
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

316

Virtual Machines Cooperation for Impatient Jobs
under Cloud Paradigm

Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim, Shamala K. Syrmabn

Abstract—The increase on the demand of IT resources diverts
the enterprises to use the cloud as a cheap and scalable solution.
Cloud computing promisesachieved by using thevirtual machineasa
basic unite of computation. However, the virtual machine pre-defined
settings might be not enough to handle jobs QoS requirements. This
paper addresses the problem of mapping jobs have critical start
deadlines to virtual machines that have predefined specifications.
These virtual machines hosted by physical machines and shared a
fixed amount of bandwidth. This paper proposed an algorithm that
uses the idle virtual machinesbandwidth to increasethequoteof other
virtual machines nominated as executors to urgent jobs. An algorithm
with empirical study have been given to evaluate the impact of the
proposed model on impatient jobs. The results show the importance
of dynamic bandwidth allocation in virtualized environment and its
affect on throughput metric.

Keywords—Insufficient bandwidth, virtual machine, cloud
provider, impatient jobs.

I . INTRODUCTION

MANY enterprises, organizations and governmental de-
partments are responsible for time critical jobs and

these jobs need to be served quickly. In addition to above,
these agencies face IT problems because of the huge growth
in applications, data and solution sizes.

Dave Murphy[1], senior vice president at performance test-
ing vendor says ” The cloud allows for large amounts of
computing power over short periods of time - like during a
disaster - so government agencies can respond to anything in
the world” . He also noted ” The government could utilize the
cloud compute power on an as-needed basis. All of a sudden
- like with the oil spill off the coast of Louisiana - they would
need to bring resources to bear, such as money, people and
equipment. Part of the equipment is the computing power” .
This kind of urgent jobs where the time plays an essential
role in their execution are called impatient jobs.

Impatient jobs are the jobs that need resources as soon as
they enter the system and to be executed as soon as possible
[2]. More recently, these jobs have a considerable amount of
data to be staged in before execution and staged out after.
Each job could have two deadlines in its QoS namely: start
and finish deadlines, which are described in more details at
section III.

Many expertsproposed that cloud computing isasolution to
these problems such that each agency can execute its jobs via
thecloud and expand their requirementsbased on thesituation.

The nearest cloud computing definition to our work is given
by [3]:Clouds are a large pool of easily usable and accessible

N. Mehdi, A. Mamat, H. Ibrahim, and S. symban are in the Faculty of
Computer Science and Information Technology, University Putra Malaysia,
Serdang, Selangor, 43400, Malaysia

virtualized resources (such as hardware, development plat-
forms and/or services). These resources can be dynamically
reconfigured to adjust to a variable load (scale), allowing also
for an optimum resource utilization. This pool of resources is
typically exploited by a pay-per-use model in which guaran-
tees are offered by the Infrastructure Provider by means of
customized SLAs. From the above definition, cloud computing
is based on virtualization [4], [5] in its infrastructure which
can be described as an emerging IT paradigm that separates
computing functions and technology implementations from
physical hardware. One of the main reasons that clouds adopt
virtualization is the configurability of Virtual Machine (VM)
[6].

In cloud computing or more precisely in Infrastructure as
a Service (IaaS), each cloud provider has a set of predefined
VMs images and the customer should select one of them for
his job(s). However, the predefine bandwidth of the nominated
VM might be not enough to meet the job start deadline, if it
has huge data to be staged in before execution.

Several VMs can be installed on a physical machine and
share its hardware components. These components can be
CPU, memory, disk storage, or network bandwidth. It can be
looked like a set of independent systems that sharing the same
hardware [7]. While each physical machine has a fixed amount
of bandwidth, each VM should have a share of that bandwidth
to be used for its stage-in and stage-out processes. However,
some VMs might have idle bandwidth if they are busy running
their application. The idle bandwidth can be used while there
is an ability to reconfigure the VMs setting. Some studies
have shown that each VM may consume I/O bandwidth in
unpredictable way [8], [9].

While IaaS builds of the idea of virtualization [10] or VMs
images [11], and there is an ability to change or reconfigure
the VM settings, we can use the idle bandwidth amount to
speed up the stage-in process for the jobs that have critical
start-deadlines or what we can called them impatient jobs.

