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Vibration Analysis of Magnetostrictive Nano-Plate by
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Elasticity Theories
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Abstract—In the present study, the free vibration of
magnetostrictive nano-plate (MsNP) resting on the Pasternak
foundation is investigated. Firstly, the modified couple stress (MCS)
and nonlocal elasticity theories are compared together and taken into
account to consider the small scale effects; in this paper not only two
theories are analyzed but also it improves the MCS theory is more
accurate than nonlocal elasticity theory in such problems. A feedback
control system is utilized to investigate the effects of a magnetic
field. First-order shear deformation theory (FSDT), Hamilton’s
principle and energy method are utilized in order to drive the
equations of motion and these equations are solved by differential
quadrature method (DQM) for simply supported boundary
conditions. The MsNP undergoes in-plane forces in x and y
directions. In this regard, the dimensionless frequency is plotted to
study the effects of small scale parameter, magnetic field, aspect
ratio, thickness ratio and compression and tension loads. Results
indicate that these parameters play a key role on the natural
frequency. According to the above results, MsNP can be used in the
communications equipment, smart control vibration of nanostructure
especially in sensor and actuators such as wireless linear micro motor
and smart nano valves in injectors.

Keywords—Feedback control system, magnetostrictive nano-
plate, modified couple stress theory, nonlocal elasticity theory,
vibration analysis.

[. INTRODUCTION

ANOSTRUCTURES have increased considerable

attention among the experimental and theoretical research
communities and in recent years, mechanical, electrical, and
chemical properties of nanostructures have drawn the attention
of various researchers. One of the typical structures of nano-
systems is nano-plates, which are two-dimensional and feature
superior mechanical characteristics compared to conventional
engineering materials. A vast area of novel applications of
these nanostructures is foreseen in the coming years. These
include aerospace, biomedical, bioelectrical, superfast
microelectronics, etc. Understanding the accurate mechanical
and physical properties of these nanostructures and their
impacts on its performance and reliability are thus necessary
for its production applications. Also, nano-plates have
applications in various fields of nanotechnology, for example
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in nano-electromechanical devices, they can be potentially
exploited as bio and mechanical sensors, electro-catalysts,
DNA detectors, drug deliverer, and energy storage systems
(11, 2].

Magnetostriction is the change of ferromagnetic materials
shape by elongating or contracting in the direction of the
magnetic field. Magnetostrictive materials (MsMs) such as
iron, ferrite, nickel, cobalt and their alloys such as Terfenol-D
can provide large strain and quick response; also, these
materials are appropriate in providing giant forces, strains,
high-energy densities, noise, and vibration control, and have
applications in the development of fusion reactors,
communications equipment, and computers [3]-[5]. Therefore,
MSsNP can improve the properties of plates and it has different
applications at various means in leading years. The following
papers are a small part of done works in this field.

Hua et al. [6] first introduced and described
magnetostriction and the history of MsM. After that, they
reviewed the recent developments of both rare earth and non-
rare earth MsM and presented the tendency of their
development. An application of MsM, analysis of thermal
vibration and transient response of them by using the
generalized DQM was investigated by Hong [7], [8]. He
examined some parametric effects on the Terfenol-D
functionally graded material plates such as shear correction
coefficient  values, the thickness of a mounted
magnetostrictive layer, control gain values, temperature of the
environment, and the effect of different mechanical boundary
conditions. Pradhan and Kumar [9] proposed the small scale
effect on the vibration analysis of orthotropic single-layered
graphene sheets embedded in an elastic medium that was
obtained using nonlocal elasticity and classical shear
deformation plate theory. They considered the principle of
virtual work; the governing differential equations were derived
and solved by DQM for various boundary conditions. Arani et
al. [10] described the free vibration of rectangular nanoplate
made of MsMs on orthotropic patterns of the Pasternak
foundation. Reddy’s third-order shear deformation theory
along with Eringen’s nonlocal continuum model was utilized
to derive motion equations at the nanoscale using Hamilton’s
principle. A size-dependent model for bending and free
vibration of functionally graded Reddy plate based on a MCS
theory was analyzed by Thai and Kim [11]. They resulted that
the inclusion of small scale effects increases plate stiffness
and frequency. Akgoz and Civalek [12] developed modeling
and analysis of micro-sized plates for bending, buckling, and
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vibration resting on elastic medium using the MCS theory and
Hamilton’s principles. Arani et al. [13] presented free
vibration of the magnetostrictive sandwich composite
microplate with magnetostrictive core and composite face
sheets. The MCS theory was taken into account to consider the
small scale effects.

