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Abstract—We present a dedicated video-based monitoring 

system for quantification of patient’s attention to visual feedback 

during robot assisted gait rehabilitation. Two different approaches for 

eye gaze and head pose tracking are tested and compared. Several 

metrics for assessment of patient’s attention are also presented. 

Experimental results with healthy volunteers demonstrate that 

unobtrusive video-based gaze tracking during the robot-assisted gait 

rehabilitation is possible and is sufficiently robust for quantification 

of patient’s attention and assessment of compliance with the 

rehabilitation therapy.  

 

Keywords—Video-based attention monitoring, gaze estimation, 

stroke rehabilitation, user compliance. 

I. INTRODUCTION 

TROKE is the third most common cause of death in 

Western society. Prevalence figures are in the vicinity of 

5-5.5 % in USA with around 700,000 new cases each year. 

For every decade after age 55, the relative incidence of stroke 

doubles. About 4.7 million stroke survivors (2.3 million men, 

2.4 million women) are alive today. The effects of stroke 

depend on several factors including the location of the 

obstruction and how much brain tissue is affected. One of the 

hallmark residual deficits of stroke is post-stroke walking 

disability. Walking incorrectly not only creates a stigma for 

the patients, but also makes them more susceptible to injury 

and directly affects their quality of life. 

Early rehabilitation therapy is crucial for significant 

improvements in the treatment outcome [1]. Robotics-based 

systems are being widely tested and employed to retrain stroke 

patients. By imposing gait-like movements at a comfortable 

speed and without restricted duration, such robotic devices are 

thought to provide many of the afferent cues regarded as 

critical to retraining locomotion [2]. 

However, a significant problem with existing stroke therapy 

is patient non-compliance [3]. Patients often find certain 

aspects of therapy frustrating, exhausting, boring, annoying, or 

prone to error. It is recognized that most stroke patients who 

begin therapy to improve motor control, abandon the therapy 

because the process is too long, repetitive, and does not 

provide immediate results [4]. 

European project BETTER [5] addresses a new approach to 

rehabilitation therapies of gait disorders in stroke patients by 

employing non-invasive Brain/Neural Computer Interaction 

(BNCI) based assistive technologies. One of the main goals of 
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the proposed multimodal BNCI system is to provide 

immediate visual feedback of the rehabilitation progress to the 

patient and to characterize the level of patient’s involvement 

in the rehabilitation therapy based on EEG, EMG and IMU 

sensors. 

We propose to extend these modalities with video-based 

attention monitoring system that allows automatic 

quantification and long-term monitoring of user attention to 

the provided visual stimuli. Video-based tracking of patient’s 

attention does not require any sensors to be attached to the 

patient, making this method fast and easy to apply in stroke 

rehabilitation. The objectives of this video-based upgrade are 

threefold: 

a) to quantify patient’s attention to visual feedback, i.e. the 

amount of time the patient’s gaze is actively following the 

visual feedback; 

b) to systematically test different modalities of visual 

feedback, their possible impact on motor planning, and 

their short- and mid-term benefits; and 

c) to increase the robustness of the BNCI-based assessment 

of patient’s compliance by merging video-based 

information with the BNCI system. 

II. STATE OF THE ART 

Patient’s responses to visual stimuli can be detected by 

EEG, but this requires highly controlled experimental 

conditions and high level of user cooperation. On the other 

hand, several obvious visual signs of user’s attention to visual 

stimuli, such as the direction of user’s eye gaze, his/her 

responses to dynamically generated visual stimuli, tired eyes 

and change in blinking patterns can be readily detected by 

video-based monitoring of a subject’s face. 

Methods for real-time detection of eye movements and eye 

gaze direction from video have attracted a lot of research in 

the past decade [6]. Numerous algorithms for facial feature 

extraction have been proposed, mostly for face detection and 

recognition [7]. Currently, the most promising approaches rely 

on fusing multiple visual cues, for example by combining 

local feature matching with intensity-based methods [8]. The 

aforementioned quantifications of user’s attention to visual 

feedback have mostly been developed for Human-Computer 

Interaction (HCI) applications and in order to help severely 

disabled people [9]. Since changes in eye blinking rate are 

known to be related with fatigue and drowsiness, this fact is 

often exploited for detecting alertness of drivers and signs of 

fatigue [10], with PERCLOS (Percentage of Eye Closure) and 

AECS (Average Eye Closure Speed) as the most popular 

video-based fatigue measures [11]. When combined with 
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facial expressions, stereotypical head movements etc. a 

probabilistic model of human fatigue can be constructed [12]. 

