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Abstract—In this paper, we propose novel algorithmic models 

based on information fusion and feature transformation in cross-
modal subspace for different types of residue features extracted from 
several intra-frame and inter-frame pixel sub-blocks in video 
sequences for detecting digital video tampering or forgery. An 
evaluation of proposed residue features – the noise residue features 
and the quantization features, their transformation in cross-modal  
subspace, and their multimodal fusion, for emulated copy-move 
tamper scenario shows a significant improvement in tamper detection 
accuracy as compared to single mode features without transformation 
in cross-modal subspace. 

Keywords—image tamper detection, digital forensics, correlation 
features image fusion 

I.  INTRODUCTION  
IGITAL image tampering or forgery has become major 
problem lately, due to ease of artificially synthesizing 
photographic fakes - for  promoting a story by media 

channels and social networking websites. This is due to 
significant advances in computer graphics and animation 
technologies, and availability of low cost off-the-shelf digital 
image manipulation and cloning tools. With lack of proper 
regulatory frameworks and infrastructure for prosecution of 
such evolving cyber-crimes, there is an increasing 
dissatisfaction about increasing use of such tools for law 
enforcement, and a feeling of cynicism and mistrust among the 
civilian operating environments.  

Another problem this has lead to, is a slow diffusion of 
otherwise extremely efficient image based surveillance and 
identity authentication technologies in real-world civilian 
operating scenarios. In this paper we propose a novel 
algorithmic framework for detecting image tampering and 
forgery based on extracting noise and quantization residue  
features, their transformation in cross-modal subspace and their 
multimodal fusion for the intra-frame and inter-frame image 
pixel sub blocks in  video sequences. The proposed algorithmic 
models allow detecting the tamper or forgery in low-bandwidth 
video (Internet streaming videos), using  blind and passive 
tamper detection techniques and attempt to model the source 
signatures embedded in camera pre-processing chain. By 
sliding segmentation of image frames, we extract intra-frame 
and inter-frame pixel sub-block residue features, transform 
them into optimal cross-modal subspace, and perform 
multimodal fusion to detect novel and evolving image 
tampering attacks, such as JPEG double compression, re-
sampling and retouching.    
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The promising results presented here can result in the 
development of digital image forensic tools, that can help 
investigate and solve evolving cyber crimes. Digital image 
tamper detection can use either active tamper detection 
techniques or passive tamper detection techniques. A 
significant body of work, however is available on active tamper 
detection techniques, which involves embedding a digital 
watermark into the images when the images are captured. The 
problem with active tamper detection techniques is that not all 
camera manufacturers embed the watermarks, and in general, 
most of the customers have a dislike towards cameras which  
embed watermarks due to compromise in the image quality.  
So there is a need for passive and blind tamper detection 
techniques with no watermark embedded in the images. 
Passive and blind image tamper detection is a relatively new 
area and recently some methods have been proposed in this 
area. Mainly these are of two categories [1,2,3,4]. Fridrich [4] 
proposed a method based on hardware aspects,  using the 
feature extracted from photos. This feature called sensor 
pattern noise is due to the hardware defects in cameras, and the 
tamper detection technique using this method resulted in an 
accuracy of 83% accuracy. Chang [5] proposed a method based 
on camera response function (CRF), resulting in detection 
accuracy of 87%, at a  false acceptance rate (FAR) of 15.58%. 
Chen et al. [6] proposed an approach for image tamper 
detection based on a natural image model, effective in 
detecting the change of correlation between image pixels, 
achieving  an accuracy of 82%. Gou et al [7] introduced a new 
set of higher order statistical features to determine if a digital 
image has been tampered, and reported an accuracy of 71.48%.  
Ng and Chang [8] proposed bi-coherence features for detecting 
image splicing. This method works by detecting the presence 
of abrupt discontinuities of the features and obtains an accuracy 
of 80%. Popescu and Farid [3] proposed different CFA (colour 
filter array) interpolation algorithms within an image, reporting 
an accuracy of 95.71% when using a 5x5 interpolation kernel 
for two different cameras.  

