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Abstract—The investigation of the vibrational character of 
magnetic cylindrical shells placed in an axial magnetic field has 
important practical applications. In this work, we study the 
vibrational behaviour of such a cylindrical shell by making use of the 
so-called exact space treatment, which does not assume any 
hypothesis. We discuss the effects of several practically important 
boundary conditions on the vibrations of the described setup. We find 
that, for some cases of boundary conditions, e.g. clamped, simply 
supported or peripherally earthed, as well as for some values of the 
wave numbers, the vibrational frequencies of the shell are 
approximately zero. The theoretical and numerical exploration of this 
fact confirms that the vibrations are absent or attenuate very rapidly. 
For all the considered cases, the imaginary part of the frequencies is 
negative, which implies stability for the vibrational process. 
 

Keywords—Free vibrations, magnetic cylindrical shells, exact 
space treatment, bending vibrational frequencies. 

I. INTRODUCTION 

HE free bending vibrations of metallic shells placed in 
axial magnetic field are typically investigated by two 

common methods. The first one is based on averaged theories 
of plates and shells, while the second approach is based on the 
so-called exact space treatment. The averaged theories of 
plates and bending shells are developed quite well. The first 
hypothesis for developing the bending theory, known as the 
Kirchhoff-Love hypothesis, was presented by Kirchhoff and 
further developed by Love (see [1]). The further refinements 
of these ideas led to the so-called Reisner-Mindlin theories 
developed by Reissner [2] and Mindlin [3] as in the book [1]. 
Important contributions to the refined bending theory were 
made also by Ambartsumyan [4], where the case of zero shear 
stresses on interfacial surfaces of thin plates is considered. 
Comprehensive reviews of the above mentioned results can be 
found in Ozer [5] and Douglas et al. [6]. We have to mention 
that the application of Kirchhoff-Love and Reissner-Mindlin 
hypotheses for practical problems has several differences, and 
there are cases where the refined theories are applicable, and 
other cases where they are not. Particularly, as it is shown in 
[7], for investigating the stresses on the tip of the wedge 
shaped irradiated compound plates, one can effectively use the 
Reissner-Mindlin theory, while the Kirchhoff-Love theory for 
this case is not applicable. The averaged approach for plates’ 
and shells’ free bending problems was developed by 
Ambartsumyan et al. [8], [9] and Sarkisyan et al. [11]. The 
modulation problem for thermomagnetoelastic waves in 
magnetic field was solved by Bagdoev and Movsisyan [12]. 
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Additionally, significant progress has been made in 
developing an approach to study the bending of plates and 
shells using the exact space treatment. This method was 
described by Novatsky in [13]. Applications of the exact space 
approach for free bending problems can be found in [14]-[16]. 
General relationships of magnetoelastic case were obtained by 
Kaliski [10], Kolski [17], and Baghdasaryan and Belubekyan 
[18]. Some problems for both cases were solved by Bagdoev 
et al. [19]-[25] where the vibrations of magnetoelastic, 
piezoelectric, and ferromagnetic plates and shells were 
studied. The situation, when the internal and external surfaces 
of the shell are free from stresses and the magnetic field is 
continuous on them, is studied. Comparison of the results 
presented in these works shows that, for the mentioned cases, 
the averaged theories are not applicable. Because of that 
result, in this paper, we will use the exact space approach.  

The free vibrations of a circular plate, which are composed 
of a transversally isotropic, functionally graded piezoelectric 
material which is placed in a uniform magnetic field, are 
studied by Dai et al. [26]. The case of functionally graded 
piezoelectric material is discussed and it is assumed that the 
material properties depend on the thickness of the circular 
plate by exponential law. That problem is solved by means of 
the state space method. 

The influence of boundary conditions on vibration 
characteristics of a shell is very interesting and has practical 
applications for designing electromagnetic devices. For this 
reason, we are going to investigate vibrational characteristics 
of a magnetic shell which is placed in a magnetic field. We are 
going to study different types of boundary conditions. 
Particularly, we are considering cases when the internal 
surface is clamped, simply supported, or peripherally earthed, 
and we assume the external surface to be free from stresses.  

II. THE BASIC EQUATIONS 

In our work, we adopt the model described in [17], [19], 
namely, a cylindrical magnetic shell, which is placed in axial 

magnetic field hHH  0 , as it is shown in Fig. 1.  