We believe a similar approach can be used to detect patient’s 

responses to the rehabilitation and quantify his level of 

attention. 

Several studies already examined the impact of visual 

feedback on stroke rehabilitation, but they mostly reported 

inconclusive results. They focused on quantification of results 

of rehabilitation enhanced with different modalities of visual 

feedback, but their experimental designs did not allow for a 

reliable quantification of the attention a person is paying to 

stimuli. To the best of our knowledge, only psycho-

physiological measures of patient attention to visual feedback 

have been reported in the literature [13], while video-based 

assessment of attention has not yet been proposed in the field 

of rehabilitation. 

III. ALGORITHMS FOR VIDEO-BASED QUANTIFICATION  

OF PATIENT’S ATTENTION 

Two complementary approaches have been developed. The 

first, feature-based approach is based on a collection of 

different feature-tracking algorithms and extracts eleven main 

facial features, i.e. inner and outer corners of eyes, pupil 

centers, mouth corners, left and right nose corner, and tip of 

the nose. The second approach builds on active appearance 

models (AAM) to represent the patient’s face with a 2D grid 

of 59 facial landmarks, and enables more accurate and robust 

tracking of facial mimics. 

The rationale behind building these two approaches is to 

find the optimal compromise between robustness and 

efficiency of video-based tracking of facial components during 

robot assisted walking. Both aforementioned approaches have 

been systematically tested on video recordings of healthy 

volunteers as well as stroke patients during their rehabilitation. 

Both approaches do not exclude, but rather complement each 

other, as the feature-based facial tracking is also used for 

initialization and constraint optimization of the AAM model. 

A.  Feature Based Tracking 

First, the OpenCV’s Haar detector [14] is used to locate 

frontal faces in every video frame. In each detected face, the 

discriminative model of feature appearance in the form of 

boosted classifiers using Haar-like features [15] is employed 

to localize the nine facial landmarks denoting the corners of 

the eyes, mouth, and the tip of the nose (Fig. 1). Centers of 

pupils are detected by radial symmetry approach [16], which 

offers the best cost/performance ratio among the tested pupil 

detectors. In about 3% of the video frames tested, the radial 

symmetry approach yields an erroneous position of the pupil’s 

center. These sudden deviations of pupil’s center can easily be 

detected online and are corrected by more robust, but also 

computationally more intensive adaptive approach described 

in [17]. 

Afterwards, in order to suppress jitter due to detection 

errors and body swings during walking, a prediction-

correction algorithm based on Kalman filter is applied to the 

locations of extracted facial features.  

 

Fig. 1 Representative results of facial tracking in the recorded video 

of a healthy volunteer. The extracted face and facial regions are 

denoted by rectangles. Facial landmarks, as identified by the feature 

extractor are denoted by circles 
 

Finally, the distances between extracted landmarks are used 

to calculate the head pose and gaze direction. By following the 

approach described in [18], head pose is calculated as a 

normal to the planar face region, defined by the outer corners 

of the eyes and mouth, and the tip of the nose (Fig. 2a). 

Vertical gaze direction is determined from the projection of 

the pupil center to the line connecting both corners of the eye 

(Fig. 2b). Horizontal gaze direction is calculated by mutual 

comparison of distances dR in right and dL in left eye (Fig. 2c). 

 

 

Fig. 2 Schematic representation of low level measures for calculating 

head pose and gaze direction 

B. Active Appearance Based Tracking 

The second implemented approach utilizes AAM, a 

parametric technique for tracking face and facial expressions, 

which supports more robust personalization and dynamic 

adaptation to different facial expressions, in comparison to the 
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feature-based approach. Following the preliminary assessment 

of different AAM implementations, the algorithm based on the 

inverse compositional approach (IC AAM) [19] was selected 

as the most suitable for our purposes. We built a generalized 

model of human face from a large set of annotated images of 

different people. This facial model uses 59 facial landmark 

points to model main facial components from the chin to the 

forehead and from left to right ear. A few representative 

examples of the constructed IC AAM fitted to the videos from 

healthy volunteers are shown in Fig. 3. 
 

