
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

575

Abstract—As business environments are rapidly changing,

the manufacturing system must be reconfigured to adapt to
various customer needs. In order to cope with this challenge, it
is quintessential to test industrial control logic rapidly and
easily in the design time, and monitor operational behavior in
the run time of automated manufacturing system. Proposed
integrated model for virtual prototyping and operational
monitoring of industrial control logic is to improve limitations
of current ladder programming practices and general discrete
event simulation method. Each plant layout model using HMI
package and object-oriented control logic model is designed
independently and is executed simultaneously in integrated
manner to reflect design practices of automation system in the
design time. Control logic is designed and executed using UML
activity diagram without considering complicated control
behavior to deal with current trend of reconfigurable
manufacturing. After the physical installation, layout model of
virtual prototype constructed in the design time is reused for
operational monitoring of system behavior during run time.

Keywords—automated manufacturing system, HMI,

monitoring, object-oriented, PLC, virtual prototyping

I. INTRODUCTION
OWADAYS the unpredictability of market changes, the
growing product complexity and continuous pressure on

costs force enterprises to develop the ability to respond and
adapt to change quickly and effectively. To cope with these
challenges, most enterprises are installing automated
manufacturing systems (AMSs) for their competitive
advantages to survive the global business environment. As the
level of automation increases, material flows and process
control methods of the shop floor become more complicated.
Currently, programmable logic controllers (PLC) are mostly
adopted as controllers of automated manufacturing systems,
and the control logic of PLC is usually programmed using a
ladder diagram (LD).

Kwan Hee Han is with Department of Industrial & Systems Engineering,

Institute of Engineering Research, Gyeongsang National University, Jinju,
Gyeongnam 660-701, KOREA (e-mail: hankh@ gnu.ac.kr).

Jun Woo Park is with VMS Solutions Corp., Daejeon, KOREA (e-mail:
junwoo@vms-solutions.com).

Seock Kyu Yoo is with VMS Solutions Corp., Daejeon, KOREA (e-mail:
skyoo@vms-solutions.com).

Geon Lee is graduate student in Department of Industrial & Systems
Engineering, of Gyeongsang National University, KOREA (e-mail:
author@nrim.go.jp).

More recently, manufacturing trends such as flexible
manufacturing facilities and shorter product life cycles have led
to a heightened demand for reconfigurable control systems.
Therefore, the control system must be reconfigured timely and
correctly. To meet these requirements, it is quintessential to
design and execute industrial control logic rapidly and easily
during the life cycle of manufacturing system.

Currently, in the automation project, it takes long time to
execute the control specification. Logic verification is usually
conducted during a trial run stage of a project. As a result, it is
difficult to timely reflect the control logic changes occurred in
the design and implementation stages. Moreover, in order to
verify the control logic, it is still necessary to write a program
code by low-level language such as ladder diagram. However,
PLC ladder logic gives only microscopic view of the system
processes, and lacks semantic and conceptual integrity. Due to
this limitation, it is difficult for factory automation (FA)
engineers to have overall perspectives about the interaction of
system components intuitively.

For verifying and analyzing the design of control logic
before its real implementation, quite a few methods based on
mathematical formalism or computer simulation are adopted in
manufacturing industries. Among these, computer simulation
methods are widely used because mathematical formalisms
have a problem of solution space explosion as the size of
system increases. However, since current simulation methods
have mainly focused on the overall performance evaluation of
manufacturing systems such as factory layouts, resource
utilization, and throughput time, they have limitations with
regard to the modeling capabilities of detail logic for the
input/output signal level control.

Another problem is that plant layout model and control
model are closely coupled in the existing discrete event
simulation software. In the shop floor, mechanical engineers
and control engineers conduct their own work independently.
Therefore, it is needed that plant layout modeling and control
logic modeling must be separated.

Moreover, simulation model for verification constructed at
the design stage is discarded after the real implementation of
AMs. It is no more used in the operational stage.

