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Abstract—Vertex configuration for a vertex in an orthogonal 

pseudo-polyhedron is an identity of a vertex that is determined by the 
number of edges, dihedral angles, and non-manifold properties 
meeting at the vertex. There are up to sixteen vertex configurations 
for any orthogonal pseudo-polyhedron (OPP). Understanding the 
relationship between these vertex configurations will give us insight 
into the structure of an OPP and help us design better algorithms for 
many 3-dimensional geometric problems. In this paper, 16 vertex 
configurations for OPP are described first. This is followed by a 
number of formulas giving insight into the relationship between 
different vertex configurations in an OPP. These formulas 
 will be useful as an extension of orthogonal polyhedra usefulness on 
pattern analysis in 3D-digital images. 
 

Keywords—Orthogonal Pseudo Polyhedra, Vertex configuration  

I. INTRODUCTION 
N Orthogonal Pseudo-Polyhedron (OPP) is a pseudo 
polyhedron in which every edge is parallel to one of the 

three orthogonal directions. In many practical applications, 
OPP provides a simple yet effective approximation to many 
important geometrical objects. The use of OPP arises 
frequently in practice, for instance in modeling buildings 
which are largely orthogonal shaped. Hence OPP deserves 
special attention.  

Like its sub-class, orthogonal polyhedron, OPP has many 
applications in such area as connected component labeling[1], 
and pattern analysis in digital images and VLSI layout[2]. 
Often they are studied with respect to partitioning problem[3], 
and visibility problem[4].  

An OPP can be described in terms of its properties 
including vertices, edges, faces, angles between edges and 
faces, and vertex configurations. Understanding the 
relationship between these properties will give us insight into 
the structure of OPP and help us design better algorithms for 
many 3-dimensional geometrical problems.  

Each vertex in an OPP can be characterized by its vertex 
configuration which is defined by the number of adjacent 
edges, dihedral angles, and non-manifold components meeting 
at the vertex. 

In this paper, a list of sixteen possible vertex configurations 
in an OPP is identified and discussed. Their quantitative 
relationships are conjectured. As there are large numbers of 
vertex configurations, to simplify the presentation, the OPPs 
are divided into a number of groups based on their maximum 
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degree of vertices. The quantitative relationship for each 
group is discussed. We also present an algorithm to prove that 
any OPP can be decomposed into a number of orthogonal 
prisms. 

II. PRELIMINARIES 

A. Terminologies 
A polygonal curve is a simple closed curve that consists of 

a finite and contiguous number of line segments. A polygon is 
a closed and bounded region of a plane whose boundary is a 
polygonal curve. A vertex of polygon P is a point on its 
boundary, and an edge is a line segment on the polygon’s 
boundary that connects two vertices. Two vertices connected 
by an edge are adjacent, and the edge is said to be incident on 
the two vertices[5]. An orthogonal polygon is a polygon 
whose boundary sides are either parallel or perpendicular to 
each other. Clearly all corners of a boundary are either of 900 
(convex) or 2700 (concave) [6].A pseudo-polyhedron is a 
finite collection of planar faces such that (a) every edge has at 
least two adjacent faces, and (b) if any two faces meet, they 
meet at a common edge [7]. However, there is a possibility 
that two faces meet at a common vertex. To include this 
scenario, in this paper, we extend the definition of the pseudo-
polyhedron by modifying condition (b) in the above 
definition: if two faces meet, they meet at a common edge or 
at a common vertex without sharing a common edge. An edge 
that belongs to exactly two faces is called two-manifold edge, 
and a vertex that is the apex of only one cone of faces is called 
a two manifold vertex.  Conversely, a non-manifold edge 
belongs to more than two faces, and a non-manifold vertex is 
the apex of more than one cone of faces [8]. A cone is defined 
as a three-dimensional geometric shape that tapers smoothly 
from a flat base to a point called the apex. With our extended 
definition, a pseudo-polyhedron may have non-manifold 
edges as well as non-manifold vertices.Polyhedron is a sub-
class of pseudo-polyhedron in which every edge is two-
manifold, and every vertex is two-manifold. Hence, the 
boundary of a polyhedron contains two-manifold edge and 
two-manifold vertex only, and this kind of boundary is called 
two-manifold boundary. A polyhedron divides the space into 
two regions, one of which, called the interior, is continuous 
and finite [9].  A simple polyhedron is a polyhedron that can 
be deformed into a solid sphere; that is, a polyhedron that, 
unlike a torus, has no holes [10].An orthogonal pseudo-
polyhedron is defined as a pseudo-polyhedron in which every 
edge is parallel to one of the three orthogonal directions. In an 
OPP, a non-manifold edge is adjacent to exactly four faces 
and a non-manifold vertex is the apex of exactly two cones of 
faces [3]. One of the most widely studied classes of pseudo-
polyhedra is orthogonal polyhedra (OP) (sometimes also 
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called isothetic polyhedra). An orthogonal polyhedron is 
defined a polyhedron in which every edge is parallel to one of 
the three orthogonal directions [7]. Fig. 1(a) and 1(b) show an 
instance of OP and OPP respectively. The OPP in Fig. 1(b) 
has two non-manifold edges and one non-manifold vertex. 
 