 

Fig. 3 Facial active appearance model overlaid over images from 

two healthy volunteers during their robot assisted gait training. The 

red AAM mesh consists of 59 landmark points, denoting different  

facial features 

 

Developed AAM models rely significantly on accurate and 

robust initialization and initial fitting to the facial features of 

each patient. Although this procedure is theoretically required 

only once per patient (i.e. during his/her first rehabilitation 

session), it might prove beneficial also in later rehabilitation 

sessions, especially when the appearance of the patient’s face 

is significantly altered (e.g. patient shaves, puts glasses on/off, 

etc.). This makes the initialization of AAM a crucial step of 

AAM-based tracking. 

In the literature, AAM models are typically initialized by 

manually annotating the crucial anatomical landmarks on a 

large set of images. However, such approach is slow and 

requires considerable skill, making it unsuitable for clinical 

practice. To circumvent these shortcomings, the following 

automatic constrained fitting of non-person-specific AAM 

model to images of each individual patient is performed: 

1. Image Acquisition during the Calibration Phase: 

 This step is performed at the beginning of rehabilitation 

(e.g., during the first rehabilitation session). The patient is 

asked to look at graphical markers (top-left panel in Fig. 4) 

displayed in the corners of the screen. The markers appear 

sequentially and in random order. Each marker appears and 

then disappears after 2 seconds. During this calibration phase, 

the video is recorded for offline processing. 

2. Automatic Selection of Initialization Images: 

The recorded video is analyzed offline by feature-based 

detector (Section IIIA) to detect 50 frontal faces with different 

head poses and eye/mouth appearances. 

3. Automatic Annotation of Facial landmarks: 

 The facial landmarks extracted by feature based detectors 

are used to initialize the generic AAM facial model to each 

individual frame. Constrained fitting of obtained AAM model 

is then applied to annotate all 59 facial landmarks in each of 

the 50 initialization frames. 

4. Learning of the Patient-Specific AAM Model: 

The newly fitted generic AAM models are used for re-

learning of the patient-specific AAM model. 

5. Storage of the Patient-Specific AAM Model: 

The patient-specific AAM model is stored for use in later 

rehabilitation sessions. 

After fitting the prepared AAM to every frame of the input 

video, the head pose and gaze vectors are calculated by the 

approach described in Section III A. The nine facial landmarks 

described in Section III A form a subset of AAM landmarks. 

Thus, only the superior quality of AAM-based feature points 

is currently exploited by our head pose and gaze estimators, 

while the information on all other facial components, such as 

mouth movements and facial mimics is currently ignored. 

C. Estimation of Gaze Direction 

Two approaches to automatic gaze direction identification 

have been tested. In the first approach the extracted head pose 

and gaze directions are fed into a Support Vector Machine 

(SVM) classifier with a Gaussian radial basis function kernel 

(sigma=1). First half of video recording with calibration 

targets (around 120 s) is typically used for classifier training, 

whereas the second half of the same video is used for 

assessment of tracking accuracy.  

The second approach builds on direct calculation of the 

gaze vector. First, head pose is calculated as in [18]. Then, dR, 

dL and h metrics (as illustrated in Fig. 2c) are used to rotate the 

estimated head-pose vector in the direction of the gaze. The 

standard eye model with diameter of 24 mm is used to 

calculate the gaze rotation angles. Although slightly slower 

than SVM, this gaze vector model is more general and does 

not rely on a completeness of a training set. It still requires a 

short calibration phase with gaze targets displayed in the 

corners of the screen whenever the geometric relation between 

the patient and the visual feedback screen is changed, but this 

is merely to (re-)calculate the size and the position of the 

feedback screen in the gaze space. 

D. Visual Feedback Modalities 

Visual feedback consists of two parts. The first part is the 

calibration screen used during system setup (top-left panel in 

Fig. 4). In video calibration session, the patient is asked to 

focus his gaze for about 2 seconds on five graphical markers 

that are sequentially displayed in the corners and the center of 

the screen. This helps to adapt the facial and head pose 
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tracking to a specific patient and compensates for differences 

in the geometric setup of rehabilitation sessions (e.g. relative 

position of patient and the screen with the visual feedback). 