The new requirements for the design, verification and
monitoring of control logic are as follows: 1) it is necessary to
have the functionality of modeling the interactions between a
system controller and a plant for describing detail control logic
on the shop floor. However, as current simulation methods
adopt the ‘process view’ of work pieces or the ‘activity view’ of
system resources, it is difficult to represent the interactions of
system components. 2) For the verification of control logic in

Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo and Geon Lee

Virtual Prototyping and Operational Monitoring
of PLC-Based Control System

N

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

576

an earlier stage of automation project, control logic must be
modeled by high-level language which is intuitively
understandable. But, current industrial control logic
programming is written using low-level language such as
ladder diagram. 3) For the simultaneous processing of plant
layout modeling and control logic modeling by different
disciplines, these two models must be built independently.
After construction of each model, control logic verification is
conducted by integrating and investigating two models
concurrently. 4) In order to support the concept of virtual
manufacturing, it is necessary that virtual prototype constructed
at the design stage is reused to monitor the system behavior
remotely after the real implementation of AMS.

The main objective of this paper is to propose an integrated
model for virtual prototyping and operational monitoring of
industrial control logic to improve the above mentioned
limitation of the current general discrete event simulation
method and ladder logic programming. A proposed integrated
model during the entire life cycle of AMS in this paper is
depicted in Figure 1. First of all at the design time, control
engineers design control logic using high-level language called
UML (Unified Modeling Language) based on the system
requirements. Concurrently, mechanical engineers design plant
layout model using HMI (Human Machine Interface) software.
After that, two models are interfaced, and control logic is
executed in the form of UML activity diagram and is animated
in the plant model. During the concurrent execution of two
models, FA engineers can evaluate and verify the PLC control
logic easily and rapidly. During the run time, HMI layout
model constructed at the design time is reused for operational
monitoring with slight modification.

 The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 describes a proposed O-O
control logic design and execution preparation method. Section
4 presents virtual prototyping and operational monitoring of
control logic using illustrative example. Finally, the last section
summarizes results and suggests directions for future research.

Fig. 1. Integrated model for the life cycle of AMS

II. RELATED WORKS
Several researches were made regarding the manufacturing

system modeling methods: Calvo et al. proposed an O-O
method for the design of automation system, but they only
showed the static structure comprised of a class diagram and a
use case diagram [4]. Young et al. proposed UML modeling of
AMS and its transformation into PLC code, but they didn’t
present the method of PLC code generation [12]. Bruccoleri
and Diega presented UML modeling of FMS (Flexible
Manufacturing System) and its simulation implementation, but
they restricted the control level to the supervisory control level
[2]. Bruccoleri compared ladder diagram based-method to O-O
modeling for the development of control software [4]. Choi et
al. proposed a virtual factory simulator framework as a 3D
solid-based factory to be used as a line prototyping tool for an
AMS [5].

Among researches about design and validation tools for the
PLC control logic, Spath and Osmers proposed a simulation
method integrating a plant layout sub-model and a control
sub-model, and also a PLC code generation from the simulation
result, but they omitted details of generation procedure [10].
Baresi et al. presented 1) design of control logic using FBD
(Function Block Diagram), 2) its transformation into Petri net,
3) the validation of control logic using SIMULINK simulation
system, and 4) C code generation. But, they confined their
modeling scope to simple control logic which can be
represented by FBD [1]. Ekberg and Krogh proposed the
method of creating the control software by combining
independent predefined control templates [6]. Schreyer and
Tseng outlined a framework for reconfiguration design of
PLC-based control systems based on axiomatic design theory,
but they didn’t implement their framework in the shop floor [9].
Authors of this paper proposed object-oriented design,
simulation and automatic generation of ladder logic [7, 8].

III. O-O CONTROL LOGIC DESIGN AND EXECUTION
PREPARATION

Virtual prototyping and operational monitoring procedure
using a proposed integrated model, which is depicted in Figure
2, is as follows: 1) control model design in parallel with
physical layout model design, 2) control rule generation for
control logic execution, 3) verification of control logic using
integrated virtual prototype at the design-time, 4) operational
monitoring at the run-time. The following section 3-1 explains
object-oriented control logic design using UML activity
diagram. Section 3-2 describes the decomposition method of
activity diagram for the execution of designed control logic.

III-1. O-O CONTROL LOGIC DESIGN
In order to support emerging requirements of manufacturing

system design, significant efforts have been made in researches
on O-O technologies in manufacturing systems. O-O modeling
has been mainly used as a method for the analysis and design of
general software system. Recently, it is presented that O-O
modeling is also appropriate for real-time system design like an

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

577

AMS as well as business process modeling. The most typical
features of O-O modeling techniques include the interaction of
objects, hierarchical composition of objects, and the reuse of
objects.