In this research, the free vibration response of the
rectangular nanoplate made of MsM by FSDT is studied and
two different theories are compared to consider the small scale
effects.

I1. GOVERNING EQUATIONS

An embedded MsNP system by two parameters foundation
under the in-plane force » y is considered in Fig. 1 in
N,

which geometrical parameters of length a, width b and
thickness h are indicated and the Cartesian coordinate system
(x,y,2) is introduced.

Ny

7224

—
—_—
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Winkler foundation

Transvers Magnetic Field

Fig. 1 Geometry and coordinate of MsNP

A.FSDT

According to the FSDT of the plate, the transverse shear
strain is assumed to be constant and shear correction factors
are introduced to correct the discrepancy between the actual
transverse shear force distributions, the displacement
components of the middle surface along the x, y, and z axes,
shown by ;7 7 7 can be expressed as [14]:

U(x,y,z,t):uo(x,y,t)+zgol(x,y,t)
V(x,y,z,t):vo(x,y,t)+z¢2(x,y,t) (1)
W(x,y,z,t)=wo(x,y,t)

where u,(x,y,1), vo(X,¥,1), wo(x,y,t) are displacements along
with (x, y,z) directions and ¢, (x,y,t),p, (x,y,¢) are rotations

about x and y axes.
The linear strain field for FSDT is obtained by using
Hooke’s law that can be represented as:

&y :%(ulﬁuﬁ) 2)

B. Constitutive Equations

Stress-strain and magnetic field relations for MsMs are

shown in (3) [15]:

Oxx 91 g2 13 0 0 0 | %
Oy 0 0 0 &
G)» 421 922 923 0 0 . g” 00 e 0
zz | _ 931 4932 933 = o o en 0 (3)
Oxy 0 0 0 gg4 O 0 || &y
0 0 ey H,
xz 0 0 0 0 qss 0 &

0 0 0 0 0 g6l

where oy and g; are stress and the terms of engineering

constants, respectively.

E(-v) Ev Ev ]
(1-20)1+v) (1-2v)(1+v) (1-2v)1+v)
Ev E(1-v) Ev 0 0
(1-20)1+v) (1-20)(1+v) (1-2v)1+v)
Ev Ev E(1-v) 0 0 0
(1-20)1+v) (1-20)(1+v) (1-2v)(1+v)
ay = £ “4)
0 0 0 0 0
2(1+v)
0 0 0 £
2(1+v)
0 0 0 0 _£_
L 2(1+v) |

£ and Uare Young modulus and Poisson’s ratio, also ¢ are

magnetostrictive coupling modules determined as [15]:

;) =5, c0s” O +&5,8in* 0
3, =&, 5in” 0 +6;, cos’ 0 5)

ey, = (€3, —e3,)sinfsin @

where 6 represents the direction along which a given magnetic
anisotropy may have been induced. H, is the magnetic field
intensity and can be expressed as follows [15]-[17]:

H. =KL,[(x,y,t)=KCC(t)M (6)

ot

where g, , I(r) and C(¢) are the coil constant, coil current and
the control gain in which K C(t)is introduced as velocity
feedback gain.

C.Strain Energy Based on Nonlocal Elasticity Theory
(Eringen’s Theory)

The nonlocal elasticity theory is assumed that the stress at a
point is a function of strains at all points in the continuum. The
nonlocal constitutive equation given by Eringen is [18]:

(1—uv2)<7;;’ =0il/- for:i,j=x,y,z @)

wherea;j’.’ andal.’j are the nonlocal stress tensor and local

stress tensor, denotes a constant appropriate to each

€0
material, and a is an internal characteristic length of the

material. Consequently, ¢yqis a constant parameter andv?is
the Laplacian operator in the above equations.