 
 

 
 

   a          b 
Fig. 1 (a) An OP, (b) An OPP 

A simple orthogonal pseudo polyhedron, or simple OPP for 
short, a simple orthogonal polyhedron in which every edge is 
parallel to one of the three orthogonal directions. There are 
two kinds of angles in an OPP: facial angles and dihedral 
angles. Two edges incident to a common vertex may be on the 
same face. In such case, the angle between the two edges is 
referred to as a facial angle of the face. Dihedral angle is the 
interior angle between two faces meeting at a common edge 
[11].In an OP, any two adjacent faces form an interior 
dihedral angle and there are only two possible values for such 
a dihedral angle. Either the angle is  900, which is called 
convex dihedral angle, or the angle is  2700, which is called 
concave dihedral angle.  However, in an OPP, two adjacent 
faces may not always be capable of forming a dihedral angle 
due to the presence of non-manifold edge or non-manifold 
vertex. The vertices of an OPP can be classified into a number 
of groups based on the number of adjacent edges, the number 
of concave dihedral angles, the number of non-manifold 
edges, and whether the vertex is non-manifold or not. Each 
group can be identified by a unique label which is called as 
vertex configuration. For example, if a vertex in an OPP has 
four edges, two concave dihedral angles, one non-manifold 
edge, and no non-manifold vertex, then the label for the vertex 
is V42-10. For any manifold vertex, its label can be shortened 
to three digits. For instance, the aforementioned vertex can 
also be labeled as V42-1 instead of V42-10. 

B. Previous Results 
Juan-Arinyo observed that, in an orthogonal polyhedron, a 

vertex has either three, four, or six incident edges[12]. For 
example, in Fig. 2a and 2b, vertex v has three faces, while in 
Fig. 2c and 2d, vertex v has four and six faces respectively.  

 
 
 
 

 
 
 
 
 

 
 

Fig. 2 Vertex v has three faces in a or b, four faces 
in c, and six faces in d 

By examining each interior dihedral angle at vertex v in the 
above four orthogonal polyhedra, it is easy to establish that, in 
Fig. 2(a), 2(b), 2(c), and 2(d), the number of dihedral angles at 
vertex v that are 2700 is 0, 2, 2 and 3 respectively. 

Voss classified the orthogonal polygon boundary into the 
inner or outer boundary based on the relationship between 
concave and convex vertices in 2D digital image [13]. Yip and 
Klette mentioned that an OP may also have an outer boundary 
as well as an inner boundary [2] if the OP has a hole inside.  

For simple OP where there is only outer boundary, Yip and 
Klette established a formula on the relationship among the 
different vertex configurations  in an orthogonal polyhedron 
can be characterized by as the following formula due to Yip 
and Klette [2]: (HA+HG) –(HC+HE) – 2(HD1+HD2) =8, 
where HA, HG, HC, HE, HD1 and HD2 denote the number of  
V30, V33, V31, V32, V42-0, V63-0 types of vertices in the 
orthogonal polyhedron respectively. For an orthogonal 
polygon, the relationship between the number convex vertex 
(HC) and reflect vertices (HR) is:  HC-HR = 4. 

The first formula is useful for analyzing the boundaries of 
simple orthogonal polyhedra. The second formula can be used 
to analyze polygonal boundary. Yep and Klette suggested that 
the first formula can be used in 3D pattern analysis by 
providing a necessary condition for having traced a complete 
3D surface of a simple OP [2]. 