This paper tackles the problem of insufficient bandwidth
amount specified to a particular VM nominated as the best
executor for impatient job from data location point of view.
This work proposed an algorithm that computes the necessary
bandwidth required to meet the job start deadline. The pro-
posed algorithm maps the jobs with inspiration by Minimum
Completion Time scheduling algorithm (MCT) under cloud
environment. Problem and its formulations are described in
more details in section III.

The main contributions of this work are:
• Divide the VM execution into periods and formulate the

boundaries of these periods (Section III).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

317

• Propose an algorithm that tries to find a donor VM, which
is busy with execution its application(i.e. has finished
stage-in process) to have some of its resources without
overlapping (Section IV).

• Transplant the proposed algorithm in an adopted imme-
diate mode scheduling algorithm and test both algorithms
using cloudsim simulator (Section IV and V).

The reset of this paper is organized as follows: section II
gives the most related work are presented. Section III formsthe
problem in mathematical way and lists its objectives. Section
IV illustrates the system model and the pseudo code of the
proposed algorithm. Experiments and results are shown in
section V while the section VI gives the conclusion and future
work.

II. RELATED WORK

Foster et al. in his paper [12] proposed a model for
predicting time overheads involved in using the VMs. In
their work, they use the suspend/resume/migrate capability
of VMs to support advance reservation. They showed that,
using the suspend/resume/migrate capability of VMs allowed
the advance reservations to be supported efficiently, without
the utilization problems commonly associated with them. They
implemented their work in lease management software called
Haizea that gives better results with this model. Our work
tries to borrow resources (i.e. bandwidth) from running VMs
(i.e. the VMs that are currently busy in their execution). Like
Foster, we have to respect the donor VM by predicting the
execution periods to return back the lended resources.

Kuriakose in his paper [9] presented a command-line tool
for Network bandwidth differentiation in Xen which is used
as a virtualization hypervisor [13] in many cloud provider
like Amazon, GoGrid, Flexiscale, and RightScale. Their tool
xmsetbw can dynamically reconfigure the I/O bandwidth al-
located to a VM to enhance the existing scheduler to offer
weighted fair scheduling requested across VMs. Their exper-
imental evaluation verified the correctness of their tool when
I/O bandwidth is changed dynamically.

This work supports our idea by providing the needed tool
to implement it in real system. A classic VM enables multiple
independent and isolated operating systems to run on one
physical machine, efficiently multiplexing system resources
of the host machine [14]. It provides a secure and isolated
environment for application execution [15]. Compared with
a physical machine, it is highly customizable in terms of
hardware (such as CPU, memory, and disk space) and software
(such as operating system and applications) and can be easily
check pointed and migrated to achieve host load balancing
[16], [17], [18], [19]. Recent technical advances in VM devel-
opment have made adaptive hardware configuration possible.
For example, processors and/or memory can be dynamically
added to or removed from a running system [20], [5]. All
these characteristics make VMs highly manageable resource
containers for applications in utility environments.

Immediate mode job scheduling is the mode of scheduling
the jobs as soon as it received by the system. In other words,
it is the scheduling of impatient jobs or the scheduling of

VIP jobs that have deadline for their executions. Hak Du
Kim and Jin Suk Kim [21] took the problem of scheduling
independent jobs in Grid environment. They proposed an
online scheduling technique and compared it with the other
techniques using simulations. In their research, they did not
take the input/output files in considerations. They based onjob
length (i.e. execution time). Fatos Xhafa et al. [2] considered
the problem of allocation jobs using immediate mode in
grid environment. They implemented five scheduling methods
and used four parameters to measure the performance of
the system; namely, 1) makespan, 2) flow time, 3) resource
utilization and 4) matching proximity. In this paper, they did
not take the data-location in consideration of the scheduling
process. They based on the job execution time.

S. Ghanbari and M. R. Meybodi [22] worked on online
scheduling techniques in computation grids. They proposed
four algorithms for scheduling jobs based on learning au-
tomata.They did a simulation to evaluate the performance of
their system. The four algorithms use the job length as a factor
for Comparison.

III. PROBLEM AND MODEL FORMULATION

We refer to [23], [24], [25], [26] for the proposed system
topology.

