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Abstract—In this paper, vibration of a nonlinear composite beam
is analyzed and then an active controller is used to control the
vibrations of the system. The beam is resting on a Winkler-Pasternak
elastic foundation. The composite beam is reinforced by single
walled carbon nanotubes. Using the rule of mixture, the material
properties of functionally graded carbon nanotube-reinforced
composites (FG-CNTRCs) are determined. The beam is cantilever
and the free end of the beam is under follower force. Piezoelectric
layers are attached to the both sides of the beam to control vibrations
as sensors and actuators. The governing equations of the FG-CNTRC
beam are derived based on Euler-Bernoulli beam theory Lagrange-
Rayleigh-Ritz method. The simulation results are presented and the
effects of some parameters on stability of the beam are analyzed.

Keywords—Carbon nanotubes, vibration control, piezoelectric
layers, elastic foundation.

1. INTRODUCTION

HE carbon nanotubes (CNTs) have been used to reinforce

structures [1]. Unlike the carbon fiber-reinforced
composites, carbon  nanotube-reinforced = composites
(CNTRCs) can only contain a low percentage of CTNs (2-5%
by weight) [2]. The concept of the functionally graded (FG)
has been applied to CNTRCs by Shen [3]. Ke et al. studied
free vibration of FG-CNTRC Timoshenko beam [4]. They
found that linear frequencies of FG-CNTRC beams with
symmetric CNT distribution are bigger than asymmetric ones.
This research then was extended by Rafiee et al. to FG-
CNTRC Euler-Bernoulli beams with piezo electric layers [5].
Yas and Heshmati presented free vibrations and buckling
analysis of CNT-reinforced composite Timoshenko beams on
elastic foundation [6]. Nowadays, because of destroying effect
of vibration on structures, vibration control of structures is one
of favorite subjects for researchers. Using finite element
method, Mahieddine and Ouali formulated a beam with
attached piezoelectric layers [7]. They used Kirchhoff first
order theory for formulation and calculation of lateral strains.
Li et al. [8] analyzed free vibration of functionally graded
material beams with surface-bonded piezoelectric layers in
thermal environment. Vibration analysis of nanotube-
reinforced composite beams resting on elastic foundations was
done by Shen and Xiang [9]. They studied the impact of
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thermal environment on the vibration characteristic of the
beam. Shen and Xiang [10] extended their studies to work on
the impact of thermal environment on cylindrical panels which
are resting on elastic foundation. The forced vibration
behavior of nanocomposite beams reinforced by single-walled
carbon nanotubes (SWCNTs) based on the Timoshenko beam
theory along with von- Karman geometric nonlinearity has
been studied by Ansari et al. [11]. Azadi et al. studied the
active control of a FGM beam under follower force with
piezoelectric sensors/actuators [12]. Yildirim et al. used an
active piezoelectric vibration controller for a Timoshenko
beam [13].

In this paper, the nonlinear forced vibration of FG-CNTRC
beam resting on elastic foundation is investigated based on
Euler-Bernoulli beam theory. And then, it has been controlled
by an active controller. To do this, better piezoelectric layers
as sensors/actuators are attached to the beam. The cantilever
beam is under a follower force from its free end. The material
properties of FG-CNTRCs are assumed to be graded in the
thickness direction, and are estimated through the rule of
mixture. Using Lagrange-Rayleigh-Ritz method and
considering Winkler-Pasternak  Elastic  foundation, the
governing equations of the system is derived. Finally, the
effect of elastic foundation stiffness, follower force and the
vibration controller on stability of the FG-CNTRC beam is
investigated.

II. GOVERNING EQUATIONS OF SYSTEM

As it is shown in Fig. 1, Winkler-Pasternak elastic
foundation is considered. This beam is under follower force
from its free end. Piezoelectric layers are attached to both
sides of the beam and work as sensor/actuator.