III. VERTEX CONFIGURATIONS FOR OPP 
In an OPP, each edge is parallel to one of the three 

orthogonal directions. Therefore, for each vertex in an OPP, 
there are at most six distinct incident edges. At the same time, 
there must be at least three incident edges for each vertex to 
be in three-dimension. Hence the number of incident edges of 
any OPP vertex ranges from three to six. In this paper, an OPP 
vertex with n incident edges is denoted Vn (n = 3, 4, 5, 6), and 
from now on these vertices are referred to as V3, V4, V5 and 
V6 respectively.  

For a given number of edges, an OPP’s vertex may have 
one of several possible configurations depending on the way 
in which faces are formed by edges incident to the vertex. 
Based on this fact, many possibility shapes of OPP could be 
constructed for a given number of edges. 

  Overall, there are 255 shapes possibility (Sp) of OPP 
where each OPP’s shape is composed by at most eight cubes 
in which each cube shares at least a vertex with others. The 
number of shapes possibility is achieved from the formula: Sp 
= 82- 1, where 8 is the number of frames that will be occupied 
by cubes , 2 is the number of possibility to each frame to be 
occupied, and 1 is a the number of possibility for the frame 
having null cube.  Some OPP may have a same shape; hence, 
we can group them as one shape of OPP. The total number of 
different OPP’s shape is stated in following lemma. 

 
Lemma: There are 16 different shapes of OPP that can be 
constructed by at most eight congruent cubes. 

Proof :Let B a cubical frame, and it can be composed of eight 

a b 

v v
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smaller cubical frames in the same size f1, f2, …, f8. We 
group those smaller frames into button group and top group. 
The member of bottom group is f1, f2, f3, and f4; meanwhile, 
the member of top group is f5, f6, f7, f8.  

We construct OPPs by putting a number of cubes ranges from 
one to eight into B. Each frame in the both groups can be 
occupied by a cube that has the same size with a smaller 
frame. Let f11, f12, f21 and f22 represent frames in first row 
and first column, first row and second column, second column 
and first row, and second row and second column, 
respectively in bottom and top side. A cube c1 is adjacent to a 
cube c2, if c1 and c2 share a face. c1 is diagonally adjacent to c2 
if they share an edge. Two cubes are said an interstitial cubes 
if they share a vertex only. Three cubes c1, c2, c3 are said a 3-
consecutive cubes if a cube is adjacent to two other cubes. 
Four cubes c1, c2, c3, c4 are said a 4-consecutive cubes if each 
cube is adjacent to any two other cubes. We make several 
premises, PR1, PR2, PR3, PR4, and PR5 for helping us to 
group OPPs as follows: 

PR1.  Two adjacent cubes are congruent with any two other 
adjacent cubes.  

PR2. Two diagonally adjacent cubes are congruent with any 
two other diagonally adjacent cubes. 

PR3. Two interstitial cubes are congruent with any two 
interstitial cubes. 

PR4. A 3-consecutive cubes is congruent with any 3-
consecutive cube. 

PR5. A 4-consecutive cubes is congruent with any 4-
consecutive cube. 

Table I in the appendix shows how all possibilities of OPPs 
are constructed by putting at most eight cubes into B, and 
there are 256 ways to occupy a cubical frame with at most 
eight congruent cubes. We do not consider a frame with zero 
number of cubes as an OPP, hence the total possibility number 
of OPP’s shape = 255, and they are distributed in twenty two 
different shapes and sizes of OPP. OPPs shape in numbers: 2, 
3, 14, 23 have a similar shape; hence, we group them as a 
shape. OPPs shape in numbers; 4,5,15 also have a similar 
shape, and we put them as a shape. To conclude, there are 
sixteen different shape of OPP, and it means there are sixteen 
kinds of vertex configurations in OPP.           � 

An OPP vertex with four edges (V3) has four possible 
configurations. Every vertex is two-manifold vertex and every 
edge is two-manifold edge. The four vertex configurations of 
V3 are illustrated in Fig. 3. 

 
 

 
 
 
 
 

 
Fig. 3 Four possible vertex configuration for V3 

 
An OPP vertex with four edges (V4) has four possible 

configurations, only one of which has no non-manifold edge. 
The four vertex configurations of V4 are illustrated in Fig. 4. 
 

 
 
 
 
 

 
 

Fig. 4 Four possible vertex configurations for V4 
 
Meanwhile, an OPP vertex with five edges (V5) has two 

possible vertex configurations, and both of them have non-
manifold edge. The two vertex configurations for V5 are 
illustrated in Fig. 5. 
 