Let cloud providerP = {D,V} consists of set of data-
centersD and set of VM imagesV. Virtual machinevq is
described by set of specifications< CPU,RAM,BW, ... > .

Each VM vq is hosted by Physical Machine (PM)pk which
is in turn represents the basic hardware unit of computation
in the datacenter. LetBpk

is the PMpk bandwidth andBvq

denotes the VM bandwidth quota, such thatBpk
≥ Bvq

if VM
vq is hosted by PMpk. The time needed to reconfigure the
bandwidth quota for VMvq is denoted byµ.

Let J is the set of independent dynamic arriving jobs.
Each jobje is described by a set of specifications, such that:
je = {Le, ate, sde, fde, F ine, Foute}, whereLe is the job
length in MIPS,ate is the job arrival time,sde is the job start
deadline,fde is the job finish deadline,Fine is the set of input
files, andFoute is the set of output files. Job deadlines have
two hard constrains and should be respected by the scheduler.
Formally 1)sde ≥ αe which means job execution is useless if
the job starting timeαe is after the deadlinesde; 2) fde ≥ δe,
which ensures to complete the job before its finish deadline
fde whereδe is the job finish time. Now, letje has input size
equal toIe and can be assigned to a beneficiary VMvb that
has bandwidth equal toBvb

. Stage-in proces s depends totally
on the bandwidth and VM storage size. We assume that there
is an enough storage for each VM. It is possible to speed up
the stage-in process by increasing the amount of bandwidth
for the nominated VM.

Let vd denotes the donor VM that has bandwidth equal
to Bvd

and computation capacity equal toSvd
. The required

bandwidth for stage-in process for jobje is computed by 1
while the extra bandwidth amount required forvb is computed
by 2 as shown below.

Btotal =
Ie

sde − CT
(1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

318

 Donor VM stage in/out

Time

0 1 2
3 4

5

 Donor VM Processing Donor VM Configuration

 Beneficiary VM stage in Beneficiary VM Configuration

Fig. 1. Job execution time line

Bneed = Btotal − Bvb
(2)

where Btotal is the best bandwidth amount that can finish the
stage-in process before the job’s start deadline. If Btotal ≤ 0
then it means the time is over and the start deadline can not be
met. CT is the current system time and Bvb

is the predefined
bandwidth quota for VM vb.

The proposed algorithm finds the best VM to borrow some
bandwidth from it for a while. Finding an idle bandwidth
period for the donor VM is the challenge problem. Figure 1
depicts the proposed time line of job execution under VM with
reconfiguration in its bandwidth size. It divides the execution
process to periods each one has a start time as can be seen
from 3 to 8.

τ0 = vd starting time (3)

τ1 = τ0 +
∑

f∈Find

Size(f)

min(Bvd
,Bsrcf)

(4)

τ2 = τ1 + 2 ∗ µ (5)

τ3 = τ2 +
∑

f∈Finb

Size(f)

min(Bvb
+ Bvd

,Bsrcf)
(6)

τ4 = τ1 +
Ld

Svd

(7)

τ5 = τ4 +
∑

f∈Fouti

Size(f)

min(Bvd
,Bdisf)

(8)

The start time is denoted by τ0, which indicates the time
of starting the stage-in phase for the donor VM. The stage-in
phase finishs at time indicated by τ1 that is equal to τ0 plus
the time needed to fetch all the input files as can be seen in
4, where Find denotes the list of input files attached with
the job under the VM vd and Bsrcf is the bandwidth value of
the sites where the input files are located. This time is also
the start time for reconfiguring the bandwidth size process. As
aforementioned, µ is the time needed to reconfigure the donor
VM by decreasing its bandwidth size or beneficiary VM by
increasing its bandwidth size. The finish time of this process
can be seen in 5 that is denoted by τ2. The time needed to
fetch all the input files for the impatient job, which is denoted
by Finb is computed in 6. After fetching all the input files for

the beneficiary VM, the bandwidth sizes should be returned
back to the donor VM. τ3 gives the start time of reconfiguring
the bandwidth sizes. At time τ4, which is computed using 7
everything should return back to its normal. In this time the
donor VM vd finishs execution the job that has length Ld.
The Last time is denoted by τ5 which is the finish time for
the donor VM as can be seen in 8.