Fig. 2. Procedure of virtual prototyping and operational monitoring

Since the real FA system is operated by the signal sending

and receipt among manufacturing equipments such as PLC,
sensors, and actuators, it is essential to describe the interactions
of FA system components in detail for the robust design of
device level control. UML provides the activity diagram (AD),
state diagram, sequence diagram, and communication diagram
as a modelling tool for the dynamic system behaviours. Among
these diagrams, the activity diagram is most suitable for control
logic flow modelling because of the following features: 1) it
can describe the dynamic behaviours of plant with regard to
input/output events in sequential manner. 2) It can easily
represent typical control logic flow routing types such as
sequential, join, split, and iteration routing.

In order to design control logic written in ladder logic,
modification and extension of standard UML elements are
required to reflect the specific features of ladder logic. First of
all, it should be tested whether activity diagram is suitable for
the description of control logic flow, especially for the ladder
logic flow. The basic control flow at the ladder logic is
sequence, split and join. Especially, three types of split and join
control flow must be provided for ladder logic: OR-join,
AND-join, AND-split. UML activity diagram can model basic
control flows of ladder logic well.

Basically, ladder diagram is a combination of input contact,
output coil and AND/OR/NOT logic. Since ‘NOT’ (normally
closed) logic flow in the ladder logic cannot be represented
directly in standard activity diagram, new two transition
symbols for representing normally closed contact and negated
coil are added as normal arcs with left-side vertical bar (called
NOT-IN Transition) or right-side vertical bar (called
NOT-OUT transition) as depicted in Figure 3. In the extended
UML activity diagram, logic and time sequence flow from the
top to bottom of diagram.

Elements of extended UML activity diagram is classified
into two groups as depicted in Figure 3: activity and transition.

Activity group consists of start/stop activity, normal activity
and special activity such as timer and counter. For representing
control logic, transition group consists of normal transition, not
transition and logic flow transition such as OR-join, AND-join
and AND-split.

Fig. 3. Elements of extended activity diagram

III-2. DECOMPOSITION OF UML ACTIVITY DIAGRAM FOR
EXECUTION

In order to execute the control logic in the form of an activity
diagram, it is needed that an activity diagram is decomposed
into several logic units having input/output corresponding to
ladder lung since basic ladder lung is a combination of input
contact and output coil. This basic executable logic unit is
called LU (Logic Unit) which is a 1:1 exchangeable unit to
ladder lung. Consequently, a LU can be described in a form of
condition-action rule. If certain condition is satisfied, related
action is executed. For example, the activity diagram for
industrial control logic depicted in Figure 4 can be decomposed
into four LUs.

Fig. 4. LU decomposition

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

578

The decomposition procedure is as follows: 1) after the
creation of an activity diagram for the control logic graphically,
store in the form of XML called AD-XML.

2) Decompose an activity diagram into several LUs, and
store it in the form of two-dimensional table called LU-Table.
LU-table has four columns named input activity, transition,
output activity, and LU pattern type. Table 1 shows the LU
table for Figure 4.

TABLE I LU TABLE FOR Fig. 4

Fig. 5. LU type and its corresponding if-then rule

TABLE II EXECUTABLE RULE TABLE FOR Fig. 4

3) Determine the pattern type for each identified LU. There
are four LU pattern types of activity diagram from basic LU
type to the concatenation of logic flow transition LU type.
Figure 5 shows LU type and its corresponding if-then rule.

LU pattern type is classified to two types. One is simple type
which compose basic if-then rule. The other is complex type
that is a combination of simple types. Simple type is further
classified to three types according to their corresponding lung
structure: Type-1 (basic LU), Type-2 (logic flow transition LU:
OR-join, AND-join, AND-split), and Type-3 (basic LU with
function block). Since complex type is combination of several
consecutive logic flow transitions, it has most sophisticated
structure among 4 LU types. Complex type is further classified
to two types: Type 4-1 (concatenation of logic flow transition:
join precedent) and Type 4-2 (split-precedent). Classification
criteria is whether ‘join’ logic flow transition is precedent to
other logic flow transitions or ‘split’ transition is precedent.
Complex LU type needs more operations such as sub-grouping
and de-grouping for generating rule clause.

