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Abstract—Modelling of Timoshenko beams on elastic 
foundations has been widely used in the analysis of buildings, 
geotechnical problems, and, railway and aerospace structures. For the 
elastic foundation, the most widely used models are one-parameter 
mechanical models or two-parameter models to include continuity 
and cohesion of typical foundations, with the two-parameter usually 
considered the better of the two. Knowledge of free vibration 
characteristics of beams on an elastic foundation is considered 
necessary for optimal design solutions in many engineering 
applications, and in this work, the efficient and accurate variational 
iteration method is developed and used to calculate natural 
frequencies of a Timoshenko beam on a two-parameter foundation. 
The variational iteration method is a technique capable of dealing 
with some linear and non-linear problems in an easy and efficient 
way. The calculations are compared with those using a finite-element 
method and other analytical solutions, and it is shown that the results 
are accurate and are obtained efficiently. It is found that the effect of 
the presence of the two-parameter foundation is to increase the 
beam’s natural frequencies and this is thought to be because of the 
shear-layer stiffness, which has an effect on the elastic stiffness. By 
setting the two-parameter model’s stiffness parameter to zero, it is 
possible to obtain a one-parameter foundation model, and so, 
comparison between the two foundation models is also made. 
 

Keywords—Timoshenko beam, variational iteration method, 
two-parameter elastic foundation model. 

I. INTRODUCTION 

HE use of beams resting and vibrating on elastic 
foundations is common in engineering applications in 

buildings, geotechnical applications, railway applications 
especially for soil-structures interaction, and aerospace 
structures [1]-[4]. For modelling of beams on elastic 
foundations, the Winkler mechanical model is well known, 
where the foundation is modelled using transverse, or, 
transverse and rotational springs, respectively. However, in 
the Winkler model, the springs are independent, so this model 
presents no cohesion, hence making the displacement 
localized directly under the applied load, which is a major 
drawback to the representation of the foundation. 

To improve matters, two-parameter models were 
developed to include continuity and cohesion of typical 
foundations. One of the most popular ones is the Pasternak 
model which takes into account the foundation cohesion by a 
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shear layer of incompressible vertical elements [5].  
Research related to this work includes early studies of 

natural frequencies of a Timoshenko beam on a Pasternak 
foundation [6] and the use of a finite element method to 
analyse free vibrations and transient responses of a 
Timoshenko beam on both Winkler and Pasternak foundations 
[7]. Later studies include Chen et al. [8] who used a mixed 
method that combines the state space method and the 
differential quadrature method for free vibration of Euler-
Bernoulli beams on a Pasternak foundation. Lee et al. [9] 
studied the flexural-torsional free vibrations of finite uniform 
beams resting on a finite Pasternak foundation. Recently, 
Ghannadiasi and Mofid [10] calculated an exact solution for 
natural frequencies of an elastically restrained Timoshenko 
beam on an arbitrary variable elastic foundation using the 
Green function.  

The variational iteration method [11], [12] is used here as 
the method of solution and is capable of dealing with some 
linear and non-linear problems in an easy and efficient way 
[13]. The technique has already been used to solve 
engineering problems such as, the calculation of heat and 
wave-like equations [14], solutions for linear and non-linear 
waves [15], and, to calculate transverse natural frequencies of 
a Euler-Bernoulli beam [16]. 

In the present work, calculations are made to obtain natural 
frequencies of a Timoshenko beam on a Pasternak foundation 
with the results compared with those obtained in literature. 
The effect of the presence of the Pasternak foundation is 
examined, and comparison is also made with the results 
obtained using the simpler Winkler foundation. 

II. GOVERNING EQUATIONS 

The following derivation is based on the Timoshenko beam 
theory, where shear and rotary effects are not negligible, and, 
also the Pasternak foundation model is illustrated in Fig. 1. 