Here, R is the radius of the cylinder, and 2h is a thickness of 
the shell. Following [27], we assume the presence of 

undisturbed and disturbed magnetic fields, 0H  and  zr hhh , , 

and we assume a cylindrical symmetry of the problem. By 
using a and b, we denote the speeds of longitudinal and 
transversal elastic waves, and   is going to be the density of 

shell’s material. In cylindrical coordinates  zr, , the 

equations of motion for the shell are: 
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02

1 1,
4 a

bH
 


  and  zr uuu ,  is the displacement 

vector.  
 

 

Fig. 1 Cylindrical shell under axial magnetic field 
 

The Maxwell’s equation for electromagnetic induction leads 
to: 

  ;0 hvHxvrot
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  and mv  is the magnetic viscosity. 

The disturbed magnetic field vector and electrical potential 
is defined by the relationships (3) and (4): 
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where zr ee ,  are the unit vectors along the axis zr, , and  is 

the electric potential.  
In order to explore the problem completely, we also have to 

take into consideration the Lorentz force, which can be 
introduced as (5) and (6): 
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From (3), the time derivatives of the magnetic field vector’s 

projections on zr,  axis are given by: 
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III. THE BOUNDARY CONDITIONS 

We will consider four types of boundary conditions: 
Type 1. The internal surface of the shell is clamped, 
peripherally earthed, while the external surface is free from 
stresses. Additionally, there is a continuity condition for the 
magnetic field vector on the external surface.  

More precisely, on the internal surface hRr  , we 
impose the conditions (8): 

 
;0,0,0  zr uu                               (8) 

 

while on the external surface hRr   we impose: 
 

;,,0,0 zzrrrzrr hhhh                    (9) 
 

Type 2. The internal surface of the shell is simply supported, 
peripherally earthed and, additionally, the external surface is 
free from stresses. As before, there is a continuity condition 
for the magnetic field. 

On the internal surface hRr   we have: 
 

.0,0,0   zrr u                          (10) 
 

On the external surface hRr   we have: 
 

.,,0,0 zzrrrzrr hhhh                  (11) 
 

Type 3. Internal surface of the shell is clamped, the external 
surface is free from stresses, and additionally, we impose 
continuity condition on the magnetic field vector not only on 
the external surface, but also on the internal one. 

On the Internal surface, hRr   we have: 
 

.,,0,0 zzrrzr hhhhuu                     (12) 
 

On the external surface, hRr   we have: 
 

.,,0,0 zzrrrzrr hhhh                  (13) 
 

Type 4: Internal surface of the shell is simply supported, 
the external surface is free from stresses, and magnetic field 
vector continuity condition exists on the internal and external 
surfaces. 

On the internal surface, hRr   we have: 
 

.,,0,0 zzrrzrr hhhhu                 (14) 
 

On the external surface, hRr   we have: 
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.,,0,0 zzrrrzrr hhhh                    (15) 

IV. SOLVING THE EQUATIONS 

We are going to assume ansatz (16) for the solutions of (1) 
and (7): 
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where   and k  are the vibration frequency and the wave 
number, respectively. jj FA ,....  and the corresponding primed 

quantities are constants. Additionally, summation over the 
repeated indices j=1…3 is implied. Equations (16) have the 
form of a plane wave which is propagating along the z -axis. 
Here, 1,01,0 , KI  are the Bessel functions of the second kind of 

complex argument. We are going to make use of the well-
known relationships of Bessel functions (17): 
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By plugging (16) into (1) and (7), we find: 
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Accordingly, we obtain a system of four linear and 
homogeneous algebraic equations on coefficients 

jjjj DCBA ,,,  and another similar system for jjjj DCBA  ,,, . 

Requiring system (18) to have non-trivial solutions, we 
impose: 

 

 
 

.0

00

00

00det

22

22

2

2
2

2

2
2

2

2
1

02

2
1

02

2
2

2

2
2










jm

jmj

jj

jjj

vkvik

vkvii
a

k
a

b
vik

a

a
ikH

a

a
Hik

a
k

a

b
v







 

 (19) 
 

In the following, we assume 1
2

2
1 

a

a
 and also small values 

for mv . From the determinant equation (19), we find: 
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We now impose the boundary conditions. 