According to (7) and the magneto-mechanical coupling for
isotropic MsM, stress-strain relation can be observed in a
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matrix (8) [15], [18]:

00 ey 0
[Ulj _yvzo_”}:[qil_:l{gy}— 0 0 e O ®)
0 0 ey ||H.

Therefore, the strain energy of an elastic body for
rectangular nano-plate based on Nonlocal elasticity theory is
expressed as [19]:

1
2/

ba
-” xxsxx+o- £y 0" P nyxy+r"‘xz;/xz+r”‘ﬂyﬂ)dxdydz (9)
00

o —1=

D.Strain Energy Based on MCS Theory

Based on the MCS theory, the density of strain energy is a
function of curvature (conjugated with couple stress) and
strain (conjugated with stress); the strain energy in an isotropic
linear elastic material is given by [20], [21]:

1h/2 ba
U== [ [[ 6, +200 2, ,)dx dy ez (10)

ij @ jk
2711/20()

where ; and G are material length scale parameter and shear
module; also, i is symmetric curvature tensor which is

defined as [21]:

—20,40,), 0 =e,u,, (an

1T ijk
where € is the permutation symbol.

E. Kinetic Energy

The kinetic energy of the rectangular plate is calculated as
[19]:

e L)) o) (o e 2

where p and A are the mass density and area of the MsNP.

F. In-Plane Forces

Rectangular plates are usually subjected to in-plane forces;
therefore, the in-plane stresses effects must be considered in
their analysis and vibrations. Uniform in-plane forces Nx and
Ny are applied in x and y directions as shown in Fig. 1 and
calculated as [22]:

F,—N<

(13)

G. Elastic Medium

Pasternak foundation is capable to consider transverse shear
loads and normal loads. The effect of surrounding elastic
medium on the nano-plate which is simulated with Pasternak
model is considered as follows [23]:

ow 62W

Fu = k¥ ko (Gt 25 (14)

where k, and k. are the Winkler modulus for a normal load

and the shear modulus for transverse shear loads.

H. External Work

The external work due to in-plane forces and the elastic
medium is calculated as:

ba ba
1 1
2:5” F, W dxdy +5” Fy W dxdy (15)
00 00
1. Hamilton’s Principle
In this step, Hamilton’s principle is employed to obtain the
motion equations and corresponding boundary conditions.
This principle can be expressed as follows:

5]%[(]—(1( +2)]dt =0 (16)

i

where su, sk andgsy are a variation of strain energy, the

variation of Kinetic energy and variation of external work.
Substituting (9)-815) into (16) for FSDT and afterward using
dimensionless parameters introduced in (17)-(19):

Both theories (4”]):[22}’ (U,V,W):[“—O,V—”,W—“], )
b a b h
hhaly o 4 2 o 95
(a..7) = ( bb}ﬁ W T %t

K :70,1\/* :Nl N*J:N—J:_E E
¢ aE T aE ) a\l p,
Only Nonlocal u u 2 18
nly Nonloca en=te y=tce,y (18)
theory a b
Only couple LO:L", ¢ -G 19)
stress theory a E