4) Eventually, LU-Table is transformed to executable rule
table. It is generated using LU table and connection information
of AD-XML Rule table has three columns: first column is an
index. Second column is IF-clause (input condition). And third
column is THEN-clause (output). Control logic is executed by
rule firing in the rule table sequentially. Table 2 shows
executable rule table for the control logic depicted in Figure 4.
LU 4 in the Table 2 is a complex type which needs
pre-operation of grouping for the simplification of control logic
as follows: ‘Group K ‘= (C1=on. OR. L=on).

IV. VIRTUAL PROTOTYPING AND OPERATIONAL MONITORING
After the control logic design and execution preparation,

next step is virtual prototyping by integrating UML control
logic model and physical layout model using HMO package.
By using virtual prototype, control logic in the design-time is
verified. After physical installation, this prototype can be
reused as a tool for operational monitoring. Section 4-1
explains the procedure of control logic verification using
virtual prototyping. Section 4-2 describes the reuse of
design-time virtual prototype as a tool of operational
monitoring in the run-time.

IV-1. CONTROL LOGIC VERIFICATION USING VIRTUAL
PROTOTYPE IN THE DESIGN-TIME

Developed software in this study (called DXE-CL) consists
of two modules: one is design module in the form of a UML
activity diagram. The other is execution module of an activity
diagram. The structure of execution part is depicted in Figure 6.
Major classes are thread manager, execution manager and IO
manager. The control logic of each required function in the
automation system is implemented as a runtime thread instance.
Thread manager inherited from super manager manages
runtime thread instances. Execution manager consists of
decomposition manager and runtime thread. For the control
logic execution, decomposition manager decomposes activity
diagram into several LUs and generates rule table. IO manager
which is inherited from communication manager is responsible
for communicating with external software.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

579

Proposed virtual prototyping procedure is explained using
illustrative application in this section. Example application is a
kind of fluid storage tank for chemical reaction. This system
provides three functionalities: fluid supply, chemical reaction
and drainage.

Fig. 6. Structure of DXE-CL execution module

Detailed procedure is explained as follows:

1) From the system specification, control logic is designed
by using DXE-CL. Figure 7 shows control logic for supply,
chemical reaction and drain of fluid by using DXE-CL module.

2) In parallel with control logic design, physical layout is
constructed by using commercial HMI or VMS software.
Figure 8 shows layout model using Wonderware’s InTouch
HMI package [11].

3) Excel-based interface is established between control
model and layout model. Input/output port type is classified to
input (I), output (O) and internal memory (M). The port value is
0 or 1. The left part of Figure 7 shows mapping between
sensor/actuator and IO port. Figure 9 shows functional
structure of virtual prototype.

4) After designing control logic, he or she generates rule
table for the execution of control logic. Figure 10 shows LU
decomposition. Control logic of example system is
decomposed into 5 LUs. Table 3 shows generated rule table for
the control logic of Figure 7.

5) Finally, he or she runs the executor of control logic. After
that, various stakeholders of automation system verify the
control logic by simultaneously investigating animated plant
model and running control model. Control logic execution is
conducted by rule firings in the rule table with continuous loop.
Each required function described in the form of an activity
diagram is implemented as an independent thread object, and
each thread performs its operation by interacting with device
element of a plant model independently or sequentially whether
there is a temporal relationship between functions or not.
Before starting loop, the status of input port within the excel
sheet is read. During loop, each row of rule table is checked

whether input condition is satisfied. If satisfied, the status of
output port is updated to Excel sheet.

Fig. 7. Control logic design by DXE-CL

Fig. 8. Plant layout model by HMI package

Fig. 9. Structure of virtual prototype

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

580

Fig. 10. LU decomposition for example system

TABLE III EXECUTABLE RULE TABLE FOR Fig. 7

IV-2. OPERATIONAL MONITORING IN THE RUN-TIME
After verifying the control logic using virtual prototype, real

manufacturing system is implemented and its operation is
started. During operating stage, remote monitoring of system
behavior is necessary. In this case, HMI layout model of virtual
prototype in the design-time can be reused with slight
modification.

Fig. 11. Operational monitoring using virtual prototype

The right part of Figure 11 shows schematics of operational

monitoring at run time using virtual prototype constructed in
design time. Control model of virtual prototype is substituted to
PLC, and layout model of virtual prototype is substituted to real
system. Figure 12 shows the monitoring display of example
application. In addition to the monitoring of elapsed time for
chemical reaction and drainage of virtual prototype as shown in
the right part of Figure 12, two monitored object is included: 1)
planned daily production versus actual daily production
amount (left upper part of Figure 12), 2) temperature of inner
tank (on the storage tank of Figure 12).