Fig. 1 FG-CNTRC beam resting on elastic foundation

It is assumed that the CNTRC is made from a mixture of
SWCNT and an isotropic matrix. Effective Young module and
shear module are calculated as:
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where ET", E5Y' and G' are Young’s modulus and shear

modulus respectively, of CNT, EM™and G™ are the
corresponding properties for the isotropic matrix; n; (j = 1, 2,
3) is the CNT efficiency parameter accounting for the scale-
dependent material properties. V., and V, are the volume

fractions for CNT and matrix and are related by:

Vet +Vp =1 @

Fig. 2 Geometry of CNTs’ distribution in the thickness direction of
X-form beam

The volume fraction of CNT V,,, varies linearly along the
thickness. Relation for V,, and its related geometry (Fig. 2)

are shown below:

. I, -
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where y,, is the mass fraction of CNT, and pCnt and p" are

the densities of CNTs and matrix, respectively. Similarly,
Poisson’s ratio v and mass density p can be calculated by:

V=V vV VT )
P=Von pcnt +V pp"

t m . . .
and v are Poisson’s ratios of CNT and matrix,

where v
respectively.

A nonlinear nanotube reinforced composite Euler-Bernoulli
beam of thickness h, length L and width b is shown in Fig. 1.
Piezoelectric layers are attached to top and down side of the
beam and act as sensors/actuators where their thickness is hy,

length L,, widthb,, density p,, elasticity module E, and

piezoelectric fitness coefficient is e3;. Kinetic energy of the
system is calculated as:

T =T, +T, (6)

(7

u(x, t) is longitudinal displacement in x direction and w(x, t)
is transverse displacement in z direction. Also b, p and f
indices represent beam, piezoelectric layers and foundation
respectively. Y is number of piezoelectric layers, p, equals

density of ngy, layer, X; and X, are coordinates of first and

last point of piezoelectric layer, (-) represents derivative of
parameters to time and H(x) is Heaviside function. And so the
potential energy of the system (O):

0 =0, +0, ®
h
L 2 2
b ow 1 ow
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o h oX
2 )
10
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n=1pzT, (10)
Y aZW 1 Y
+; z6,0E, aXan dv+52, I E, dndv
=1pzT, n=1pzT,
t
0n(2)= ET (2) (1)
()

where P is follower force and d, represents electrical

displacement of couple of piezoelectric layers and calculated
as:

P hon (12)

£pn 1s dielectric constant of piezoelectric materials that is

dependent on n;, layer. According to Lagrange theory,
governing equations of system is as:
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where I' is Lagrangian, q is vector in generalized coordinate
and Q is the generalized force. Non-conservative work of
system equals to:

ow (L,t)

W =P— w (L,t) (14)

To calculate the generalized force:
SN =Q"5q

Based on Rayleigh-Ritz method to solve the governing
equations of system:

w(x,t)=X2q; =@'q (15)

where ¢i , 0; , ® and q are shape function, a time dependent

function in generalized coordinate, mode shape and
generalized coordinate respectively. By replacing (15) into

(6)-(14):
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where F , [M], [K], vV, and v, represent force, mass

matrix, stiffness matrix and piezoelectric sensor/actuator
voltages. F involves piezoelectric actuator force (F, ) and the

force that elastic foundation enters on the beam (F; ). And

kNL and ks
foundation, nonlinear stiffness of Winkler foundation and
shear stiffness of Pasternak foundation. And matrix of mass
equals to:

also k|_ R are linear stiffness of Winkler

M=M, +M, (18)
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show piezoelectric actuator and

sensor layers elastic-electric effect matrixes.
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According to similarity of piezoelectric layers’ properties,
the amount of J,, and J; is equal to J,, and Js, and it is
considered for actuators and sensors respectively.
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P Kp are matrix of piezoelectric patches diagonal
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capacity:

Y
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n=IpzT,

where Y x1 vector, p, for all inputs unless n which is 1 / hpn

equals to zero:

1
Kp, = eplpbply :;IYxY (VX))

where |y, is a Y XY unit matrix, Lyapunov controller is

employed to control vibrations of the beam and make it stable.
This is amount of applied voltage to actuators:

Va = —Kgvs —Kpvg (28)

where K, and K, are certain positive matrixes. To prove

stability of the controller, Lyapunov parameter

1. o1
\Y Lyapunov — EqT Mgq + EqT Kq+
29
.k KT e
2 qd Pelastelecty ~  Pelastelect, q

Kq is certain positive matrix. After deriving Lyapunov

function and replacing M{ in it and by using (29) and

(u :]] Slkp)=K a the following relation would be
a
achieved:
: s 1
v Lyapunov — —H J Kd q
| a| (30)
-
pelas&elecla pelaslelema
sl

K is a certain positive matrix. So, it is proof that

13l
derivative of Lyapunov function has negative sign and
stability of system to control vibration using of LaSalle
constant collection theory is guaranteed.

