling for the development of control software [4]. Choi et 
al. proposed a virtual factory simulator framework as a 3D 
solid-based factory to be used as a line prototyping tool for an 
AMS [5]. 

Among researches about design and validation tools for the 
PLC control logic, Spath and Osmers proposed a simulation 
method integrating a plant layout sub-model and a control 
sub-model, and also a PLC code generation from the simulation 
result, but they omitted details of generation procedure [10]. 
Baresi et al. presented 1) design of control logic using FBD 
(Function Block Diagram), 2) its transformation into Petri net, 
3) the validation of control logic using SIMULINK simulation 
system, and 4) C code generation. But, they confined their 
modeling scope to simple control logic which can be 
represented by FBD [1]. Ekberg and Krogh proposed the 
method of creating the control software by combining 
independent predefined control templates [6]. Schreyer and 
Tseng outlined a framework for reconfiguration design of 
PLC-based control systems based on axiomatic design theory, 
but they didn’t implement their framework in the shop floor [9]. 
Authors of this paper proposed object-oriented design, 
simulation and automatic generation of ladder logic [7, 8]. 

III. O-O CONTROL LOGIC DESIGN AND EXECUTION 
PREPARATION 

Virtual prototyping and operational monitoring procedure 
using a proposed integrated model, which is depicted in Figure 
2, is as follows: 1) control model design in parallel with 
physical layout model design, 2) control rule generation for 
control logic execution, 3) verification of control logic using 
integrated virtual prototype at the design-time, 4) operational 
monitoring at the run-time. The following section 3-1 explains 
object-oriented control logic design using UML activity 
diagram. Section 3-2 describes the decomposition method of 
activity diagram for the execution of designed control logic.  

III-1. O-O CONTROL LOGIC DESIGN 
In order to support emerging requirements of manufacturing 

system design, significant efforts have been made in researches 
on O-O technologies in manufacturing systems. O-O modeling 
has been mainly used as a method for the analysis and design of 
general software system.  Recently, it is presented that O-O 
modeling is also appropriate for real-time system design like an 
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AMS as well as business process modeling. The most typical 
features of O-O modeling techniques include the interaction of 
objects, hierarchical composition of objects, and the reuse of 
objects. 

 
Fig. 2. Procedure of virtual prototyping and operational monitoring 

 
Since the real FA system is operated by the signal sending 

and receipt among manufacturing equipments such as PLC, 
sensors, and actuators, it is essential to describe the interactions 
of FA system components in detail for the robust design of 
device level control. UML provides the activity diagram (AD), 
state diagram, sequence diagram, and communication diagram 
as a modelling tool for the dynamic system behaviours. Among 
these diagrams, the activity diagram is most suitable for control 
logic flow modelling because of the following features: 1) it 
can describe the dynamic behaviours of plant with regard to 
input/output events in sequential manner. 2) It can easily 
represent typical control logic flow routing types such as 
sequential, join, split, and iteration routing.  

In order to design control logic written in ladder logic, 
modification and extension of standard UML elements are 
required to reflect the specific features of ladder logic. First of 
all, it should be tested whether activity diagram is suitable for 
the description of control logic flow, especially for the ladder 
logic flow. The basic control flow at the ladder logic is 
sequence, split and join. Especially, three types of split and join 
control flow must be provided for ladder logic: OR-join, 
AND-join, AND-split. UML activity diagram can model basic 
control flows of ladder logic well.  

Basically, ladder diagram is a combination of input contact, 
output coil and AND/OR/NOT logic. Since ‘NOT’ (normally 
closed) logic flow in the ladder logic cannot be represented 
directly in standard activity diagram, new two transition 
symbols for representing normally closed contact and negated 
coil are added as normal arcs with left-side vertical bar (called 
NOT-IN Transition) or right-side vertical bar (called 
NOT-OUT transition) as depicted in Figure 3. In the extended 
UML activity diagram, logic and time sequence flow from the 
top to bottom of diagram.   

Elements of extended UML activity diagram is classified 
into two groups as depicted in Figure 3: activity and transition. 

Activity group consists of start/stop activity, normal activity 
and special activity such as timer and counter. For representing 
control logic, transition group consists of normal transition, not 
transition and logic flow transition such as OR-join, AND-join 
and AND-split.  