The second part of the visual feedback is the virtual 

environment (VE). It utilizes the OpenGL 3.3 library and 

consists of ground, sky dome and 3D avatar (Fig. 4). The 

ground limits the VE and provides a feeling of a solid walking 

surface that can be custom textured or colored. The sky dome 

limits the space above and gives an open space feeling. The 

avatar is a virtual representation of the patient and its 

movement within the VE is controlled by the kinematic data 

from the robot trainer. 
 

 

Fig. 4 Visual feedback modalities. Video tracking calibration screen 

(top-right panel), 3D female avatar as seen by free-form camera (top-

right panel), 3D male avatar from the 3rd person perspective (bottom-

left panel), and VE from the 1st person perspective  

(bottom-right panel) 

IV. EXPERIMENTAL RESULTS 

The experiment involved eleven healthy volunteers and 

consisted of ten runs of robot assisted walking, with five 

different feedback modalities (Fig. 5); each modality was 

presented twice to each participant. In all runs, the participants 

were instructed to walk actively, maintaining a constant speed, 

and applying minimum force on the robot. A 42 inch screen 

was placed in front of the patient, 1.4 m away from his face. 

Each run lasted four minutes. In all feedback modalities, the 

walking speed remained constant. 

A high-speed video-capture system (Basler Ace acA2000 

CameraLink camera with Matrox Radient frame-grabber) was 

mounted on top of the screen with visual feedback and used to 

capture high resolution video (2040×1086 pixels) at 100 

frames per second. Simultaneously, EEG was recorded from 

61 scalp sites, with electrodes placed according to the 5% 10-

20 system [20]. The EMG was recorded from the left and right 

arms (carpi radialis and deltoid posterior) and both legs 

(tibialis anterior). 

Videos recorded during the calibration sessions were 

visually inspected by an expert. Time intervals with gaze fixed 

to the visual cues displayed in the center and in the corners of 

the screen were carefully annotated to serve as a reference. 

The time intervals corresponding to eye movements or eye 

blinks were ignored. 

 

 

Fig. 5 Healthy volunteer performing the robotic gait training 

in front of the video screen 

A. Assessment of Facial Feature Tracking 

Results of feature-based tracking of facial components over 

three different sessions (four minutes long video recordings) 

are reported in Table I. On average, the face was detected in 

93 % of video frames recorded (i.e. in practically all the 

frames with frontal faces whereas the profile faces were not 

detected). Eyes, mouth, nose, and pupils were accurately 

detected in more than 99% of detected faces. Detection of 

facial features was skipped in video frames with no face 

detected. The average jitter of facial components is reported in 

Table II, whereas the processing time, as measured on a 

standard personal computer (Intel Core I7-930 CPU, 6 GB of 

memory) is reported in Table III. Video processing algorithms 

were implemented in Matlab with several C++ based MEX 

files. 

The results of AAM-based facial components tracking are 

summarized in Table IV and Table V. On average, the face 

was detected in 93 % of video frames recorded during the 

experimental sessions. The AAM was successfully fitted to all 

detected faces. In video frames with no face detected, the 

AAM fitting has been skipped. The average processing time is 

reported in Table VI.  
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TABLE I 

NUMBER OF FRAMES WITH FACIAL COMPONENTS SUCCESSFULLY DETECTED 

BY THE HAAR CLASSIFIERS AND THE DISCRIMINATIVE MODEL OF  

FEATURE APPEARANCE 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Video 3 

(VR 3rd person) 

 frames % frames % frames % 

Whole 
video 

9999 100 % 13391 100 % 10551 100 % 

Face 

detection 
9833 93.7 % 13193 98.5 % 10427 98.8 % 

Detection of 

left eye 
9805 99.7 %* 13174 99.9 %* 10419 99.9 %* 

Detection of 
right eye 

9769 99.3 %* 13179 99.9 %* 10408 99.8 %* 

Detection of 
left pupil 

9800 99.9 %# 13191 99.9 %# 10419 100 %# 

Detection of 

right pupil 
9769 100 %# 13187 100 %# 10408 100 %# 

Detection of 

nose 
9827 99.9 %* 13150 99.8 %* 10423 99.9 %* 

Detection of 
mouth 

9742 99.1 %* 13174 100 %* 10414 99.8 %* 

* Values normalized by the number of face detections. 
# Values normalized by the number of eye detections. 