The potential energy of the beam/foundation system is [7] 
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Here, 𝑙 is the length of the beam, 𝐴 is the cross-sectional 

area, 𝐼 is the moment of inertia of the cross section, 𝐸 is the 
modulus of elasticity, 𝐺 is the modulus of rigidity, 𝜅 is the 
shear coefficient, 𝑘௪ is the foundation stiffness coefficient, 𝑘௣ 
is the foundation shear coefficient, 𝑤ሺ𝑥, 𝑡ሻ is the transverse 
deflection, and 𝜃ሺ𝑥, 𝑡ሻ is the beam slope due to bending at the 
axial location and time 𝑡. 
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The kinetic energy of the system is 
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where 𝜌 is the mass per unit volume. The equation of motion 
can be obtained using the Hamilton’s principle 
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Here, 𝛿𝑊 is the virtual work done, 𝑡ଵ and 𝑡ଶ are the times at 

which the configuration is known, and 𝛿 denotes the virtual 
change. On substituting (1) and (2) into (3), two coupled 
equations can be found for the free vibration response 
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Fig. 1 A beam on a Pasternak foundation 
 

TABLE I 
BOUNDARY CONDITIONS FOR TIMOSHENKO BEAM 

B.C. Right-hand side Left-hand side 

C-F 
C-C 
P-P 

𝜑|ఎୀ଴ ൌ 0 
𝜑|ఎୀ଴ ൌ 0 
𝜑|ఎୀ଴ ൌ 0 

Θ|ఎୀ଴ ൌ 0
Θ|ఎୀ଴ ൌ 0 

𝑑Θ 𝑑𝜂⁄ |ఎୀ଴ ൌ 0

𝑑φ 𝑑𝜂⁄ |ఎୀଵ െ Θ|ఎୀଵ ൌ 0
𝜑|ఎୀଵ ൌ 0 
𝜑|ఎୀଵ ൌ 0 

𝑑Θ 𝑑𝜂⁄ |ఎୀଵ ൌ 0 
Θ|ఎୀଵ ൌ 0 

𝑑Θ 𝑑𝜂⁄ |ఎୀଵ ൌ 0 

 

The beam is harmonically excited with an angular 
frequency 𝜔 and  

 

𝑤ሺ𝑥, 𝑡ሻ ൌ 𝑊ሺ𝑥ሻ𝑒௜ఠ௧, 𝜃ሺ𝑥, 𝑡ሻ ൌ Θሺ𝑥ሻ𝑒௜ఠ௧                (6) 
 

where 𝑖 ൌ √െ1. On substituting (6) into (4) and (5) gives 
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The following non-dimensional parameters are now defined  
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The non-dimensional form of the governing equations can 

be written as 
 

ୢమఝሺఎሻ

ୢఎమ െ ఔ

௞ത ೛

ୢ஀ሺ஗ሻ

ୢఎ
െ ൬௞ത ೢିఓ

௞ത ೛
൰ 𝜑ሺ𝜂ሻ ൌ 0,                 (9) 

ୢమ஀ሺఎሻ

ୢఎమ ൅ 𝜈 ቀ
ୢఝሺఎሻ

ୢఎ
െ Θሺ𝜂ሻቁ ൅ 𝛾𝜇Θሺ𝜂ሻ ൌ 0,            (10) 

 
where 𝜇 is the non-dimensional natural frequency, 𝜈 is the 
non-dimensional shear deformation parameter, and 𝛾 is the 
non-dimensional rotary inertia parameter.  

The governing equations for the natural frequencies of a 
Timoshenko beam, resting on a Pasternak foundation, are a 
system of differential equations. These can be solved using 
four boundary conditions, two of which may be prescribed at 
the right-hand side, and, two at the left-hand side. 

Typical boundary conditions for clamped-free (C-F), 
clamped-clamped (C-C) and pinned-pinned (P-P) conditions 
are listed in Table I. 

III. VARIATIONAL ITERATIONAL METHOD 

A. Basic Idea 

To illustrate the basic concept of the variational iteration 
method, consider 

 
L𝑢 ൅ N𝑢 ൌ 𝑔ሺ𝑥ሻ,                                (11) 

 
where L is a linear operator, N is a non-linear operator, and 
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𝑔ሺ𝑥ሻ is a forcing term. According to the variational iteration 
method [5], [6], the following correction functional can be 
constructed 
 

𝑢௡ାଵሺ𝑥ሻ ൌ 𝑢௡ሺ𝑥ሻ ൅ ׬ 𝜆ሺL𝑢௡ሺ𝑠ሻ ൅ N𝑢෤௡ሺ𝑠ሻ െ 𝑔ሺ𝑠ሻሻ௫
଴ d𝑠,  (12) 

 
where 𝜆 is a Lagrange multiplier which can be identified 
optimally via the variational iteration method. The subscripts 
𝑛 denote the nth approximation, and 𝑢෤  is considered as a 
restricted variation, i.e. 𝛿𝑢෤௡ ൌ 0.  

In general, the application of the variational iteration 
method follows three steps: the establishment of the correction 
functional, the identification of the Lagrange multipliers, and 
the determination of the initial iteration. 