The time table of each job is save in a form of tuple r =<
vd, pj , τ0, τ1, τ4, τ5 > in a special data structure called Time
Line Registry table (TLR), which is used later in scheduling
algorithm (section 4.2).

The proposed algorithm generates three events in three
particular times, which are:

1) Lending Event:This event starts working after time τ1
and responsible for lending bandwidth from vd and pass
it to vb.

2) Triggering event:This event starts working at time τ2
and gives the trigger to vb VM to start its stage-in
process.

3) Roll back event:This event starts working at time τ3

and returns the original configurations to its normal (i.e.
to the state of configurations before time τ1).

The objectives of this algorithm can be described as:

• Maximize Virtual Machine Bandwidth Utilization:
This work tries to improve the bandwidth share for each
VM such that it uses the idle period if the VM busy
executing. Bandwidth utilization formula is given in 9.

Uv =
Tv × 100

Bv × ψv

(9)

whereUv is thebandwidth utilization for VM v, andBv is
the bandwidth quota, ψv is the duration which is the VM
life time and it is equal to the VM release time to the VM
creation time, and Tv is the amount of data transferred
during the VM life.

• Maximize Throughput: The number of successful job
execution is called throughput. It is computed using 10.

Throughput =
∑

j∈J

Xj (10)

where Xj is a condition veritable indicates the execution
if the job as shown in 11.

Xj =

{
1, job j has finished execution

0, otherwise
(11)

• Minimize Job Failure ratio: The main objective of
this work is to provide enough resources to meet the
jobs requirements. This objective computes the number
of failed jobs as shown in equation 12.

F =
∑

j∈J

1−Xj (12)

Several constraints have been taken in account with this
work. These are:

1) Bpk
≥

∑
Bvq
∀vq ∈ pk

2) τ0 ≤ τ1 < τ2 = τ1 + µ ≤ τ3 < τ4 = τ3 + µ ≤ τ5

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

319

Fig. 2. System model

3) Ie
Btotal

+ CT + δ ≤ sde
Bandwidth sharing between VMs is formulated in the first
constraint, which means thesummation of allocated bandwidth
to all VMs that are hosted by PM pk should be not more than
thePM bandwidth. Thesecond constraint ensures thesequence
of events while the third constraint ensures the lent bandwidth
is enough to meet the start deadline.

IV. SYSTEM MODEL

Cloud providers use datacenters as an infrastructure to
serve their customers. The proposed model consists of set of
datacenters connected to the internet. Each datacenter has set
of physical machines that areused to host thevirtual machines.
Each set of virtual machines share the amount of bandwidth
of the host physical machine.

The user sends his/her urgent job through cloud broker
to the cloud exchange. The cloud exchange has the list of
cloud providers and their offers and current states that is
updated by the cloud coordinators. The cloud exchange maps
the request to the best cloud provider that can meet the client
QoS requirements.

The proposed algorithm tries to find a donor VM to take
some bandwidth from its share and adds it to the needed VM.
It registers the VM time line that is described earlier in a
registry to be used later by the scheduler. This registry is
updated with each VM creation and leasing.

With each arrival job the algorithm finds the amount of
bandwidth that can staged in its input files within the deadline.
Then it checks the available VMs images to find the suitable
image. If the current VM image has bandwidth amount not
enough to meet the start deadline for the current job, it tries
to lend bandwidth from the available running VMs.

Algorithm 1 illustrates the main steps for the proposed
algorithm. This algorithm at step 1 scans all the received jobs
and tries to map them to resources. Step 2 computes the total
bandwidth needed for the job j to meet its starting constraint.
Step 3 collects the available free (i.e. unused) bandwidth and
named it ϕ. A temporary value minvalue is used to find the
minimum execution time offered from all available virtual
machines. The for loop statement at step 5 scans all the
available VM. Initially it checks if this VM v has an enough
bandwidth for the job j; if so, then go to step 17 and computes

Algorithm 1: Cloud Coordinator Strategy

1 foreach j ∈ J do
2 Btotal ←

Ie

sde−CT−δ
;