 
TABLE II 

JITTER (MEAN ± SD, IN PIXELS) OF FACE AND FACIAL FEATURES 

LOCATIONS WITH AND WITHOUT KALMAN TRACKING IN TOTAL, 2000 VIDEO 

FRAMES WITH GAZE FIXED TO TEN DIFFERENT SCREEN POSITIONS 

WERE ANALYZED IN EACH VIDEO 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

 Without 

tracking 

With 

tracking 

Without 

tracking 

With 

tracking 

Face detection: X 2.0 ± 3.3 1.1 ± 0.5 1.4 ± 0.4 0.6 ± 0.2 

Face detection: Y 2.5 ± 6.3 1.0 ± 0.3 1.7 ± 0.5 1.1 ± 0.4 

Eye detections: X 4.9 ± 2.4 1.3 ± 0.7 3.4 ± 1.1 0.5 ± 0.2 

Eye detections: Y 5.0 ± 2.3 1.6 ± 0.9 4.1 ± 1.2 0.8 ± 0.3 

Pupil detections: X 2.7 ± 1.8 1.3 ± 0.5 2.0 ± 1.1 0.7 ± 0.3 

Pupil detections: Y 3.0 ± 1.9 1.3 ± 0.6 2.8 ± 1.2 0.5 ± 0.2 

 
TABLE III 

PROCESSING TIME (IN MS) REQUIRED FOR DETECTION OF FACE AND 

FACIAL COMPONENTS 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Video 3 (VR 

3rdperson) 

Face detection 43.8 ± 3.5 ms 43.4 ± 8.1 ms 44.1 ± 3.0 ms 

Haar based detection of 
eyes, mouth, and nose 

41.8 ± 4.5 ms 32.8 ± 3.5 ms 41.1 ± 3.9 ms 

Detection of pupils 5.5 ± 0.7 ms 4.6 ± 2.9 ms 5.4 ± 0.6 ms 

SURF/SIFT based 

detection of eyes, mouth, 

and nose 

38.5 ± 4.5 ms 33.8 ± 2.9 ms 45.2 ± 4.5 ms 

Detection of eyes, mouth, 

and nose by 

discriminative feature 
appearance model 

87.3 ± 4.2 ms 84.4 ± 3.8 ms 88.5 ± 4.7 ms 

 

As demonstrated by the results in Table V, the AAM fitting 

is much more robust against gait related head movements than 

the feature-based tracking presented in Section IIIA. 

Therefore, it offers superior gaze tracking accuracy at the 

price of slightly higher processing costs. It is also important to 

note that AMM tracker relies on feature-based tracker in the 

initialization step. 

TABLE IV 

NUMBER OF FRAMES WITH FACIAL AAM SUCCESSFULLY FITTED IN VIDEO 

FRAMES WITH NO FACE DETECTED, THE AAM FITTING WAS SKIPPED 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Video 3 

(VR 3rd person) 

 frames % frames % frames % 

Whole video 9999 100 % 13391 100 % 10551 100 % 

Face detection 9833 93.7 % 13193 98.5 % 10427 98.8 % 

Successful 

AAM fitting to 

detected face 

9833 100 %* 13193 100 %* 10427 100 %* 

* Values normalized by the number of face detections. 

 
TABLE V 

JITTER (MEAN ± SD, IN PIXELS) OF FACIAL FEATURES LOCATIONS AS 

IDENTIFIED BY FACIAL AAM (VIDEO RECORDINGS OF TWO REPRESENTATIVE 

HEALTHY VOLUNTEERS). IN TOTAL, 2000 VIDEO FRAMES WITH GAZE FIXED 

TO TEN DIFFERENT SCREEN POSITIONS WERE ANALYZED IN EACH VIDEO 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Right eye detection: X 0.52 ± 0.35 0.60 ± 0.38 

Right eye detection: Y 0.61 ± 0.43 0.45 ± 0.31 

Left eye detection: X 0.44 ± 0.38 0.57 ± 0.32 
Left eye detection: Y 0.68 ± 0.45 0.55 ± 0.42 

Right pupil detection: X 0.48 ± 0.36 0.52 ± 0.28 
Right pupil detection: Y 0.58 ± 0.37 0.95 ± 0.61 

Left pupil detection: X 0.51 ± 0.36 0.49 ± 0.25 

Left pupil detection: Y 0.58 ± 0.36 0.32 ± 0.21 

 
TABLE VI 

PROCESSING TIME (IN MS) REQUIRED FOR AMM DETECTION OF 

FACE AND FACIAL COMPONENTS 

 Video 1 

(gaze targets) 