B. Application 

To find the closed-form solution for the system (9) and (10) 
is difficult, but the system is in fact amenable to some 
numerical techniques. In this work, the natural frequencies and 
associated mode shapes for a Timoshenko beam resting on a 
Pasternak foundation are found by developing the variational 
iteration method as an eigenvalue problem. To solve (9) and 
(10), the correction functionals are written as 
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On making the correction functional stationary, the 
following conditions are found 
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The Lagrange multipliers 𝜆ଵሺ𝑠ሻ and 𝜆ଶሺ𝑠ሻ can be identified 

from (15) as 
 

𝜆ଵሺ𝑠ሻ ൌ 𝜆ଵሺ𝑠ሻ ൌ 𝑠 െ 𝜂.                        (16) 
 

To start the iterative process, the first term of each series, 
𝜑଴ሺ𝜂ሻ and Θ଴ሺ𝜂ሻ are written as 
 

𝜑଴ሺ𝜂ሻ ൌ 𝑎ଵ𝜂 ൅ 𝑎ଶ,                            (17) 

Θ଴ሺ𝜂ሻ ൌ 𝑏ଵ𝜂 ൅ 𝑏ଶ 
 
where 𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ are unknown constants with some of them 
being determined from boundary conditions. Using the 
iteration formula, the following can be obtained 
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After 𝜑௞ሺ𝜂ሻ and Θ௞ሺ𝜂ሻ are obtained, the solution for (9) 
and (10) can be stated as 
 

𝜑ሺ𝜂ሻ ൌ lim௞→ஶ 𝜑௞ሺ𝜂ሻ ,   Θሺ𝜂ሻ ൌ lim௞→ஶ Θ௞ሺ𝜂ሻ           (24) 
 

As ∞ is not possible, a large number 𝑛 is used according to 
the accuracy required. 

The substitution of (24) into the boundary condition given 
in Table I produces four simultaneous equations, which can be 
given in matrix form as 

 
ሾ𝐴ሿሾ𝐵ሿ ൌ ሾ0ሿ                                   (25) 

 
where ሾ𝐴ሿ is a four by four matrix and ሾ𝐵ሿ ൌ 〈𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ〉். 

For non-trivial solutions, the determinant of the matrix ሾ𝐴ሿ 
must be equal to zero, giving a polynomial for the eigenvalue 
𝜇 and hence 𝜔. The modal shapes associated with the natural 
frequencies can be readily calculated, and in this work, the 
mode shape is normalised using [17] 

 

𝜑ොሺ𝜂ሻ ൌ ఝሺఎሻ

ට׬ |ఝሺఎሻ|మୢఎ
భ

బ

,     Θ෡ሺ𝜂ሻ ൌ ஀ሺఎሻ
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          (26) 

IV. NUMERICAL EXAMPLES 

A. Convergence 

The efficiency of obtaining converged solutions was 
important for this study. An example of the rate of 
convergence is given on Fig. 2 for the case of clamped-
clamped boundary conditions, with 𝑘ത௣ ൌ 5, 𝑘ത௪ ൌ 100 and 
𝛾 ൌ 2.5 ൈ 10ିଷ. As can be seen, the variational iteration 
method is proven to be fast with convergence for the first 
mode obtained after very few iterations. Convergence for 
higher modes took longer time. 
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Fig. 2 Convergence for the first four natural frequencies when 
𝑘ത௣ ൌ 5, 𝑘ത௪ ൌ 100, 𝛾 ൌ 2.5 ൈ 10ିଷ 

B. Clamped-Clamped Boundary Conditions 

The following is for a beam with clamped-clamped (C-C) 
boundary condition of rectangular cross-section and unit 
breath resting on an elastic foundation. The results are given 
for both slender thin beams and short thick beams and it can 
be seen that the natural frequency results for the Euler-
Bernoulli beam agree well with those of [18].  

It can be seen from Table II that the natural frequencies 
increase with the increasing Pasternak foundation parameter 
for a given Winkler foundation parameter. Also, as the beams 
become slenderer, the natural frequency increases for a given 
Pasternak and Winkler parameter.  