 
 
 
 

Fig. 5 Two possible vertex configurations for V5 
 

Any OPP vertex with six edges (V6) has six possible 
configurations. One of them has no non-manifold edge or 
non-manifold vertex. Three of them have non-manifold edges 
but not non-manifold vertex. Two of them have non-manifold 
vertex but not non-manifold edge. All vertex configurations 
for V6 are shown in Fig. 6.  
 

 
 
 
 

 
 
 
 

 
 

Fig. 6 Configurations a vertex having 6 edges in OPP 

IV. VERTEX CONFIGURATIONS RELATIONSHIP 
In this section we prove a lemma saying that any OPP can 

be constructed by combining two or more orthogonal prisms. 
We also illustrate the sixteen different joining operations and 
use them as a tool of proof on the relationship among the 
vertex configurations. 
 

A. Constructing an OPP 
Lemma 2: Any OPP can be decomposed into a number of 
orthogonal prisms.  
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V41-2
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V50-1 V54-1 
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V63-V63-0
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Proof:   We prove this lemma by an algorithm. OPP can be 
represented by their extreme vertices that are the ending 
vertices of all the OPP brinks. Brink is defined as the longest 
uninterrupted segment, built out of a sequence of collinear and 
contiguous two-manifold edges of an OPP [3]. Based on these 
definitions, the members of extreme vertices are  
V30,V31,V32,V33,V40-1,V43-1, V60-3, V63-3. 
The following is the algorithm for decomposing an OPP P 
into rectangular prisms. 
1.    Calculate the value of dim variable of P by counting the 

number of different X-coordinate, Y-coordinate, and Z-
coordinate. An OPP is called has multi-plane if the 
number of different coordinates along any axis is at least 
three. If each direction has multi-plane then assign dim = 
3. If two of them has multi-planes then dim =2, and dim 
=1 for one multi-plane. If each axis has no multi-plane 
then dim=0, it means that P is orthogonal prism. 

2.    If dim=0 then add P as orthogonal polyhedron.  
3.    If dim > 1 then 

a. Let m1, m2, m3 be multi-plane on P. Sort vertices of P 
according to the axis that has m1, and then it is 
followed by the axis having m2 (if any), and by the axis 
having m3 (if any). 

b. Determine SP = {sp1, sp2,...spi) where SP is a 
collection of non empty splitting plane equations, and 
spi is the ith splitting plane equation.  

c. Cut P at each splitting plane. P is represented by brinks 
in which each brink has two ending point, Vb and Ve 
respectively. Group brinks as the following rules:  

IF Vb < s && Ve <= s THEN GroupBrink(Vb,Ve,Q) ENDIF 
IF Vb >= s && Ve > s THEN GroupBrink(Vb,Ve,R) ENDIF  
IF Vb < s && Ve >s THEN  

GroupBrink(Vb,s,Q) 
GroupBrink(s,Ve,R)  

ENDIF 
d. Reduce the value dim by 1, and apply the steps 2 and 3 
e. If SP has more than one splitting plane, then continue 

to cut P at the next splitting plane (repeat the step from 
3c). � 

Lemma 3: Every OPP can be constructed from one or more 
orthogonal prisms. 
 
Proof: It is proven in lemma 2 that any OPP P can be 
decomposed into a number of orthogonal prisms, so we can 
compose reversely all orthogonal prisms to construct P.  � 

B. Joining Operation 
We may say that V30, V31 and V5-1 vertices are basic 

vertex configurations because a new vertex configurations can 
be obtained by joining one two kind of these vertices, or by 
joining one kind of these vertices with another OPP’s 
properties such as point on an edge, or point in the interior of 
a surface. For example, if a V30 vertex is joined with a point 
on an edge, then the result is a V31 vertex. In this section, we 
explore how to get the sixteen vertex configuration based on 
the basic vertex configuration and other properties of OPP. 

 Let P1, P2 be rectangular prisms, let P3, P4 be OPP only 

having two V31 vertex and ten V30 vertices, and let P5, P6 be 
an OPP having two V50-1 vertices and twelve V30 vertices.  
We use those OPPs and other OPP’s properties in joining 
operation, and then we show some possible joining operations 
to get the sixteen vertex configuration as shown  in Table II 
(see appendix), and six of them, operation number (1) until (6) 
has documented by [2], and they can be used to do the task of 
joining operation on OPP. 