Type 1. Expressing the coefficients  jB  and jB  through jA  

and jA   at hRr  , we have 
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Using the continuity of magnetic field vector on the external 

surface, we have for hRr  : 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:4, 2017

750

    ....,. 0010 ccerKHChccerKHDh ikzti
z

ikzti
r         (26)

 

 
In the region outside the shell the electrical potential 

satisfies (27): 
 

.0
1

2

2




























z

h

r

h

r

h

zr
r

rr
zrr      (27) 

 
Plugging (26) into (27), we can find: 
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From the stresses-free conditions, we have: 
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where 
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2
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b
  , and in (26), (31) and (32), we have 

summation over j running from 1 to 3. Accordingly, we found 
six linear, homogeneous, algebraic equations on coefficients  

3,2,1A  and 3,2,1A . Analogously, the condition of (26), (31), and 

(32) having non-trivial solutions can be presented as: 
 

;6,...,2,1,,0det  jiij                         (33) 

where 
     ;, 1111 ppjj hRKhRI    

  

  ;

,

0

2

2
22

2

22

0

2

2
22

2

22

p

p

p
p

j

j

j
j

hRK

a
kv

a

b

ik

hRI

a
kv

a

b

ik























 

    

    ;1

,
1

0223

0223

p
pmp

p

j
jmj

j

hRK
vki

k

hRI
vki

k
























 

    

 
  
     

    

 
  
     ;

;

0
0

1
22

1224

0
0

1
22

1224

p
pm

p

p
pm

p

j
jm

j

j
jm

j

hRK
khRK

khRK

vki

hRK
vki

k

hRI
khRK

khRK

vki

hRI
vki

k









































 

     

  

     

  ;

2

;

2

0

2

2
22

2

2

2

12

2

05

0

2

2
22

2

2

2

12

2

05

p

p

p

pppp

j

j

j

jjjj

hRK

a
kv

a

b

k

hRK
hRa

b
hRK

hRI

a
kv

a

b

k

hRI
hRa

b
hRI





































 

     ;1

2

2
22

2

2

2

16 j

j

j
jj hRI

a
kv

a

b

ik
hRikI 




 


  

     

.3,3,2,1

,1

2

2
22

2

2

2

16








jpj

hRK

a
kv

a

b

ik
hRikK p

p

p
pp 





    (34) 

 
Type 2. The difference between the type-1 boundary 
condition and the type-2 is only in the first stress relationship: 

 

      
      








jjjj

jjjjj

hRKAhRIA
hR

hRKAhRIAv





11

11

 

  












 jj

j

j hRIA

a
kv

a

b

ikv
ik 




 0

2

2
22

2

2
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:4, 2017

751

   .00

2

2
22

2

2














 jj

j

j hRKA

a
kv

a

b

ikv





          (35) 

 
Similarly, the condition for (24), (25), (30)-(32) and (35) 

having non-trivial solutions can be presented by the condition 
(33), but we have to take into consideration the fact that we 
have the relationships (36): 
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Type 3. For this case, we have Eqs. (23), (24), (30)-(32) and 
additionally the magnetic field continuity conditions on the 
internal surface hRr  . Making use of this conditions, we 
have: 
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The existing condition of non-trivial solution for the system 

of the mentioned equations is similar to the type-1 case with 
different coefficients of (37): 
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Type 4. Finally, for this case, we have (24), (34), (36), (30)-
(32). The non-triviality condition is similar to (33), and ij  

coefficients are similar to (34) with difference of two 
conditions. The coefficients corresponding to the mentioned 
conditions are presented in (36) and (38). 

 
 
 
 

TABLE I 
BOUNDARY CONDITIONS OF TYPE-1, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ REAL PARTS ( Re ) 

k  0H  0.1 0.2 0.3 0.4 0.5 

105 10-7 10-7 10-7 10-7 10-7 

2*105 10-7 10-7 10-7 10-7 10-7 

3*105 10-7 10-7 10-7 10-7 10-7 

4*105 10-7 െ0.00009 0.00086 10-7 0.00002 

5*105 0.00006 0.0012 െ0.0021 0.0028 െ0.0034 

6*105 0.0011 െ0.0024 െ0.0033 െ0.0280 0.0047 

7*105 0.002 െ0.0034 0.0044 െ0.0051 0.0058 

8*105 െ0.0029 0.0043 െ0.0052 െ0.006 0.0066 

9*105 െ0.0035 0.0049 0.0059 െ0.0066 െ0.0073 

106 െ0.0041 0.00549 0.0064 0.0071 െ0.0077 

V. NUMERICAL RESULTS AND CONCLUSIONS 

We now solve the determinant equation (33) numerically 
for four types of boundary conditions. As a shell’s material, 
we take aluminum with the following parameters: 

Young’s modulus MPaE 510*69.0 . 
Poisson’s ratio 32.0 . 