J. Motion Equations
The motion equations for nonlocal elasticity theory and

FSDT are obtained by setting the coefficient
SU 6V oW ,5¢,,6p, €qualto zero as:
oU: U 1 dW dv_
4265*“/7 -Ona—~ az Qoo dnd;“ -05a dl]d{
_dU d'u AU 1, L dW (20)
Y 7ae”dr2d427mlldrquz+563'a dede "
SV dW  10g4a d¥
Qs"ﬁdz]d;’ Qllﬂd”d{_QZZﬁW_ETE
ad¥ _ae, dY AV 1o o pdW (21)
ae  y acdc Py i 2% ﬁdrdn_o
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III. SOLUTION METHOD
o : Lag ™ Lo p J Lo a1 L0 ~L0upa In this study, DQM has been utilized to solve motion
Sac . . . .
¢ ac’ equations and obtain frequency. In the DQM, the derivatives
1 d’¢ 1 7d 4 1, 0 d'g Lot dg (23) q q
1o p 1 _ . . . )
29 a0 e 0 a2 adar ) of a function are approximated with weighted sums of the
function values at a group of grid points. Thus the partial
St Lo D g padh Lo e th Lo 2 derivatives of a function F (representingw) at a given point
2 dn 24777 Tdnd¢ 12 dndg 247" d¢
PR Y S NS U (24)  are expressed as [24]:
P TRl R e TR e Y aan

Also; the motion equations for MCS theory and FSDT are
obtained by setting the coefficient su ,ov 5w ,5¢,,5¢, €qual

k

o'F Y (k)
. =;AMF R

(30)

to zero as: where N is the number of grid points in the radial direction
) and A is the respective weighting coefficients matrix.
SU: 0,02Y 0.a @ 277{2 o
4 66 amg Pt 67][){ it m;ag Applylng DQM and considering boundary conditions
gy OV 1 one LU yields:
4@ ﬂy" ol 4 oG g o Yor (25)
. )0
+1LOZG ﬁY%“flLoG b7 U 7 +lea“~V~V =0 [Abb] [Abd] { } _ {B}
4 on*es? 4 ont 2 0104 = N (3 1)
[Aa] [Aulllida}) ({0}
ov: o
0n— Q.ﬁ **Q ﬂ** Qﬂ . . . "
2o 2 o 2 anag 2 aqog in which {B}is boundary condition (:boundary. d:domain )-
Lyap 80 1) e, OU _Qﬂﬂ ady :
a0 ez JLGA ol y ol 7 e (26) The eigenvalues of (31) are the frequency of the system.
leGaaV ILZG*,B o ﬁ
T e Papar 2 202 "z@r] IV. NUMERICAL RESULTS AND DISCUSSION
. \ In this study, the vibration analysis of MsNP by two
o Qb %, stag—@—%ngG*ﬂy 52¢1 :‘ LUzG*aL@ different theories for simply support boundary conditions is
J moc % investigated. Table I shows the material properties of MsM.
77L2G 20¢271LZG* 0¢z 26W
By PR ool TABLEI
o Lo ow +1L G 9 W ELASTIC PROPERTIES OF TERFENOL-D [8]
. ;2 7 antect 40 act (27)  Properties £ (Pa) v plkg Im3) e31=e32
Lo e koW g dZVZ Terfenol-D 309 025 9.25x10°  442.55N /(m.A)
4 « d d?]
KW +a‘9 W +N! d Fig. 2 shows the variation of dimensionless natural
or’ “a frequency versus thickness ratio (& ) by using MSC theory
S , N , and nonlocal theory. a changes from 0.01 to 0.2 for thin and
% *%Qnaz%Jrsta%u%LozG*ﬁz 802;22 -Ly’G" Z% thick plates and this figure demonstrates that the increasing
7 . . X
Lot RV N thickness ratio leads to an increase of frequency (vk /m ) due
L G 7_ﬂ2' 'Bm,ag_EQ“ ﬂa,,ag to the effect of mass (m = pa.b.h) and moment of inertia (
o OW 1, . W1 A 1 o .
—L,? —L,3G @~ — 2 - —  pp?) and consequently stability of MsNP increase.
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3, 5‘23& Ly 26" 52'12 ,%Qm 7 521”21 Also, it is obvious that the frequency of nano-plate by using
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Fig. 2 Variation of dimensionless natural frequency versus thickness
ratios in MCS and nonlocal theories ( y =1, K,C(¢) =10* )

Fig. 3 illustrates the effect of the magnetic field on MsNP
by changing the velocity feedback gain. It is worth to mention
that when the MsMs are subjected to the magnetic field, they
deform due to its reciprocal nature. As can be seen from the
figure, the frequency of MsNP decreases with increasing
velocity feedback gain from x,C(r)=10* 10 10°, especially at