 

TABLE II 
FIRST THREE NATURAL FREQUENCIES FOR C-C BEAMS 

𝛾  𝑘ത௪  𝑘ത௣     

   0 5 25 

1 416⁄  
 
 
 
 
 

1 17⁄  

0 
 
 

10,000 
 
 
0 
 
 

10,000 

22.3733    (22.3729) 
61.6728    (61.6853) 

120.903    (120.9120) 
102.454    (102.475) 
117.462    (117.484) 
156.775    (156.901) 

18.190 
41.800 
54.775 
54.834 
73.103 

102.212 

23.6877    (23.7072) 
63.4890    (63.4890) 

122.800    (122.8993) 
102.759    (102.759) 
118.418    (118.440) 
158.332    (158.458) 

19.536 
43.904 
54.878 
54.760 
74.650 

109.202 

28.2971    (28.3024) 
70.2445    (70.2244) 
130.485  (130.6449) 
103.918    (103.917) 
122.189    (122.213) 
164.352    (164.481) 

24.110 
51.380 
55.205 
54.967 
76.913 
106.214 

Results in brackets are those of [18]. 
 
C. Pinned-Pinned Boundary Conditions 

Results using the variational iteration method (VIM) are 
now compared with those obtained using finite element 
analysis [19] for a simply supported (P-P) uniform beam with 
finite length, and 𝑙 ൌ 0.5m, 𝐸 ൌ 210 GPa, 𝐺 ൌ 80.8 GPa, 
𝜅 ൌ 5/6, 𝜌 ൌ 7850 kg/m3. 

Table III shows the natural frequencies for the beam 
without a foundation and comparison of the VIM calculation 
method with results found by the finite element method [19] 
when 70 elements were used. It can be seen again that the 
natural frequencies increase when there is a Pasternak 
foundation, i.e. the presence of the elastic stiffness and shear 
layer increment the beam stiffness, and hence, the natural 
frequencies increase. As mode number increases, however, 
this increase in natural frequency reduces.  

 
TABLE III 

FIRST THREE NATURAL FREQUENCIES FOR P-P BEAMS 

𝛾 ൌ 0.04, 

Mode 
VIM 

𝑘ത௪ ൌ 𝑘ത௣ ൌ 0.0 
VIM 

𝑘ത௪ ൌ 𝑘ത௣ ൌ 2.5 
FEM [19] 

𝑘ത௪ ൌ 𝑘ത௣ ൌ 2.5 
1 
2 
3 

3959.011 
14610.321 
29574.219 

5209.460 
15965.466 
31051.876 

5209.242 
15965.908 
31057.635 

 
Fig. 3 presents the ratio of the natural frequency found for 

the Pasternak foundation (𝑘ത௣ ൌ 10ሻ at various values of 𝑘ത௪ to 

that found for a Pasternak foundation (𝑘ത௣ ൌ 10, 𝑘ത௪ ൌ 0ሻ for 
the first three modes. It can be seen that there is an increase in 
the natural frequencies of the Timoshenko beam as the 
Winkler parameter increases, with the first mode being 
significantly affected. For higher modes increasing the 
Winkler parameter has not such a great effect. Also shown on 
Fig. 3 is the effect of increasing the Pasternak parameter of the 
natural frequencies while keeping the Winkler parameter 
constant. Increase in the Pasternak parameter has more effect 
on the natural frequencies than experienced by increasing the 
Winkler parameter with an increase in the first mode clearly 
affected. The higher modes are also considerably affected by 
the 𝑘ത௉ value.  

D. Clamped-Free Boundary Conditions 

From the variational iteration method, a polynomial can be 
obtained to describe the first mode shape function. The same 
procedure can be employed for other natural frequencies. The 
variation of the first and third mode shapes for various 
Winkler parameters is illustrated on Fig. 4, where the 
Pasternak parameter is set to zero. It can be seen from the third 
mode that, by increasing 𝑘ത௪, both the amplitude and the phase 
of the shape function are both affected.  

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:12, No:9, 2018

918

 

 

 

 

Fig. 3 Increases in natural frequencies due to the Winkler and 
Pasternak parameters 

 

 

 

Fig. 4 First and third mode shapes for various Winkler parameter 
values 

V. CONCLUSION 

Beams resting on a Pasternak foundation are an important 
component of many mechanical, civil and geotechnical 
engineering applications. An accurate knowledge of natural 
frequencies and mode shapes of such components is important 
in engineering practice. Although this problem has been 
already extensively studied, most of the techniques in use are 
based on perturbation or discretization of the governing 

equations, so leading to tedious and sometimes complex 
calculations. An alternative procedure based on the variational 
iteration method is proposed in this paper, and the numerical 
results show that the convergence of the method is efficient 
with the ensuing results agreeing satisfactorily with 
established results found in the literature.  
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