3 ϕ← FreeBW (D);
4 minvalue← +∞;
5 foreach v ∈ V do
6 Badded ← Bv;
7 if Bv < Btotal then
8 Badded = 0;
9 if Bv + ϕ < Btotal then

10 foreach e ∈ TLR do
11 if (e.τ1 < CT)and(e.τ4 >

j.τ3)and(Bv + e.Bv ≥ Btotal) then
12 Select e as a donor VM;
13 Badded ← Bv + e.Bv;
14 Break;

15 else
16 Badded ← Bv + ϕ;

17 if Badded > 0 then
18 χin

j,v ←
∑

f∈Fint

Size(f)
min(Badded,Bf)

;

19 χout
j,v ←

∑
f∈Foutt

Size(f)
min(Badded,Bf)

;

20 Pj,v ←
Lj

Svd

;

21 minvalue, v̂ ← min{minvalue,ℜ+ χout
j,v +

χin
j,v + χcode

je,Vk
+ Pj,v};

22 if minvalue 6=∞ then
23 Map j to v̂;
24 Generate the lending event at time CT ;
25 Generate the trigger event at time CT + 2× µ;
26 Generate the roll back event at time j.τ3;

the estimated time to complete. Otherwise, checks if adding
the freebandwidth isenough (step 9); if not then checks all the
running VMsthat haveentries in the time line registry TLR. If
theavailable entry (i.e. VM) issuitable to beadonor VM, then
nominate it. Steps 18-21 computes the job completion time
while step 23 maps the job to the nominated VM if there is
an enough bandwidth for it. Step 24 starts the lending event at
timeCT , which is equal to the job arrival time or τ1 as shown
in 4. The stage-in process for job j is triggered after 2 × µ
from the CT as shown in step 25. Last events is the rollback
event, which is starts at time j.τ3 and explained formally in
6.

This algorithm calculates the completion time for each job
on each VM imageand assigns the job to theVM that gives the
earliest completion time. This algorithm uses (13) to estimate
the total time needed to finish executing a job on a selected
virtual machine.

FTje,Vk
= χ

in
je,Vk

+ χ
code
je,Vk

+ ℜ+ Pje,Vk
+ χ

out
je,Vk

(13)

whereχin
j,v represents the timeneeded to fetch all thenecessary

input files for the job j from the sources to the nominated
VM v. χcode

j,v denotes the time needed to fetch the application

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

320

code to the nominated VM v. Each virtual machine needs a
particular time for installing, booting, and loading. This time
is represented in ℜ. Job execution time, which is equal to
job length divided by VM speed is represented by Pj,v. χout

j,v

represents the time needed to send all the output files for the
job j to their destinations.

This algorithm has been improved to keep pace with the
significant growth in jobs data by taking the application, input
and output files locations in account. VM ready time is added
to total completion time to fit the characteristics of intercloud
paradigm.

V. PERFORMANCE EVALUATION

In the absence of real traces from real cloud providers,
we generate the input workload randomly. Casazza et al.
[27] present a workload methodology to characterize the
performance of servers exploiting virtualization technologies
to consolidate multiple physical servers. They combine the
workload of web server, an email server, and a database ap-
plication to reflect the variation of application that can be run
on cloud computing. We generate synthetic data distributions
workload as we now describe.

As described in section III, we assume a certain number of
users, jobs, and cloud providers. Jobs workload are selected
randomly [28] with uniform distribution between 500 MB to
2000 MB. Each job has set of input and output files selected
randomly between 1 and 6. Job length is a function to the
total input size for 300D if we assume D is the total input
size. Simulation is the process of imitation of the real system.
Because of the difficulty in testing the proposed system in
a real system, a simulation evaluation has been conducted
on four datasets. CloudSim [29] is a discrete event simulator
that is used to simulate cloud environments. Cloudsim has the
ability to create data centers, virtual machines and physical
machines and configure system brokers, system storage, etc.
The proposed algorithm has been tested and evaluated on the
two real datasets.

Table I specifies the simulation parameters used for our
study. Two performance metrics have been used to evaluate
the proposed model. Virtual machine bandwidth utilization is
computed using 9. It computes the percentage of utilizing VM
bandwidth.