Density 3/2712 mkg . 

Longitudinal wave speed sm
E

a /06.1595


. 

Transversal wave speed  
   sm

E
b /06.1908

211

1








 . 

Electrical conductivity msim /10*35 6 . 

Magnetic viscosity simsm
c

m
237

2

/10*2
4




  . 

Alfven’s wave speed 
4

2
0

1

H
a  . 

The geometrical sizes of the shell are taken to be: 
.05.0,001.0 mRmh   

 
TABLE II 

BOUNDARY CONDITIONS OF TYPE-1, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ IMAGINARY PARTS ( Im ) 

k  0H 0.1 0.2 0.3 0.4 0.5 

105 െ0.103585 െ0.103583 െ0.103583 െ0.103583 െ0.103583
2*105 െ0.103584 െ0.103583 െ0.103583 െ0.103583 െ0.103583
3*105 െ0.103584 െ0.103583 െ0.103583 െ0.103583 െ0.103582
4*105 െ0.103584 0.181235 0.181235 െ0.103583 0.000146 

5*105 0.127234 0.127297 0.127321 0.127327 0.127323 

6*105 0.091583 0.091390 0.091234 0.517539 0.090969 

7*105 0.066183 0.065739 0.06541 0.065135 0.064892 

8*105 0.047178 0.046496 0.046005 0.045603 0.045254 

9*105 0.032452 0.031546 0.030904 0.030384 0.029937 

106 0.020747 0.019628 0.018844 0.018213 0.017675 

 
We perform the calculations for various magnetic field 

values .10...,,10 45
0 TH  For these parameters, we present the 

numerically obtained bending frequencies for four types of 
boundary conditions (see Tables I-IV). It should be noted that 
the transcendental equations being solved here have infinitely 
many roots, but for us, the interesting ones are those the 
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absolute values of which are the closest to zero. We present 
precisely these solutions.  

 
TABLE III 

BOUNDARY CONDITIONS OF TYPE-2, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ REAL PARTS ( Re ) 

k  0H  0.1 0.2 0.3 0.4 0.5 

105 10-8 10-8 10-8 438.818 226.0891 

2*105 10-8 10-8 10-8 172.686 108.9462 

3*105 10-8 10-8 222.471 112.421 72.4278 

4*105 10-8 0.57689 154.704 83.9517 54.4747 

5*105 10-8 10-8 120.978 67.2693  43.8222  
6*105 10-8 െ0.14006 100.001 56.3263 36.8023 

7*105 10-8 224.151 85.5935 48.6305 31.8615 

8*105 െ1.14726 218.924  75.0953 42.9647 28.2309 

9*105 െ1.316855 178.300 67.1454 38.6667 25.4906 

106 194.594 149.771 60.9736 35.3513 23.3965 

 
These numerical checks confirm that the real parts of the 

free bending frequencies are approximately zero for some 
values of the wave numbers. These results, particularly the 
negativity of the imaginary part of the bending vibrational 
frequencies, confirm that the peripherally earthed, clamped, or 
simply supported boundary conditions have an impact on 
magnetic vibrations as attenuation conditions. In the case, 
when the internal and external surfaces of the shell are free 
from stresses, the boundary conditions can be viewed as 
stimulators for vibrations, while for the scenarios studied in 
this paper the effect is opposite. 

 
TABLE IV 

BOUNDARY CONDITIONS OF TYPE-2, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ IMAGINARY PARTS ( Im ) 

k  

0H  
0.1 0.2 0.3 0.4 0.5 

105 െ0.103585 െ0.145199 െ0.103583 െ147.822 െ30.7525
2*105 െ0.103584 െ0.103583 െ0.145199 െ23.2815 െ15.1732
3*105 െ0.103583 െ0.103583 െ28.9107 െ15.3821 െ10.2147
4*105 െ0.103584 െ167.732 െ20.4537 െ11.5805 െ7.7571 
5*105 െ0.103584 െ0.145199 െ16.1300 െ9.3294 െ6.2893 
6*105 െ0.145199 െ0.655049 െ13.3830 െ7.8398 െ5.3157 
7*105 െ0.145199 െ102.878 െ11.4652 െ6.7827 െ4.6256 
8*105 െ66.6034 െ64.1050 െ10.0456 െ5.9963 െ4.1145 
9*105 െ62.5484 െ22.7916 െ8.9511 െ5.3917 െ3.7250 