C. Relationships 
Now, it is time to conjecture the vertex configurations 

relationship on OPP. We organize the formulation as follows 
(1) the formula is started with OPP having at most degree four 
that is every vertex has three or four edges, (2) Extend the 
formula to OPP having the vertex which have degrees at most 
degree six.  

 
Conjecture 1 : Let P be an OPP having at most degree four, 
let PV30, PV31, PV32, PV33, PV401, PV412, PV420, PV431 denote the 
number of vertex having V30, V31, V32, V33, V40-1, V41-2, 
V42-0, and V43-1configurations respectively. We have 
(PV30 + PV33 + 0PV412 + PV431) – (PV31+ PV32 + 3PV401 + 2PV420) 
= 8 

 
Proof: Let function F(P) = (PV30 + PV33 + 0PV412 + PV431) – 

(PV31+ PV32 + 3PV401 + 2PV420), where P is any OPP. We need 
to prove that F(P) = 8 for any orthogonal pseudo-polyhedron 
P. 

It is proven in Lemma 2 that any OPP can be constructed by 
joining sequence of rectangular prisms one by one. In other 
words, any OPP can be constructed by the following steps. 
The process starts with marking the first rectangular prism in 
the sequence as the OPP. In the next step, a next rectangular 
prism is added to the OPP. The process finishes when the last 
rectangular prism is added to the OPP. 
 The proof starts with first rectangular prism P. It has 
exactly eight V30 vertices, and no others kind of vertices. 
Hence, F(P) = PV30 = 8.  

The next step of arbitrary joining process is combining an 
OPP with an orthogonal prism. The number of possible 
combination is large. However, we list several of them and we 
are sure that there is always such a way to construct a new 
OPP by using them. There are at least six possibilities of the 
joining process. They are illustrated as operation 1, 2, 3, 9, 10, 
and 16 in Table II (see appendix). If both OPP contain 
combination V30, V31 and V50-1 vertices, line, and interior 
face, then there are at least 16 different possibilities of the 
joining process.  

Let P1 be any OPP, and P2 be an rectangular prism, then 
we have F(P1) = 8 and F(P2) =8. Before joining operation, we 
have: F(P1) + F(P2) =R= 16.  After P1 and P2 are joined, 
then they form P. We are going to prove that F(P) = 8. 

So, in the joining process, some properties of P1 and P2 
meet each other. Because of the meeting, some properties will 
lose, and others will change the type. For example, if V30 
vertex of P1 meets with V30 vertex of P2 and two of incident 
edges of each orthogonal polyhedron then the two V30 
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vertices will lose. Another example, if V30 vertex meet with a 
point on a line and each adjacent surface of each properties 
coincide each other then V30 vertex will lose and instead by 
V31 vertex. Hence, the R value is changed during the 
combining P1 and P2. Let ΔR be the value of increasing or 
decreasing of any joined properties. 

To determine ΔR, we calculate the value as the following 
steps: 
 
(1) Get the relationship among vertex configurations in an 

OPP. It may start with an OPP that has one kind of 
vertex configuration, and we combine the OPP with 
another simpler OPP having the same vertex 
configuration with the current OPP, and do it until n 
times. By using the arithmetic sequence formula [14], the 
vertex configuration relationships for simpler OPP is 
achieved. We continue to look at an OPP having two 
kinds of vertex configurations, and so on. Table III in 
appendix shows the relationship among vertex 
configurations on simpler OPPs. 

(2) Let F=N be the equation of the relationship having N as 
the value in the right side equation. Calculate ΔR of two 
joining properties. We have two OPP, P1 and P2; the 
total value of both R is 16.  Reduce R by ΔR until it 
obtains N. Note, we only can determine ΔR of a pair of 
component at the same time. It means, if we have two 
pairs of joining components, so ΔR of one pair must be 
known first.  

Here is an example to calculate ΔR from the given two OPPs. 
For P1, PV30 = 8  F(P1) =8, and for P2, PV30=8  F(P2)=8. 
If the number of V30 on P1 is added with V30 on P2, then we 
have  

F(P1) + F(P2)  = 16 ........(1) 
Suppose we combine two V30 vertices on P1 with two V30 

vertices on P2, and two V30 vertices on P1 with two edges on 
P2. The joining result is shown in fig. 7. 
 