Video 2 

(gaze targets) 

Video 3 (VR 

3rdperson) 

Facial AAM fitting (per 

frame) 
162 ± 26 ms 161 ± 23 ms 165 ± 24 ms 

AAM iterations needed 

(per frame) 
3.01 ± 0.64 2.73 ± 0.48 3.16 ± 0.54 

B. Assessment of Video-Based Head-Pose and Gaze 

Tracking 

Both approaches to gaze classification (Section IIIC) were 

compared to manually annotated gaze directions. The 

following metrics have been used to compare the 

performances of SVM-based and vector-based gaze 

classifiers: 

a) Accuracy of SVM-based gaze detection during robot-

assisted gait rehabilitation with calibration target screen; 

b) Performance of vector-based gaze estimation during 

robot-assisted gait rehabilitation with calibration target 

screen; 

c) Agreement between SVM-based and vector-based gaze 

detection during robot-assisted gait rehabilitation with 

various feedback modalities. 

d) Spatiotemporal gaze distribution during robot-assisted 

gait rehabilitation. 

The first three metrics measure the head-pose and gaze 

tracking accuracy in general, whereas the fourth metric 

measures the spatiotemporal dynamics of patient’s gaze. 

In healthy volunteers the SVM-based gaze directions were 

identified with average accuracy of 94% ± 6% (Fig. 6). Most 

of errors originated from distinguishing between top-left vs. 

bottom-left and top-right vs. bottom-right gaze directions. 
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Fig. 6 Typical example of confusion matrix for SVM-based gaze 

estimation in a healthy volunteer 
 

Vector-based gaze tracking was assessed by comparison to 

manually annotated video recordings of gaze target feedback. 

Videos recorded during sessions with the screen displaying 

calibration targets were inspected by an expert and nine 

approximate gaze direction (top-left, top-centre, top-right, 

bottom-left, bottom-centre, bottom right, left-centre, right-

centre and centre of the screen) were manually annotated. The 

time periods corresponding to eye movements or eye blinks 

were ignored and were not annotated. Gaze direction was then 

calculated automatically by vector-based gaze tracker and 

compared to manually annotated gaze directions. 

Representative results of vector-based gaze tracking with 

gaze targets displayed in the center of the screen and in the 

centers of all four screen edges are depicted in Fig. 7. Each 

marker denotes the gaze direction as assessed by vector-based 

gaze tracking model. Different classes of gaze directions as 

determined by manual (left panel) and SVM-based 

classification (right panel) are denoted by different colors. 

Both vector-based and SVM-based models largely agreed with 

the manual classification, with errors mostly appearing in 

distinction of vertical directions (e.g. top-left vs. bottom-left 

and top-right vs. bottom-right corners). 

 

 

Fig. 7 Representative results of gaze direction assessment by 

vector-based AAM gaze tracking, compared to manual gaze 

annotation (left) and SVM-based automatic classification (right) 

C. Assessment of Patient’s Attention to Visual Feedback 

The following metrics were used to assess patient’s 

attention to the visual feedback: 

a) Attention to visual feedback: percentage of time in 1 

second intervals with gaze fixed to the feedback screen; 

all gazes outside the feedback screen were classified as 

non-attention. An example of this metric is displayed in 

Fig. 8. 

b) Spatiotemporal gaze distribution plots: cumulative plots 

of gaze directions revealing the hot-spots of user’s 

attention (Fig. 9). 

 

 

Fig. 8 An example of estimated level of patient’s attention to 

visual feedback during a 20 min session 
 

The spatiotemporal gaze distribution metric is exemplified 

in Fig. 9. It supports identification of gaze targets (i.e. gaze 

hot-spots) and assessment of spatiotemporal correlation 

between patient’s attention to visual feedback and other 

BNCI-based performance indices of gait rehabilitation. The 

examples in Fig. 9 show relative frequency of identified gaze 

classes over 4 minutes long robot-assisted gait rehabilitation 

of a healthy volunteer, with lighter spots indicating areas with 

more frequent attention. 