 
Fig. 3. Elements of extended activity diagram 

III-2. DECOMPOSITION OF UML ACTIVITY DIAGRAM FOR 
EXECUTION 

In order to execute the control logic in the form of an activity 
diagram, it is needed that an activity diagram is decomposed 
into several logic units having input/output corresponding to 
ladder lung since basic ladder lung is a combination of input 
contact and output coil. This basic executable logic unit is 
called LU (Logic Unit) which is a 1:1 exchangeable unit to 
ladder lung. Consequently, a LU can be described in a form of 
condition-action rule. If certain condition is satisfied, related 
action is executed. For example, the activity diagram for 
industrial control logic depicted in Figure 4 can be decomposed 
into four LUs.  

 
Fig. 4. LU decomposition 
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The decomposition procedure is as follows: 1) after the 
creation of an activity diagram for the control logic graphically, 
store in the form of XML called AD-XML.  

2) Decompose an activity diagram into several LUs, and 
store it in the form of two-dimensional table called LU-Table. 
LU-table has four columns named input activity, transition, 
output activity, and LU pattern type. Table 1 shows the LU 
table for Figure 4. 

 
TABLE I LU TABLE FOR Fig. 4 

 
 

 
Fig. 5. LU type and its corresponding if-then rule 

 
TABLE II EXECUTABLE RULE TABLE FOR Fig. 4 

 
 

3) Determine the pattern type for each identified LU. There 
are four LU pattern types of activity diagram from basic LU 
type to the concatenation of logic flow transition LU type. 
Figure 5 shows LU type and its corresponding if-then rule.  

LU pattern type is classified to two types. One is simple type 
which compose basic if-then rule. The other is complex type 
that is a combination of simple types. Simple type is further 
classified to three types according to their corresponding lung 
structure: Type-1 (basic LU), Type-2 (logic flow transition LU: 
OR-join, AND-join, AND-split), and Type-3 (basic LU with 
function block). Since complex type is combination of several 
consecutive logic flow transitions, it has most sophisticated 
structure among 4 LU types. Complex type is further classified 
to two types: Type 4-1 (concatenation of logic flow transition: 
join precedent) and Type 4-2 (split-precedent). Classification 
criteria is whether ‘join’ logic flow transition is precedent to 
other logic flow transitions or ‘split’ transition is precedent.  
Complex LU type needs more operations such as sub-grouping 
and de-grouping for generating rule clause. 

4) Eventually, LU-Table is transformed to executable rule 
table. It is generated using LU table and connection information 
of AD-XML Rule table has three columns: first column is an 
index. Second column is IF-clause (input condition). And third 
column is THEN-clause (output). Control logic is executed by 
rule firing in the rule table sequentially. Table 2 shows 
executable rule table for the control logic depicted in Figure 4. 
LU 4 in the Table 2 is a complex type which needs 
pre-operation of grouping for the simplification of control logic 
as follows: ‘Group K ‘= (C1=on. OR. L=on). 

IV. VIRTUAL PROTOTYPING AND OPERATIONAL MONITORING 
After the control logic design and execution preparation, 

next step is virtual prototyping by integrating UML control 
logic model and physical layout model using HMO package. 
By using virtual prototype, control logic in the design-time is 
verified. After physical installation, this prototype can be 
reused as a tool for operational monitoring. Section 4-1 
explains the procedure of control logic verification using 
virtual prototyping. Section 4-2 describes the reuse of 
design-time virtual prototype as a tool of operational 
monitoring in the run-time. 

IV-1. CONTROL LOGIC VERIFICATION USING VIRTUAL 
PROTOTYPE IN THE DESIGN-TIME 

Developed software in this study (called DXE-CL) consists 
of two modules: one is design module in the form of a UML 
activity diagram. The other is execution module of an activity 
diagram. The structure of execution part is depicted in Figure 6. 
Major classes are thread manager, execution manager and IO 
manager. The control logic of each required function in the 
automation system is implemented as a runtime thread instance. 
Thread manager inherited from super manager manages 
runtime thread instances. Execution manager consists of 
decomposition manager and runtime thread. For the control 
logic execution, decomposition manager decomposes activity 
diagram into several LUs and generates rule table. IO manager 
which is inherited from communication manager is responsible 
for communicating with external software.  
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Proposed virtual prototyping procedure is explained using 
illustrative application in this section. Example application is a 
kind of fluid storage tank for chemical reaction. This system 
provides three functionalities: fluid supply, chemical reaction 
and drainage.  