A more complex type of passive tamper detection technique, 
known as “copy-move tampering” was  investigated by 
Bayram, Sencar, Dink and Memon [1,2] by using low cost 
digital media editing tools such as Cloning in Photoshop. This 
technique usually involves covering an unwanted scene in the 
image, by copying another scene from the same image, and 
pasting it onto the unwanted region. Further, the tamperer can 
use retouching tools, add noise, or compress the resulting 
image to make it look genuine and authentic. Finally, detecting 
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tampers based on example-based texture synthesis scheme was 
proposed by Criminisi  et al[9] that is based on filling  in a 
region from sample textures. It is one of the state-of-the-art 
image impainting or tampering schemes. In a typical crime 
investigation scenario, when there is a suspicion over 
authenticity of the photo or video footage, the procedure 
followed by law enforcement agencies is to ask the 
photographer to turn in the camera by which the photo was 
taken. Then using the images captured by the camera and the 
images under suspicion, the camera source features (camera 
response function for example) get extracted, and using the 
statistics of the feature pattern, the two image sources are 
compared. However, the success of this approach relies on 
availability of camera source model for comparison, and 
establishing the possible tampering by comparison. Firstly, this 
is not quite a blind and passive tamper detection approach, and 
secondly, availability of reference model (camera source) is not 
possible in low-bandwidth Internet streaming scenario, where 
the tamperer leaves no trace of original source, and only 
tampered or forged video is available.We propose a novel 
approach to deal with such tamper situations. The approach is 
based on detecting the tamper from the multiple image frames, 
by extracting noise and quantization residue features in intra-
frame and inter-frame pixel sub blocks, transforming them into 
cross-modal subspace to extract the correlation properties, and 
establish possible tampering of video. The approach is blind 
and passive, and is based on the hypothesis, that a typical 
tampering attacks such as double compression, re-sampling and 
retouching can inevitably disturb the correlation properties of 
the pixel sub-blocks within a frame (intra-frame) as well as 
between the frames (inter-frame) and can distinguish the  
fingerprints or signatures of genuine video from tampered 
video frames.The rest of the paper is organized as follows. 
Next Section describes the basic imaging pipeline used in 
digital cameras, and the source features that can leave a 
fingerprint on the image frames. If a tamper is attempted, the 
correlation distribution between intra-frame and inter-frame 
pixel blocks does not remain intact, giving clues about 
tampering. Section 3 describes the modeling of intra-frame and 
inter-frame features for extracting the feature correlation 
statistics. The proposal for multimodal fusion of the extracted 
features is described in Section 4. The details of the 
experimental results for the proposed algorithmic models are 
described in Section 5. The paper concludes in Section 6 with 
some conclusions and plan for further work. 

II. CAMERA PROCESSING PIPELINE 
The processing pipeline once the images or video is captured 

is shown in Fig.1. First, the camera sensor (CCD) captures the 
natural light passing through the optical system Generally, in 
consumer digital cameras, every pixel is detected by a CCD 
detector, and then passed through different colour filters called 
Color Filter Array (CFA). Then CFA interpolation is used to 
fill in the missing pixels. Finally, operations such as 
demosaicing, enhancement and gamma correction are applied 
by the camera, and converted to a user-defined format, such as 
RAW, TIFF, and JPEG, and stored in the memory. 

 
Fig. 1 Camera processing pipeline 

Since the knowledge about the source and exact processing 
(details of the camera) used is not available for application 
scenarios considered in this work (low-bandwidth Internet 
streaming video), which may not be authentic and already 
tampered, we extract a set of residual features for pixel sub-
blocks within the frame and between adjacent frames from the 
video sequences. These residual features try to model and 
extract the fingerprints for source level processing within any 
camera, such as denoising, quantization, compression, contrast 
enhancement, white balancing, image sharpening etc. In this 
work, we use only two types of residual features: noise residue 
features and quantization residue features. An example how 
noise residue features can be extracted from intra-frame and 
inter-frame pixel sub-blocks is shown in Figure 2 and Figure 3 
below.In the first step, the noise residue of each video frame is 
extracted by subtracting the original frame from its noise-free 
version over a sliding window pixel sub-block. The wavelet 
denoising filter proposed in [13] is used to obtain the noise-free 
image. 
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Fig. 2 Extraction of noise residue features 

 
Fig. 3 Extraction of intra-frame and inter-frame pixel sub-block noise 

residue features 
 
 