MCS theory.
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ig. 3 Effect of magnetic field on the dimensionless frequency in
MCS and nonlocal theories ( y =1, ¢ =0.1 )

Figs. 4 and 5 depict the effect of the length scale parameter
in the MCS where it changes from 0 to 0.1 in different aspect
ratios. It clearly shows that the frequency increases with the
increase of length scale parameter (Z,) at MCS theory and it

decreases with the increase of length scale parameter (e, ) at

Eringen's theory. The explanation might be that couple stress
is needed to generate the gradient of rotation; the stiffness
owing to the couple stress effect is added to the classical
stiffness; thus, the total stiffness of the nano-plate is larger
than that of its classical counterpart (L,=0). Undoubtedly,

with the increase of length scale parameter, the couple stress
effect becomes more significant, therefore the stiffness of the
nano-plate increases, which leads to the increase of the
frequency and more stability while Fig. 5 shows that the effect
of size in nonlocal theory which this figure has opposite
results of MCS theory. Physical intuition reveals that
increasing nanoscale stress leads to increasing the stiffness of

nanostructure which is firstly established by Eringen's theory
[10] while many papers [21], [23] have concluded otherwise.
On the basis, MCS theory is more accurate than nonlocal
theory in such problems. It is obvious that like thickness ratio,
aspect ratio also increases the dimensionless frequency of
MsNP.

3 T T T T

25k | —#—=1 4

Dimensionless Frequency(m)
n
T
4

0.5%

] I I L L I L L I I
1} om 0.0z 003 0.04 00s 0.06 0.0v 0.os 0ng 0.1

Fig. 4 Effect of size on the dimensionless frequency in the MCS
theory (¢ =0.1, k,C(r)=10* )
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Fig. 5 Effect of size on the dimensionless frequency in the Nonlocal
theory ( ¢ =0.1, k,C(t)=10* )
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Fig. 6 Variation of dimensionless frequency versus length scale
parameter in different in-plane forces (¢ =0.1, =1, K,C(t)=10%

The effect of mechanical in-plane loadings is especially
studied in Fig. 6; the result shows that in-plane forces change
effectively the vibration response of embedded MsNP. Since
the in-plane forces are vector quantity, the positive value
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(N!,NI>0) indicates the compression force and negative
Ny
value (y* n’<o0) shows the extensional or tension force

where in-plane compression forces decrease the dimensionless
frequency and cause the instability of the system, but tension
force increases the frequency and more stability.

TABLE II
DIMENSIONLESS FREQUENCY FOR DIFFERENT WAVE NUMBERS

( y=lLa=01K,C(@)=10")

Dimensionless frequency n=1 n=2 n=3 n=4
Eringen theory (e, =0.06)  0.3841  0.6827  0.9690  1.2081
MCS theory (L, =0.06) 09893  2.2637  4.1219  6.4305

All of the figures in the present work were plotted for the
first wavenumber, but at Table II, the natural frequency has
been plotted for wavenumbers from 1 to 4. The natural
frequency increases with an increase in the wavenumber.

V.CONCLUSION

At the present work, the free vibration of MsNP in the
magnetic field was studied. Considering nonlocal elasticity
and MCS theories, FSDT were utilized and motion equation
was derived using Hamilton’s principle. The vibration
equation was solved by DQM in simply supported boundary
conditions. The effects of various parameters such as aspect
ratio, thickness ratio, small scale parameter, magnetic field
and compression and tension loads were investigated. The
brief result of this study is listed as follow:

e  MSC theory is more accurate than nonlocal theory in such
problems.

e Increasing the aspect and thickness ratio leads to an
increase of natural frequency due to the effect of mass and
moment of inertia.

e Increasing tension force leads to an increase of natural
frequency while the compression force has a contrary
effect.

e Velocity feedback gain as a control parameter can be used
to reduce the frequency of MsP and control its vibration
behavior.

According to the above results, MsNP can be used for
active noise and vibration cancellation systems in nano/micro
smart structures.
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