 
 
 
 
 
 

Fig. 7 P is a result of joining P1 and P2 
We join (⊕) P1 and P2 such that two vertices of P1 

coincide with two vertices of P2 and the other two vertices of 
P1 coincide with edges of P2. Relationship among vertices 
that contain V30 and V31 vertices is shown in Table III at 
number 2 as follows:  

PV30 –PV31 = 8, so  
F(P1⊕ P2) = 8 ........(2) 
 
During the joining process, the right value in the equation 

(1) decrease until 8 as the value in (2). We can use this value 
to determine the decreasing or increasing value of R. If a V30 
vertex is joined with a V30 vertex then R decreases by 2 
because both V30 vertices are deleted. If a V30 is joined with 
an edge, we calculate ΔR as follows. During the joining 

process, the two V30 vertices from each orthogonal prism is 
joined, and the other two V30 vertices from P1 is joined with 
two edges of P2, then   

8 = 16 – 2(2) + 2ΔR 
ΔR = -2 

It means that the value of R is decreased by 2 after joining a 
V30 vertex with an edge. 

By using the same way, we can find the decreasing or 
increasing value of R as summarized in Table IV that also 
informs the new vertex configuration that gain after the 
joining process. As mentioned above that there are at least 16 
combinations of properties on OPPs; hence, we may have 
other ΔR values. 

TABLE IV 
OPERATION NUMBER AND THEIR ΔR VALUE 

ΔR-value 
Operation  
Number Properties Increas

e 
Decrease New vertex 

1 V30 and V30 0 2 - 
2 V30 and line 0 2 V31 
3 V30 and interior 

face 
0 2 V32 

4 V30 and V31 0 2 V42 or V63 
5 V31 and V31 2 0 - 
6 V31 and interior 

face 
2 0 V33 

7 V30, V31, edges 0 0 V41-2 
8 V31, edge 2 0 V43-1 
9 V30, edge 0 4 V40-1 
10 V30, V30, edge 0 4 V50-1 
11 V31, V31, edge 0 0 V54-1 
12 V31 and V31 4 0 V66-0 
13 V30 and V50-1 4 0 V60-3 
14 V31 and V50-1 0 0 V63-3 
15 V50-1 and V50-1  6 0 V60-6 
16 V30 and V30 8 8 V60-01 
 

By applying the suitable ΔR for each joined properties 
during joining P1 and P2 to form P, then R value changes 
from 16 before joining to 8 after joining. Hence, it gives us 
quite confidence that the equation on Conjecture 1 always 
remains valid.  � 
 
Conjecture 2 : Let P be an OPP having at most degree five, let 
PV30, PV31, PV32, PV33 PV401, PV412, PV420, PV431, PV501, PV541, 
PV600, PV603, PV606, PV630, PV633, and PV660 denote the number of 
vertex having V30, V31, V32, V33, V40-1, V41-2, V42-0,V43-
1, V50 and V54-1, V60 -01, V60-3, V60-6, V63-0, V63-3, and  
V66-0 configurations  respectively. The relationship among 
these vertices is: 

(PV30 + PV33 + 0PV412 + PV431+   2PV541+ 4PV606 + 3PV633 + 
2PV660) – (PV31+ PV32 + 3PV401 + 2PV420 + 2PV501 + PV603 + 

6PV600 + 2PV630) = 8 
 
To proof these conjecture we use similar technique as 

shown to prove Conjecture 1. We start with the relationship 
among vertex having degree five with V30 configuration or 
the other vertex configurations that already known their 
relationship, and then find the table of relationship among the 
V5 and V6 vertices. The later step give the increasing and 
decreasing of R-value as shown in Table IV at the operation 
number 10-16. By applying the suitable operation number for 

P1 P2 P 
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each step on adding a prism to the current OPP, we always 
find that the R value is always equal with 8. Hence, we are 
quite confident that the equation on Conjecture 2 is valid. � 

V. CONCLUSION  
We have proven that there are sixteen vertex configurations 

of OPPs, and it also has proven that any OPP can be 
constructed from a sequence of orthogonal prisms. These 
lemmas are important to conjecture the relationship among the 
vertex configurations of OPPs. 

For a given OPP, we always have the formula to represent 
the vertex configurations relationship. Conjecture 3 represents 
the vertex relationship for any OPP.   

For the further research, the issue of inner and outer 

boundary is still relevant on OPP. We absolutely can find the 
duality of each vertex configuration on OPP, so if an OPP is a 
hole of another OPP then by applying the formula to the inner 
boundary, we can determine the vertex configurations on 
outer boundary. 