In the second step, the inter-frame noise residue features are 
obtained by partitioning each video frame into non-
overlapping blocks of size N × N. The correlation of the noise 
residue between the same spatially indexed blocks (inter-
frame blocks) of two consecutive frames is then computed as 
illustrated in Fig 3.Similar approach is used for extracting 
inter-frame and intra-frame pixel sub-block features 
corresponding to quantization residue features. A Gaussian 
Mixture Model (GMM) is trained with above mentioned 
residue features for different video sequences. To test the 
tamper detection ability, we emulated a copy-move tamper 
attack by re-painting some of the pixel sub-blocks within same 
frames. The correlation relationship between the intra-frame 
and inter-frame pixel sub-blocks was extracted by 
transforming the residue features in cross-modal (correlation) 
sub-space. The feature transformation in the cross-modal 
space allows detecting the variation in correlation properties 
between different pixel sub-blocks and localizes the tamper 
zones. Further, to address the situation that images might have 
undergone multiple tamper processes to make it look authentic 
and genuine, a multimodal fusion of intra-frame and inter-
frame residual features in cross-modal subspace was 
performed. The details of extracting residue features in cross-
modal sub-space and their multimodal fusion is described in 
next two Sections. 
 

 

III. RESIDUE FEATURES IN CROSS-MODAL SUBSPACE 
Different residue features described in the previous Section 

were first extracted from 32 x 32 pixel intra-frame and inter-
frame pixel sub-blocks of the video sequences, These features 
were then transformed into cross-modal subspace by 
performing three different types of correlation processing. 
They are the Latent Semantic Analysis (LSA), the Cross-
modal Factor Analysis (CFA), and the Canonical Correlation 
Analysis (CCA).  The details of these subspace methods is 
given below:  

A. Latent Semantic Analysis 
Latent semantic analysis (LSA) technique is  more popular 

in text information retrieval area, and is used to discover 
underlying semantic relationship between different textual 
units (.e.g. keywords and paragraphs) [10]. It is possible to 
detect the semantic correlation between inter-frame and intra-
frame pixel sub-blocks using LSA technique. The analysis in 
this method comprises three major steps: the construction of a 
joint intra-frame and inter-frame pixel sub-block feature 
space, the normalization, the singular value decomposition 
(SVD), and the semantic association measurement. Given n 
inter-frame features and m inter-frame features for each of the 
t pixel sub-blocks of size 32 x 32 pixels, the joint feature space 
can be expressed as: 

],,,,,,,,[ 11 mini AAAVVVX KKKK= , where (1) 
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 Various intra-frame and inter-frame pixel sub-blocks can 

have quite different variations. By normalizing each feature 
according to its maximum elements (or certain other statistical 
measurements), the features can be expressed as: 
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All the elements in normalized matrix have values between 

–1 and 1 after normalization, and the SVD (Singular Value 
Decomposition) can then be performed as follows: 

 
TDVSX ..ˆ =     (5) 

 
where S and D are matrices composing of left and right 

singular vectors and V is diagonal matrix of singular values in 
descending order. It is possible to derive an optimal 
approximation of X̂ with reduced feature dimensions, by 
keeping only the first and most important k singular vectors in 
S and D, and thus the semantic information between intra-
frame and inter-frame pixel sub blocks can be mostly 
preserved. 
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B. Cross-Modal Factor Analysis 
In this approach intra-frame and inter-frame pixel sub-

blocks are treated as two separate subsets, and under the linear 
correlation model, the problem is to find the optimal 
transformations that can best represent the correlated patterns 
between the features of the two different subsets.  
One can use the following optimization criteria for obtaining 
the optimal transformations for the CFA technique: Assuming 
two subsets of features have been used for constructing two 
mean-centered matrices X and Y, orthogonal transformation 
matrices A and B that can minimise the expression can be 
shown as: 
 

2

F
YBXA −      

(6) 