 

 

 

Fig. 9 Spatial gaze distribution plots for different visual feedback 

modalities (top panels) for a healthy control subject during 4 minutes 

long gait rehabilitation. Middle panels: SVM-based gaze 

classification. Bottom panels: vector-based gaze tracking 
 

Spatial gaze distribution can also be combined with other 

BNCI metrics of patient’s performance. For example, it can be 

accumulated only across time moments of wrong muscle 

activation patterns, or over gait cycles with large hip/knee 

forces as assessed by the robot trainer. This adds a temporal 

dimension to the gaze distribution plots, giving spatio-

temporal gaze distributions.  

In Fig. 10, gaze distributions have been accumulated over 

the entire 4 minutes of rehabilitation runs and correlated to the 

similarity of motor modules (SMM) during each gait cycle. 
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SMM metric measures the global similarity of muscle 

activations (for all the measured muscles and motor modules 

throughout the whole gait cycle) in stroke patients with the 

muscle activation patterns in healthy control subjects. Its value 

ranges between 0% and 100 %, with the value of 100% 

representing the equality to the muscle activation patterns in 

healthy control subjects. 
 

 

 

Fig. 10 Spatiotemporal gaze distribution plots for two different visual 

feedback modalities as determined by vector-based gaze tracking in 

healthy volunteer during 4 minutes long gait rehabilitation 

V. DISCUSSION 

In the context of video-based assessment of attention to 

visual feedback two different facial tracking approaches have 

been functionally validated: feature-based discriminative 

model proposed by Sivic et al. [15] and the AAM model 

proposed by Matthews et al. [19]. Results on eleven healthy 

volunteers demonstrated that unobtrusive gaze tracking based 

on video is possible during the robot-assisted gait 

rehabilitation. The feature-based discriminative face tracker is 

robust to large and sudden head movements, but offers inferior 

accuracy in detection of facial components when compared to 

AAM model. As a result, it is more prone to the perturbations 

due to body and head movements during robot-assisted 

rehabilitation. These perturbations can partially be 

compensated by filtering, e.g. by Kalman filter. Nevertheless, 

the feature-based discriminative model supports only coarse 

gaze estimation, discriminating between attention and non-

attention to the visual feedback screen. 

When compared to the feature-based tracker, the AAM 

tracker is much more robust to head and body swings, but 

suffers from occasional problems in refitting to the user’s face 

after intensive movements away from the camera. The errors 

of AAM fitting appeared mainly in the cases of severe facial 

occlusion or/and large head movements. Tracking 59 facial 

landmark points, the AAM model also requires more 

computational power than the feature-based discriminative 

model. 

Two different gaze classifiers have been evaluated: SVM 

and gaze vector model. The first one enables fast and fully 

automatic classification of identified facial features into 3x3 

gaze classes, but requires relatively large learning sets, and 

thus long (typically 4 minutes) calibration sessions to yield the 

accuracy of ~ 90%. The second, so called gaze vector model 

calculates the gaze orientation directly from the measured 

distances between the centers of pupils and eye corners, and 

requires much shorter calibration sessions (i.e. 2-3 second 

long gazing into all four corners of the visual feedback 

screen). 

The attainable spatial resolution of gaze tracking (i.e., 

reliable distinction of different gaze directions during robot-

assisted rehabilitation) varies among subjects. We limited our 

tests to gaze classification into 3x3 classes, though more dense 

distribution of gaze screen was feasible in many of the 

participants. 

As demonstrated in Section IV, feature- or AAM-based 

facial tracking extends the multivariate patient analysis, by 

assessing attention to visual feedback as an additional feature 

to the BNCI performance indices, such as the similarity of 

motor modules (SMM), kinetic and kinematic profiles and 

brain patterns. Moreover, the connections between the existing 

BNCI metrics and the coarse gaze orientation can be assessed, 

supporting the analysis of impact of different visual feedback 

elements on gait rehabilitation. 

ACKNOWLEDGMENT 

The authors are grateful to Teodoro Solis-Escalante, 

Johanna Wagner and Prof. Gernot R. Müller-Putz from Graz 

University of Technology and to Rehabilitation Clinic 

Judendorf-Strassengel (Austria) for organization of video 

recordings of robot-assisted walking. This work was funded 

by the Commission of the European Union, within Framework 

7, under Call "ICT restoring and augmenting human 

capabilities compensating reduced motor functions or 

disabilities", Grant agreement FP7-2009-7.2–247935- 

“BETTER – Brain-Neural Computer Interaction for 

Evaluation and Testing of Physical Therapies in Stroke 

Rehabilitation of Gait Disorders”. 