TABLE I
CLOUDSIM CONFIGURATIONS

Item Value
Number of data centres 14

Number of VM 100
Number of CPU/VM 1

CPU Speed/VM 1Ghz, 2GHz, 2.5GHz, 3GHz
Number of jobs 100,200,300,400,500

Several experiments have been done to test the impact of
the proposed system on executing impatient jobs under cloud
paradigm.

The first set of experiments using the cloudsim simulator
is done to evaluate the impact of the proposed algorithm on
bandwidth utilization.

Fig. 3 depicts Virtual Machine Average bandwidth Uti-
lization (VMAU) with bandwidth lending and without. The
variety in datasets sizes allows the experiments to evaluate the
system with multiple loads. This figure depicts the bandwidth
utilization for the VMs that finish execution their jobs or in
another words for the jobs that meet their requirements. As
discussed earlier, the job size is a function to the size input
files and while we assumed the current jobs are huge in data
size, we can see the utilization is low. This is because of the
most of the time is spent in execution while the bandwidth
is idle. The same reason can explain the small difference in
bandwidth utilization when the lending algorithm is active. In
the same figure, there are some experiments have very small
difference in bandwidth utilization for example in dataset with
job number 5, 70, 200. Thereason is the random generation for
the jobs does not give many job in need for high bandwidth.

Fig. 3. Virtual Machine Average Bandwidth Utilization

Fig. 4 depicts the number of jobs that failed in finding
proper VM. The generation of datasets are done to have a
ratio of urgent jobs. This figure depicts the same number of
experiments that are done on the previous figure. It is quite
clear to see the difference in number of failed jobs. In the
ordinary mapping system (i.e. the mapping without bandwidth
lending) many jobs fail to find theproper VM that can meet the
requirement. The proposed algorithm checks the start deadline
and then the finish deadline of the each job by estimating the
data transfer time and the job execution time. For the failed
jobs, either they do not meet the start deadline or the finish
deadline.

From the figure, its quite clear to see that the number
of failed jobs increases as the number of jobs in each set
increases. This is because of increase the number of jobs that
need fast attention.

In the same figure, it is possible to see some failure even
while the bandwidth lending algorithm is active. This is
because of a small limitation in the proposed algorithm. The
algorithm needs some VM in running state to borrow or lend
bandwidth from them. So, in the random generation, if the
impatient jobs came in the beginning which means they have
the nearest arrival time. The algorithm cannot find a donor
VM to lend bandwidth from it.

Fig. 5 shows the throughput of each dataset. Actually,
the throughput is the reflection of number of job failure. It
is computed using equation 10. In this figure, its clear to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

321

Fig. 4. Number of failed jobs

see the improvement in the number of job execution. As
aforementioned in thepreviousparagraph, there issomefailure
even in the lending algorithm and again this is because of
the random generation which put the impatient jobs in the
beginning.

Fig. 5. Total System Throughput

VI. CONCLUSION

In this paper, a bandwidth lending algorithm is proposed.
The algorithm takes the impatient jobs as its scope and tries to
allocate more bandwidth than the predefine size for each VM
to speed up the stage-in process which implies to meet their
QoS requirements. This algorithm divides the job execution
time into periods and tries to predict the best VM that can
donor itsbandwidth while it isbusy with execution. Simulation
is done on two real datasets to test the performance of the
proposed algorithm that is compared with adopted algorithm
to cloud environment. The results show that BWLMCT can
provide better system performance if the jobs have restrict
and hard deadlines.

Future work is going on to improve the proposed algorithm
by allowing it to check more than one virtual machine simulta-
neously. Current pricing methods are not fair with this method
for both sides: the donor and the recipient.

REFERENCES

[1] M. J. Kronfeld, “Experts believe cloud computing will enhance disaster
managemen,” GSN: Government Security News, pp. 34–39, 2010.

[2] F. Xhafa and A. Leonard, “ Immediate mode scheduling of independent
jobs in computational grids,” in 21st International Conference on Ad-
vanced Information Networking and Applications, 2007. AINA’07, 2007,
pp. 970–977.

[3] L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[4] M. Kesavan, A. Ranadive, A. Gavrilovska, and K. Schwan, “Active
CoordinaTion (ACT)-toward effectively managing virtualized multicore
clouds,” in Cluster Computing, 2008 IEEE International Conference on.
IEEE, 2008, pp. 23–32.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems
principles. ACM, 2003, p. 177.