106 0.0089 െ18.9253 െ8.0812 െ4.9170 െ3.4241 

 
TABLE V 

BOUNDARY CONDITIONS OF TYPE-3, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ REAL PARTS ( Re ) 

     k  

0H  
0.1 0.2 0.3 0.4 0.5 

105 4207.179 3446.062 3055.766 2802.722 2624.180 
2*105 3127.034 2556.076 2262.984 2078.567 1955.880 
3*105 2629.957 2144.676 1898.753 1748.752 1655.295 
4*105 2325.042 1893.226 1677.223 1549.672 1476.028 
5*105 2112.610 1718.585 1524.035 1413.004 1354.462 
6*105 1953.262 1587.927 1409.895 1311.901 1265.670 
7*105 1827.786 1485.281 1320.576 1233.350 1197.599 
8*105 1725.522 1401.799 1248.210 1170.169 1143.610 
9*105 1640.005 1332.125 1188.039 1118.021 1099.703 

106 1567.053 1272.798 1136.993 1074.113 1063.305 

 

TABLE VI 
BOUNDARY CONDITIONS OF TYPE-3, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ IMAGINARY PARTS ( Im ) 

    k  

0H  
0.1 0.2 0.3 0.4 0.5 

105 െ1125.350 െ840.005 െ731.295 െ662.790 െ611.880 

2*105 െ781.276 െ613.008 െ535.695 െ483.903 െ442.873 

3*105 െ644.448 െ511.537 െ446.484 െ401.164 െ363.308 

4*105 െ564.715 െ450.130 െ392.008 െ350.114 െ313.472 

5*105 െ510.541 െ407.642 െ354.072 െ314.232 െ277.944 

6*105 െ470.495 െ375.895 െ325.569 െ287.034 െ250.647 

7*105 െ439.261 െ350.953 െ303.063 െ265.373 െ228.627 

8*105 െ413.975 െ330.651 െ284.658 െ247.509 െ210.243 

9*105 െ392.933 െ313.685 െ269.207 െ232.387 െ194.507 

106 െ375.050 െ299.215 െ255.971 െ219.325 െ180.775 

 
TABLE VII 

BOUNDARY CONDITIONS OF TYPE 4, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ REAL PARTS ( Re ) 

     k  

0H  
0.1 0.2 0.3 0.4 0.5 

105 10-8 10-8 10-8 10-8 10-8 

2*105 10-10 10-8 10-8 10-8 10-8 

3*105 10-8 10-8 10-10 10-8 70.4725 

4*105 10-8 10-8 151.389 81.4067 52.4569 

5*105 10-8 10-8 117.603 64.6237 41.7228 

6*105 10-8 228.407 96.4892 53.5538 34.5996 

7*105 10-8 222.576 81.8988 45.6998 29.5295 

8*105 10-8 216.606 71.1712 39.8375 25.7383 

9*105 10-8 172.044 62.9365 35.2949  22.7973 

106 10-8 144.683 56.4098  31.6717 20.4501 

 
TABLE VIII 

BOUNDARY CONDITIONS OF TYPE 4, NUMERICAL VALUES OF VIBRATION 

FREQUENCIES’ IMAGINARY PARTS ( Im ) 

     k

0H  
0.1 0.2 0.3 0.4 0.5 

105 െ0.145199െ0.103584 െ0.103583 െ0.103583 െ0.103583
2*105 െ0.103584െ0.103583 െ0.103583 െ0.103583 െ0.103583
3*105 െ0.103584െ0.103583 െ0.103583 െ0.103583 െ10.0897 

4*105 െ0.145199െ0.103583 െ20.5366 െ11.4840 െ7.6217 

5*105 െ0.145199െ0.145199 െ16.1761 െ9.2180 െ6.1435 

6*105 െ104.8038െ135.790 െ13.4060 െ7.71491 െ5.1581 

7*105 െ104.6217െ101.146 െ11.4721 െ6.6436 െ4.4537 

8*105 െ104.6217െ59.8546 െ10.0399 െ5.8407 െ3.9247 

9*105 െ104.6217െ23.1294 െ8.9347 െ5.2164 െ3.5128 

106 െ104.6217െ19.4081 െ8.0548 െ4.7168 െ3.1828 
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