 
Fig. 6. Structure of DXE-CL execution module 

 
Detailed procedure is explained as follows: 

1) From the system specification, control logic is designed 
by using DXE-CL. Figure 7 shows control logic for supply, 
chemical reaction and drain of fluid by using DXE-CL module.  

2) In parallel with control logic design, physical layout is 
constructed by using commercial HMI or VMS software. 
Figure 8 shows layout model using Wonderware’s InTouch 
HMI package [11].  

3) Excel-based interface is established between control 
model and layout model. Input/output port type is classified to 
input (I), output (O) and internal memory (M). The port value is 
0 or 1. The left part of Figure 7 shows mapping between 
sensor/actuator and IO port. Figure 9 shows functional 
structure of virtual prototype. 

4) After designing control logic, he or she generates rule 
table for the execution of control logic. Figure 10 shows LU 
decomposition. Control logic of example system is 
decomposed into 5 LUs. Table 3 shows generated rule table for 
the control logic of Figure 7.  

5) Finally, he or she runs the executor of control logic. After 
that, various stakeholders of automation system verify the 
control logic by simultaneously investigating animated plant 
model and running control model. Control logic execution is 
conducted by rule firings in the rule table with continuous loop. 
Each required function described in the form of an activity 
diagram is implemented as an independent thread object, and 
each thread performs its operation by interacting with device 
element of a plant model independently or sequentially whether 
there is a temporal relationship between functions or not. 
Before starting loop, the status of input port within the excel 
sheet is read. During loop, each row of rule table is checked 

whether input condition is satisfied. If satisfied, the status of 
output port is updated to Excel sheet.  

 

 
Fig. 7. Control logic design by DXE-CL 

 
Fig. 8. Plant layout model by HMI package 

 

 
Fig. 9. Structure of virtual prototype 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

580

 

 

 

 
Fig. 10. LU decomposition for example system 

 
 

TABLE III EXECUTABLE RULE TABLE FOR Fig. 7 

 

IV-2. OPERATIONAL MONITORING IN THE RUN-TIME 
After verifying the control logic using virtual prototype, real 

manufacturing system is implemented and its operation is 
started. During operating stage, remote monitoring of system 
behavior is necessary. In this case, HMI layout model of virtual 
prototype in the design-time can be reused with slight 
modification.  

 
Fig. 11. Operational monitoring using virtual prototype 

 
The right part of Figure 11 shows schematics of operational 

monitoring at run time using virtual prototype constructed in 
design time. Control model of virtual prototype is substituted to 
PLC, and layout model of virtual prototype is substituted to real 
system. Figure 12 shows the monitoring display of example 
application. In addition to the monitoring of elapsed time for 
chemical reaction and drainage of virtual prototype as shown in 
the right part of Figure 12, two monitored object is included:  1) 
planned daily production versus actual daily production 
amount (left upper part of Figure 12), 2) temperature of inner 
tank (on the storage tank of Figure 12). 

 

 
Fig. 12. Monitoring display in the run-time 

V. CONCLUSIONS  
To meet emerging requirements of reconfigurable control 

system, it is quintessential to design and verify industrial 
control logic rapidly and easily during the life cycle of 
manufacturing system. And it is necessary that the model for 
verification in design time is reused for operational monitoring 
in run time. 

However, existing verification methods such as discrete 
event simulation couldn’t provide the functionalities to fulfil 
the new requirements such as rapid verification of control logic 
and simultaneous processing of mechanical and control design 
task. 

Proposed integrated model for virtual prototyping and 
operational monitoring of industrial control logic is to improve 
the limitation of current control logic verification and model 
reuse. By proposed method, control logic can be easily 
modifiable to accommodate changes in manufacturing plant 
configuration during the control system life cycle. It also 
facilitates the generation of control logic easily within a short 
time without considering complicated control behavior based 
on verification result. In addition, this method serves as an 
operational monitoring tool with slight modification in the run 
time. 
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As a further research, the integration method between 
coordination control at the cell level and PLC-based procedural 
control at the device level is necessary to develop a unified tool 
for the design, verification and monitoring of reconfigurable 
control system. 
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