  
 

  where F
M  denotes the Frobenius norm of the matrix M 

and can be expressed as: 
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The matrices A and B in Equation (1) define two orthogonal 
sub spaces where coupled data in X and Y can be projected as 
close to each other as possible. 
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where the trace of a matrix can be expressed as the sum of the 
diagonal elements. It can be observed that matrices A and B 
which maximise trace (XABTYT) will minimise the equation 
above. We can show that such matrices are represented by: 
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Once the optimal transformation matrices A and B are 
determined as in Equation (4), the transformed version of X 
and Y can be calculated as follows: 
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The coupled relationships between the two feature subsets can 
be represented by corresponding vectors in X~ and Y~ . One 

can find the first and most important k corresponding vectors 
in X~ and Y

~
using conventional Pearson correlation or mutual 

information calculation [15], facilitating the principal coupled 
patterns in much lower dimensions to be preserved. The CFA 
technique thus provides two advantages: reduction in feature 
dimension, as well as feature selection capability. 
C. Canonical Correlation Analysis 

A different optimization technique is used for Canonical 
Correlation Analysis (CCA) method. For the CCA method, the 
transformation matrices A and B are obtained by maximising 
the correlation between XA and XB, instead of minimizing the 
projected distance Following mathematic formulation can be 
used to describe this technique.The two matrices A and B can 
be obtained from two mean centred matrices X and Y such 
that: 

),(
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where ,.~ BYX = and 0,,,,1 1 ≥≥≥≥ li σσσ LL . iσ  
represents the largest possible correlation between the ith 

translated features in   X~ and Y~ . The CCA analysis is 
described in further detail in [11]. Next Section describes the 
multimodal fusion protocol used for combining different 
correlation residue features. 

 

IV. MULTIMODAL FUSION OF RESIDUE CORRELATION 
FEATURES 

Before In this Section, we describe the multimodal fusion 
protocol used for combining different types of residue features 
and transformed features in cross-modal subspace (described 
in Section II and Section III) for intra-frame and inter-frame 
pixel-sub-blocks. From preliminary experimentation, we 
found that not all pixel sub-blocks are identically correlated. 
Some are highly correlated, some are loosely correlated, and 
some are mutually independent. So we extract different 
correlation components between pixel sub-blocks using 
different algorithms.  The algorithm for extracting highly 
correlated components and feature fusion of these components 
is described now. 

A. Feature Fusion of Highly Correlated Components 
Let fA and fL represent the noise residue features based on 

principal component analysis of intra-frame and inter-frame 
pixel sub-blocks. Let A and B represent the correlation 
transformation matrices. One can apply LSA, CCA or CFA to 
find two new feature sets 

A
T

A fAf ='  and 
L

T
L fBf ='  such 

that the between-class cross modal association coefficient 
matrix of '

Af  and '
Lf  is diagonal with maximised diagonal 

terms. However, not all the diagonal terms exhibit strong 
cross-modal association. Hence, we can pick the maximally 
correlated components that are above a certain correlation 
threshold θ. If we denote the projection vector that 
corresponds to the diagonal terms larger than the threshold θ 
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by Aw~  and Lw~ . Then the corresponding projections of fA and fL 
are given as: 
 

 

A
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=                                                          (12) 
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=                                                          (13) 

  
  

Here Af~ and Lf~  are the correlated components with high 
correlation, that are embedded in Af  and Lf . By performing 
feature fusion of highly correlated intra-frame and inter-frame 
components corresponding to noise residue features, we obtain 
the optimized feature fused vector in the cross-modal 
subspace: 

 

[ ]LAAL fff ~~~
=                                              (14) 

B. Score (Level) Fusion of Mutually Independent  
Components 

Assuming statistically independent modalities, late fusion 
or score fusion can be performed using the product rule. 
Several other methods have been proposed in the literature on 
Bayesian fusion [12] as options to product rule, including the 
max rule, the min rule and the RWS reliability-based weighted 
summation rule. We can compute joint scores as a weighted 
summation: 
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The Eqn. 15 is equivalent to product rule, with )( rn λρ  as 
the logarithm of the class-conditional probability )( rnfP λ  

for the nth modality, with class rλ , and nw denoting the 
weighting coefficient for modality n, such that 1=Σ nn w . 
Note that when n

N
w n ∀=

1 . This fusion protocol can also 

be described as RWS (Reliability Weighted Summation) rule 
[12,14], since the wn values can be regarded as the reliability 
values of the classifiers. There could be significant variation 
from one classifier to another in terms of statistical and 
numerical range. By using sigmoid and variance normalization 
[14], the likelihood scores can be normalized to be within the 

(0, 1) interval before the fusion process. The composite fusion 
vector is finally obtained by late(score) fusion of feature fused 
highly correlated components (

ALf~ ) with correlated and 
mutually independent noise residue features extracted from 
intra-frame and inter-frame image sub-blocks with weights 
selected using RWS rule.  