Fig. 12. Monitoring display in the run-time

V. CONCLUSIONS
To meet emerging requirements of reconfigurable control

system, it is quintessential to design and verify industrial
control logic rapidly and easily during the life cycle of
manufacturing system. And it is necessary that the model for
verification in design time is reused for operational monitoring
in run time.

However, existing verification methods such as discrete
event simulation couldn’t provide the functionalities to fulfil
the new requirements such as rapid verification of control logic
and simultaneous processing of mechanical and control design
task.

Proposed integrated model for virtual prototyping and
operational monitoring of industrial control logic is to improve
the limitation of current control logic verification and model
reuse. By proposed method, control logic can be easily
modifiable to accommodate changes in manufacturing plant
configuration during the control system life cycle. It also
facilitates the generation of control logic easily within a short
time without considering complicated control behavior based
on verification result. In addition, this method serves as an
operational monitoring tool with slight modification in the run
time.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

581

As a further research, the integration method between
coordination control at the cell level and PLC-based procedural
control at the device level is necessary to develop a unified tool
for the design, verification and monitoring of reconfigurable
control system.

ACKNOWLEDGMENT
This research was conducted as a part of project for the

development of digital based real-time adaptive manufacturing
system platform sponsored by Ministry of Knowledge
Economy (MKE) and VMS Solutions co., ltd., and was also
financially supported by Ministry of Education, Science and
Technology (MEST) and Korea Institute for Advancement of
Technology (KIAT) through the Human Resource Training
Project for Regional Innovation.

REFERENCES
[1] Baresi L., Mauri M., Monti A., and Pezze M., “PLCTools: design, formal

validation, and code generation for programmable controllers,”
Proceedings of 2000 IEEE Conference on Systems, Man and
Cybernetics, Nashville, USA, 2000.

[2] Bruccoleri M., and Diega S. N., “An object-oriented approach for
flexible manufacturing control systems analysis and design using the
unified modelling language,” International Journal of Flexible
Manufacturing System, Vol.15, No.3, pp.195-216, 2003.

[3] Bruccoleri M., “Reconfigurable control of robotized manufacturing
cells,” Robotics and Computer-Integrated Manufacturing, Vol.23,
pp.94-106, 2007.

[4] Calvo I., Marcos M., Orive D., and Sarachaga I., “Using Object-Oriented
Technologies in Factory Automation,” Proceedings of 2002 IECON
Conference, Sevilla, Spain, pp.2892-2897, 2002.

[5] Choi B., Park B., and Ryu H. Y., ”Virtual factory simulator framework
for line prototyping,” Journal of Advanced Manufacturing System, Vol.3,
No.1, pp.5-20, 2004.

[6] Ekberg G. and Krogh H. K., “Programming discrete control systems
using state machine templates,” Proceedings of the 8th international
workshop on discrete event systems, pp.194-200, Ann Arbor, USA,
2006.

[7] Han K. H. and Park J.W., “Object-oriented ladder logic development
framework based on the unified modeling language,” Studies in
Computational Intelligence, Vol. 208, pp.33-45, 2009.

[8] Han K. H., Park J. W. and Choi Y., “Object-oriented modeling and
simulation for the validation of industrial control logic,” Proceedings of
the 37th International Conference on Computers and Industrial
Engineering, Alexandria, Egypt, pp. 2377-2384, 20-23 October, 2007.

[9] Schreyer M. and Tseng M. M., “Design framework of PLC-based control
for reconfigurable manufacturing systems,” Proceedings of international
conference on flexible automation and intelligent manufacturing (FAIM
2000), Vol.1, pp.33-42, 2000.

[10] Spath D., and Osmers U., “Virtual reality- an approach to improve the
generation of fault free software for programmable logic controllers,”
Proceedings of IEEE International Conference on Engineering of
Complex Computer Systems, Montreal, Canada, pp.43-46, 1996.

[11] Wonderware, 2009. http://global.wonderware.com/EN/ Pages/
WonderwareInTouchHMI.aspx

[12] Young K. W., Piggin R., and Rachitrangsan P., “An Object-Oriented
Approach to an Agile Manufacturing Control System Design,”
International Journal of Advanced Manufacturing Technology, Vol.17,
No.11, pp.850-859, 2001.