[6] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE’08. Ieee, 2008, pp. 1–10.

[7] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Run-
ning commodity operating systems on scalable multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 412–447,
1997.

[8] D. Ongaro, A. Cox, and S. Rixner, “Scheduling I/O in virtual machine
monitors,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments. ACM, 2008,
pp. 1–10.

[9] K. Mathew, P. Kulkarni, and V. Apte, “Network bandwidth configuration
tool for xen virtual machines,” in Communication Systems and Networks
(COMSNETS), 2010 Second International Conference on, jan. 2010, pp.
1 –2.

[10] V. Manetti, P. Di Gennaro, R. Bifulco, R. Canonico, and
G. Ventre, “Dynamic virtual cluster reconfiguration for efficient
iaas provisioning,” in Proceedings of the 2009 international
conference on Parallel processing, ser. Euro-Par’09. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 424–433. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1884795.1884844

[11] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,
“Scientific cloud computing: Early definition and experience,” High
Performance Computing and Communications, 10th IEEE International
Conference on, vol. 0, pp. 825–830, 2008.

[12] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Resource
leasing and the art of suspending virtual machines,” in 2009 11th
IEEE International Conference on High Performance Computing and
Communications. IEEE, 2009, pp. 59–68.

[13] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC. IEEE, 2009, pp. 44–51.

[14] R. Goldberg, “Survey of virtual machine research,” IEEE Computer,
vol. 7, no. 6, pp. 34–45, 1974.

[15] R. Figueiredo, P. Dinda, and J. Fortes, “A case for grid computing
on virtual machines,” in 23rd International Conference on Distributed
Computing Systems, 2003. Proceedings, 2003, pp. 550–559.

[16] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, p. 286.

[17] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, and M. Rosen-
blum, “Optimizing the migration of virtual computers,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 377–390, 2002.

[18] M. Kozuch and M. Satyanarayanan, “ Internet suspend/resume,” 2002.
[19] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and

gray-box strategies for virtual machine migration,” in Proc. Networked
Systems Design and Implementation, 2007.

[20] S. Pinter, Y. Aridor, S. Shultz, and S. Guenender, “ Improving machine
virtualisation with’hotplug memory’ ,” International Journal of High
Performance Computing and Networking, vol. 5, no. 4, pp. 241–250,
2008.

[21] H. Kim and J. Kim, “An online scheduling algorithm for grid computing
systems,” Grid and Cooperative Computing, pp. 34–39, 2004.

[22] S. Ghanbari and M. Meybodi, “On-line mapping algorithms in highly
heterogeneous computational grids: A learning automata approach,” in
International Conference on Information and Knowledge Technology
(IKT05), 2005.

[23] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm comparisons
and some thoughts on research issues,” in 2008 IEEE Asia-Pacific
Services Computing Conference. IEEE, 2008, pp. 464–469.

[24] D. Bernstein and D. Vij, “Using XMPP as a transport in Intercloud
Protocols.” submitted to 2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud’10), for publication June, 2010.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

322

[25] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M.Morrow,
“Blueprint for the Intercloud-Protocols and Formats for Cloud Comput-
ing Interoperability,” inProceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services-Volume 00.
IEEE Computer Society, 2009, pp. 328–336.

[26] R. Buyya, R. Ranjan, and R. Calheiros, “InterCloud: Utility-Oriented
Federation of Cloud Computing Environments for Scaling of Application
Services,”Algorithms and Architectures for Parallel Processing, pp. 13–
31, 2010.

[27] J. Casazza, M. Greenfield, and K. Shi, “Redefining serverperformance
characterization for virtualization benchmarking,”Intel Technology Jour-
nal, vol. 10, no. 3, pp. 243–251, 2006.

[28] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,”in 11th IEEE
International Symposium on High Performance Distributed Computing,
2002. HPDC-11 2002. Proceedings, 2002, pp. 352–358.

[29] R. Calheiros, R. Ranjan, C. De Rose, and R. Buyya, “CloudSim: A
Novel Framework for Modeling and Simulation of Cloud Computing
Infrastructures and Services,”Arxiv preprint arXiv:0903.2525, 2009.