V. AUTOMATIC WEIGHT ADAPTATION 
We investigated an automatic weight adaptation technique 

in addition to RWS rule (where the fusion weights are chosen 
empirically). For automatic weight adaptation, a mapping was 
developed between an intra-frame reliability estimate and the 
modality weightings. As shown in Eqn. 16 and 17, the late 
fusion scores can be fused via addition or multiplication. The 
additive fusion technique has been shown to be more robust to 
classifier errors [12, 14], and should perform better when the 
fusion weights are determined automatically, rather than on an 
empirical basis. Prior to late fusion, all scores were normalized 
to fall into the range of [0, 1], using min-max normalisation. 
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where xA and xV refer to the intra-frame pixel sub block test 
utterance and inter-frame pixel sub block test sequence 
respectively. 

For  automatic fusion, that adapts to varying noise 
conditions, a single parameter c,  the fusion parameter, is used 
to define the weightings; the intra-frame pixel sub-block 
weight α and the inter-frame pixel sub-block weight β, i.e., 
both α and β dependent on c. Fig. 4 and Eqn. 17 show how the 
fusion weights, α and β, depend on the fusion parameter c. 
Higher values of c (>0) place more emphasis on the intra-
frame module whereas lower values (<0) place more emphasis 
on the inter-frame module. For c ≥ 1, α = 1 and β = 0, hence 
the fused decision is based entirely on the intra-frame pixel 
sub block likelihood score, whereas, for c ≤ -1, α = 0 and β = 
1, the decision is based entirely on the inter-frame pixel sub-
block likelihood score. So by adapting c varying noise 
conditions can be accounted.  
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Fig. 4 The module weightings versus the fusion parameter “c” 
 

The intra-frame likelihood score )( rn λρ was used as a 
reliability measure in our study. As the intra-frame SNR 
decreases, the absolute value of reliability measure decreases, 
and becomes closer to threshold for likelihoods corresponding 
to genuine images in the test phase. Under clean test 
conditions, this reliability measure increases in absolute value 
because the genuine image model yields a more distinct score. 
So, a mapping between ρ and c can automatically vary α and β 
and hence place more/less emphasis on the intra-frame scores. 
The mapping function c(ρ) was obtained, and the values of c  
which provided for optimum fusion, copt, were found by 
exhaustive search for the N tests at each SNR levels. This was 
done by varying c from –1 to +1, in steps of 0.01, in order to 
find out which c value yielded the best performance. The 
corresponding average reliability measures were calculated, 
ρmean, across the N test utterances at each SNR level. Figure 4 
shows the module weightings versus the fusion parameter “c”. 
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A sigmoid function was employed to provide a mapping 

between the copt and the ρmean values, where cos and ρos 
represent the offsets of the fusion parameter and reliability 
estimate respectively; h captures the range of the fusion 
parameter; and d determines the steepness of the sigmoid 
curve. 

VI. EXPERIMENTAL RESULTS 
The video sequence data from Internet streamed movies 

was collected and partitioned into separate subsets based on 
different actions and genres. Figure 5 shows screenshots 
corresponding to different actions, along with emulation of 
copy move tampered scenes and the detection of tampered 
regions with the proposed approach. 

 
 

Fig. 5 Row 1: Screenshots from Internet streamed video sequences; 
Row 2: Copy-move tamper emulation for the scene ; Row 3: 

Detection of tampered regions in the scene 
Different sets of experiments were conducted to evaluate 

the performance of the proposed residue features in correlation 
sub-space and their fusion in terms of tamper detection 
accuracy. The experiments involved a training phase and a test 
phase. In the training phase a Gaussian Mixture Model for 
each video sequence from data base was constructed. In the 
test phase, copy-move tamper attack was emulated by 
artificially tampering the training data. The tampered 
processing involved copy cut pastes of small regions in the 
images and hard to view affine artefacts. Two different types 
of tampers were examined. An intra-frame tamper, where the 
tampering occurs in some of the pixel sub-blocks within the 
same frame, and inter-frame tamper, where pixel sub-blocks 
from adjacent frames were used. However, in this paper, we 
present and discuss results for the intra-frame tamper scenario 
only. Figure 5 shows some sample results for intra-frame 
tamper scenario. As can be seen from Table 1 and Table 2, 
which show the tamper detection results in terms of % 
accuracy, the performance of ordinary features fusion of both 
noise residue and quantization residue features can be 
enhanced by feature transformation in cross-modal subspace 
and their multimodal fusion. For the feature fusion of the 
highly correlated components erpraf intint