REFERENCES 

[1] B.Kollen, G.Kwakkel, and E. Lindeman, “Functional Recovery After 

Stroke: A Review of Current Developments in Stroke Rehabilitation 
Research,” Reviews on Recent Clinical Trials, 1, 2006, pp. 75-80. 

[2] J.Mehrholz, C. Werner, J.Kugler, and M. Pohl, “Electromechanical-

assisted training for walking after stroke,”Cochrane Database Syst. Rev., 
17(4), 2007. 

[3] M.J.Matarić, J. Eriksson, D.J.Feil-Seifer, and C.J.Winstein, “Socially 

assistive robotics for post-stroke rehabilitation,”J.Neuroeng.Rehabil., 
4(5), 2007. 

[4] R.Teasell, and L.Kalra, “What's new in stroke rehabilitation: Back to 

basics,” Stroke, 36, 2005, pp. 215-217. 
[5] Project BETTER, http://www.car.upm-csic.es/bioingenieria/better/, 

2013. 

[6] D.W. Hansen, and Q.Ji, “In the eye of the beholder: A survey of models 
for eyes and gaze,”IEEE Trans. on Pattern Analysis and Machine 

Intelligence, Vol. 32, Iss. 3, 2010, pp. 478-500. 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:8, No:7, 2014

439

 

 

[7] E. Bagherian, and R.W.O.K.Rahmat, “Facial feature extraction for face 

recognition: a review,”International Symposium on Information 
Technology, Kuala Lumpur, Malaysia, 2008, pp. 1 – 9. 

[8] W.K. Liao, D.Fidaleo, and G.Medioni, “Robust, real-time 3D face 

tracking from a monocular view,”EURASIP Journal on Image and 
Video Processing, Vol. 2010, article ID 183605, 2010. 

[9] A. Poole, and L.J Ball, “Eye tracking in human-computer interaction and 

usability research: Current status and future”, Encyclopedia of Human-
Computer Interaction, C. Ghaouli, Pennsylvania, Idea Group, 2005. 

[10] Q.Ji, and X. Yang, “Real-time eye, gaze and face pose tracking for 

monitoring driver vigilance,”Real-Time Imaging, 8, 2002, pp. 357-377. 
[11] L. Lang, and H. Qi, “The study of driver fatigue monitor algorithm 

combined PERCLOS and AECS”, Proc. Int. Conf. on Comp. Science 

and Software Eng., Vol. 1, 2008. 
[12] Q.Ji, P.Lan, and C. A. Looney, “Probabilistic framework for modeling 

and real-time monitoring human fatigue”, IEEE Trans. on Systems, Man 

and Cyb., Vol. 36, Iss. 5, 2006, pp. 862-875. 
[13] M. Bakker, F. P. de Lange, J. A. Stevens, I. Toni, and B. R. Bloem, 

“Motor imagery of gait: a quantitative approach”, Exp Brain Res, 179, 

2007, pp. 497–504. 
[14] OpenCV, Open source computer vision library, http://opencv.org/, 2014. 
[15] J.Sivic, M.Everingham, and A.Zisserman, “Who are you? Learning 

person specific classifiers from video,” Proc. of IEEE Conference on 
Computer Vision and Pattern Recognition, 2009, pp. 1145-1152. 

[16] G. Loy, and A. Zelinsky, “A Fast Radial Symmetry Transform for 

Detecting Points of Interest,”IEEE PAMI, 25 (8),2003, pp 959-973. 
[17] M.Asadifard, and J.Shanbezadeh, “Automatic Adaptive Center of Pupil 

Detection Using Face Detection and CDF Analysis,”Proc. of IMECS 
2010 conf., Vol. I, Hong Kong, 2010. 

[18] A.H. Gee, and R. Cipolla, “Determining the gaze of faces in images,” 

Image and Vision Computing, 12, 1994, pp. 639-647. 
[19] I. Matthews, J. Xiao, and S. Baker, “2D vs. 3D Deformable Face 

Models: Representational Power, Construction, and Real-Time 

Fitting,”Internat. J. of Comput. Vision, 75(1), 2007, pp. 93-113. 
[20] R.Oostenveld, and P.Praamstrac, “The five percent electrode system for 

high-resolution EEG and ERP measurements,”Clinical 

Neurophysiology, 112, 2001, pp. 713-719. 