III. SIMULATION AND DISCUSSION

It is difficult to find an equation that can consider all
geometrical and natural conditions of system. So, some shape
functions are defined instead of displacement parameter to
estimate that parameter [12]. Poly Millet Methacrylate
(PMMA) and armchair (10, 10) CNTs are used as matrix and
reinforcement respectively. Material properties of this
materials and piezoelectric layers are the same as the
mentioned paper [12]. The parameters that are used to derive
natural frequencies are:

h/2 h/2
P

FT:P_ medz 5 110 — j E dZ
or ~h/2 —h/2
o=QL1,/A,,

P, = m2E,, I,,,/1? is critical buckling force for the composite
beam without carbon- nanotubes. I;,, 4,1, and I, represent
Moment of inertia of that composite beam and w is the natural
frequency of homogenous beam. In Table I, dimensionless
frequency of studied FG-CNTRC beam is compared with the
presented results of Yas and Samadi [6].

TABLEI
VALIDATION OF FIRST DIMENSIONLESS FREQUENCY

V. =12% reX

present [6]
First Frequency (o)) 1.7177 1.6000

In the worse condition maximum of error, comparing with
reference is 7%.
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Fig. 3 Impact of follower force on dimensionless first frequency

Looking at Fig. 3, increasing the amount of follower force
decreases the flutter vibrations capacity and increases the
vibration amplitude. Increasing the coefficient of linear and
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nonlinear elastic foundation helps the system to show more
resistance against external loads and the result is less vibration
while increasing the shear vibration stiffness coefficient of
elastic foundation induces a reserve trend to the system and
even causes the system lead to buckling phenomenon faster
than the condition that there is no elastic foundation. In the
process of this experiment, the volume fraction in the x-form
distribution was considered 12%.

— with PZT actuators

— without PZT actuators

[=]

Dimensionless Tip Deflection

05 1 15 2
Time (s)

Fig. 4 Control of FG-CNTRC beam under follower force

In this experiment, the distribution of CNTs in thickness
direction of the composite beam in the X -form, the volume
fraction is considered 17% and the value of dimensionless
follower force is 104. Length of the piezoelectric layers with a
thickness of 1 mm assumed to be 8 cm. as the chat shows
vibrations of the beam are shown by red and the controlled
vibrations are blue. Here the controller system could converge
the beam vibrations to zero. The control system that is
designed for this model is Unstable.

TABLEII
DIMENSIONLESS FIRST FREQUENCIES OF FG-CNTRC BEAM FOR DIFFERENT
STIFFNESSES
K =0 Kn=0 Ks=0
Vo =12% " ’
cn (0] [a)) ™3
X 13.7633 55.8300 108.1748
- K;=10° Kni=10° Ks=0
V . :12% L NL’ S
cn o)) o 3
X 15.7531 56.3262 108.4277
K=10° Kni=10° Ks=10’
V"‘t — 12% L NL’ S
cn (0] [0)) ™3
X 15.6489 56.1002 108.1178

In Table II, the effect of elastic foundation coefficients
when volume fraction of CNTs is 12%, on dimensionless
parameters, the first three frequencies of system

@=QLl,,/A, forone mode of distribution of CNTs (X-
From) in the thickness direction of the beam is displayed.

Three different cases for elastic foundation coefficients were
raised to be shown. As the numbers show existence of linear

and nonlinear elastic stiffness coefficients, increases
systematic frequencies while adding the shear stiffness
coefficient decreases systematic frequencies. It shows that
linear and nonlinear elastic stiffness coefficients increase the
system vibration capacity.

IV. CONCLUSION

In this paper vibration characteristic of a FG-CNTRC beam
resting on elastic foundation has been analyzed and then
controlled by an active controller. The effect of elastic
foundation stiffness, follower force and the vibration
controller on stability of the FG-CNTRC beam is investigated.
The results of this study show that increasing of follower force
increases the stresses of the system and decreases frequencies
of the system. The other parameter that has effect on the
system vibration is elastic foundation. By adding elastic
foundation to the system increases resistance of the system
against external loads totally and frequencies will increase too.
The controlling system works well and converged vibration
amplitudes to zero.
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