~
−

, the accuracy 

improves from 84. 3% to 85.2% for CFA analysis for noise 
residue features. Since each frame also carries mutually 
independent information in pixel sub-blocks, the overall 
performance can be enhanced with composite fusion, with an 
optimal combination of the feature-level and the score level 
fusion of feature vectors from intra-frame, inter-frame and 
transformed intra and inter-frame  pixel sub-blocks in cross-
modal subspace.  For the feature fusion of the highly 
correlated components erpraf intint

~
−

, the accuracy improves 

from 84. 3% to 85.2% for CFA analysis for noise residue 
features. Since each frame also carries mutually independent 
information in pixel sub-blocks, the overall performance can 
be enhanced with hybrid fusion, with an optimal combination 
of the feature-level and the score level fusion of feature 
vectors from intra-frame, inter-frame and transformed intra 
and inter-frame  pixel sub-blocks in cross-modal subspace.  
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TABLE I 
EVALUATION OF NOISE RESIDUE FEATURES FOR EMULATED COPY-MOVE  

TAMPER ATTACK (% ACCURACY);  (RESIDUE FEATURES WITH CROSS-MODAL 
TRANSFORMATION);  (RESIDUE FEATURES WITHOUT CROSS-MODAL 

TRANSFORMATION) 
Internet streamed movie 

data subset 
% Accuracy  

Residue Features in Cross-
Modal Subspace 

CFA   CCA LSA  

 

Intraf  85.2 85.2 85.2 

Interf  83.8 83.8 83.8 

InterIntraf −  83.8 82.13 77.53 

InterIntraf −
~

 82.18 84.82 81.91 

Intraf + InterIntraf −  89.7 89.7 89.7 

Intraf + InterIntraf −  90.68 90.86 89.29 

Intraf + Interf + InterIntraf −  90.26 90.26 90.26 

Intraf + Interf + InterIntraf − + 

~

InterIntraf −  

92.06 91.85 91.22 

 
Also, with the noise residue features, the hybrid fusion 

involving late fusion of intra-frame features with feature-level 
fusion of highly correlated intra and inter-frame features based 
on CFA analysis yields a best accuracy of 92.06 %. Similar 
improvement in tamper detection accuracy was observed for 
different combinations of highly correlated component and 
independent component fusion for the quantization residue 
features.For both feature sets, around 22% improvement in 
accuracy was achieved with inclusion of highly correlated 
components (CMA-transformed) features), and the subsequent 
multimodal fusion as compared to use of uncorrelated 
component fusion. It can also be noted that all the multimodal 
composite fusion modes (last four rows in Table 1 and last 2 
rows in Table 2) resulted in synergistic fusion, with the % 
accuracy better than baseline intra-frame only and inter-frame 
only accuracies of 83.8% and 85.2% for noise residue features 
and 82.86% and 84.3 % for the quantization residue features. 

TABLE II 
(% ACCURACY) PERFORMANCE FOR NOISE AND QUANTIZATION RESIDUE 

FEATURES FOR BEST PERFORMING FEATURES IN CROSS-MODAL SUBSPACE 
% Accuracy  

 

Noise 

Residue 

Features 

Quantization 

Residue 

Features 

Different Residue features 
and their fusion 

CFA features  CFA features 

 

Intraf  85.2 84.3 

Interf  83.8 82.36 

InterIntraf −  83.8 81.1 

InterIntraf −
~

 82.18 84.19 

Intraf + InterIntraf −  89.7 88.12 

Intraf + InterIntraf −  90.68 89.79 

Intraf + Interf +

InterIntraf −  

90.26 89.46 

Intraf + Interf +

InterIntraf − + InterIntraf −
~

 

92.06 90.23 

 

VII. CONCLUSIONS  
In this paper, we present results of an investigation on a 

novel approach for video tamper detection in low-bandwidth 
Internet streamed videos using residue features from intra-
frame and inter frame pixel sub-blocks, their transformation in 
cross-modal subspace and the subsequent multimodal fusion, 
The evaluation of two different residue features, the noise and 
the quantization residue features for emulated copy-move 
tamper scenario show the potential of proposed blind and 
passive tamper detection approach for applications where the 
establishing the identity of the camera source is not available. 
The feature transformation of residue features in  cross-modal 
subspace and their subsequent multimodal fusion of intra-
frame and inter-frame features models the camera source 
signatures and allows blind and passive tamper detection. An 
accuracy of around 92% was achieved for multimodal fusion 
of residue features transformed in cross-modal subspace, an 
improvement of around 22% compared to fusion without 
transformation in the cross-modal subspace. The performance 
for quantization residue features for all the experiments was 
quite close to noise residue features. Further work involves 
modelling and feature extraction of other source signatures 
from image sequences and testing with low bandwidth Internet 
streamed video sequence with multiple tamper attacks. 

REFERENCES 
[1] S. Bayram, H. T. Sencar, and N. Memon, An Efficient and Robust 

Method For Detecting Copy-Move Forgery. IEEE International 
Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, 
Taipei Taiwan, June 2009. 

[2] A. E. Dirik and N. Memon, Image Tamper Detection Based on 
Demosaicing Artifacts. IEEE ICIP 09, November 2009, Cairo Egypt. 

[3] Alin C .Popescu and Hany Farid, “Exposing Digital Forgeries by 
Detecting Traces of Re-sampling”,IEEE Transactions on signal 
processing ,Vol. 53,No.2,February 2005 . 

[4] Jessica Fridrich, David Sukal and Jan Lukas, “Detection of Copy-Move 
Forgery in Digital Images”, 
http://www.ws.binghamton.edu/fridrich/Research/copymove.pdf     



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:5, 2011

476

[5] Y. F. Hsu and S. –F. Chang. “Detecting Image Splicing Using Geometry 
Invariants and Camera Characteristics Consistency”, In ICME, Toronto, 
Canada, July 2006. 

[6] Y. Q. Shi, C. Chen, and W. Chen, “A natural image model approach to 
splicing detection,” in Proc. ACM Multimedia Security Workshop, pp. 
51-62, Sept. 2007, Dallas, Texas. 

[7] H. Gou, A. Swaminathan, and M. Wu, “Noise Features for Image 
Tampering Detection and Steganalysis,” Proc. of IEEE Int. Conf. On 
Image Processing (ICIP'07), San Antonio, TX, Sept. 2007. 

[8] T. T. Ng, S. –F. Chang, C. –Y. Lin, and Q. Sun, “Passive-blind Image 
Forensics”, In Multimedia Security Technologies for Digital Rights, W. 
Zeng, H. Yu, and C. –Y. Lin (eds.), Elsvier, 2006. 

[9] A. Criminisi, P Perez, and K. Toyama, “Region filling and object 
removal by exemplar-based image inpainting,” IEEE Trans. Image 
Process., vol.13, no.9, pp. 1200-1212, Sept. 2004 

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & 
Harshman, R. (1990). Indexing by latent semantic analysis. Journal of 
the American Society for Information Science, 41(6), 391-407. 

[11] M. Borga and H. Knutsson, "Finding Efficient Nonlinear Visual 
Operators using Canonical Correlation Analysis, " in Proc. of SSAB-
2000, Halmstad, pp. 13-16. 

[12] Sanderson, C. and K.K. Paliwal , “Fast features for face authentication 
under illumination direction changes”, Pattern Recognition Letters 24, 
2409-2419, 2003. 

[13] M. K. Mihcak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive 
statistical modeling of wavelet image coefficients and its application to 
denoising,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal 
Processing, vol. 6, pp. 3253–3256, Mar. 1999, Phoenix, AZ 

[14] Y.Sun, Y.Shi, F.Chen, V.Chung, “Skipping Spare Information in 
Multimodal Inputs during Multimodal Input Fusion”, Proceeding of the 
2009 International Conference on Intelligent User Interfaces, IUI2009, 
Sanibel Island, Florida, USA, 8-11 February 2009. 

 
 

 