 
 
 
 

 
 

 
TABLE  I 

CONSTRUCTING OPPS USING AT MOST EIGHT CUBES 
Number Illustrations Description Number 

of similar 
shapes 

Number Illustrations Description Number 
of similar 
shapes 

1.  
 
 

All frames are empty 1 12.  Two diagonally adjacent cubes 
share vertices and edges 

2 

2.  A frame is occupied by a cube. 8 13.  A 4-consecutive cubes is 
occupied 4 frames in B 

6 

3.  Two frames are occupied by 
two adjacent cubes. 

12 14.  Two diagonally adjacent cubes 
share faces 

6 

4.  Two frames are occupied by 
two diagonally adjacent cubes 

12 15.  A 3-consecutive cubes shares a 
face with a diagonally adjacent 
cubes 

8 

5.  Two frames are occupied by 
two interstitial cubes 

4 16.  An ending face of  3-consecutive 
cube shares a face with an 
adjacent cubes 

24 

6.  Three frames are occupied by a 
3-consecutive cubes. 

24 17.  A 4-consecutive cubes shares a 
face with a cube 

24 

7.  Two adjacent cubes are sharing 
an edge with a cube in B 

24 18.  A 4-consecutive cubes shares two 
face with a 2-adjacent cubes. 

12 

8.  Two edges of two diagonally 
cubes meet with an edge of a 
cube. 

8 19.  A 3-consecutive cubes shares a 
face with a 2-diagonally adjacent 
cubes 

12 

9  The middle cube of a 3-
consecutive cubes shares a face 
with a cube in B. 

8 20.  A 3-consecutive cubes shares a 
vertex with another 3-
consecuteve cubes 

4 

10  An end cube of a 3-consecutive 
cubes shares a face with a cube 
in B. 

24 21.  A 3-consecutive cubes is 
combined with a 4-consecutive 
cubes. 

8 

11.  A shared vertex of a 3-
consecutive cubes shares a 
vertex of another cube. 

24 22.  Two 4-consecutive cubes occupy 
the whole frame. 

1 

 
 
 
 
 
 

f5 f6 
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f7 f8 

f1 f2 
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f7 f8 
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f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4

f5 f6
f7f8

f1 f2
f3f4
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TABLE II  
. JOINING OPERATIONS ON OPP 

Operation 
Number Description Illustration 

1. A V30 vertex on P1 is joined with a V30 vertex on P2. After joining, both V30 vertices 
are lost.  
 

 

2. A V30 vertex on P1 is joined with an edge of P2. After joining, the V30 vertex is lost, 
however, the union gains a new V31 vertex.  
 

 

3. A  V30 vertex on P1 is joined with an interior point of P2 surface. After joining the V30 
is lost, however, the union gains a new V32 vertex.  
 

 

4. A V30 vertex on P1 is joined with a V31 vertex on P3. After joining, both V30 vertices 
are lost, and they either form a new V63 vertex or new V42 vertex. 
 

 

5. A V31 vertex on P3 is joined with a V31 vertex on P4. After joining, both vertices are 
lost without forming a new vertex. 
 

 

6. A V31 vertex on P1 is joined with an interior point of P3 surface. They form the new 
V33 vertex. 
 
 

 

7. A V30 vertex on P1 is joined with a V31 vertex on P3, and two incident edges of V30 
vertex are also joined with two incident edges of V31 vertex as shown in the diagram on 
the right. As the result, the two vertices combined to form a V43-1 vertex.  

 

8 A V31 vertex on P3 is joined with a point between the two endpoints of an edge on P1, 
and that edge is also is joined with one of the incident edges of the V31 vertex, as shown 
in the diagram on the right. As the result the V31 vertex is converted to a V43-1.  

 

9. A  V30 vertex on P1 is joined with a point between the two endpoints of an edge on edge 
of P2 and the edge is joined with one of the incident edges of the V30 vertex. As the 
result, the V30 vertex becomes a V40-1 vertex. 
 

 

10. A V30 vertex on P1 is joined with a V30 vertex P2, in the way shown in diagram on the 
right. The two vertices are combined to form one V50-1. 
  

 

11. A  V31 vertex on P3 is joined with a V31 vertex on P4, and an edge incident to V31 
vertex for each simpler OP is joined each other. They form V54-1. 
  

 

12. A V31 vertex on P3 is joined with a V31 vertex on P4, and two edges are incident to the 
vertex lie on the interior face of P2. They form V66-0. 
  
 

 

13. A V50-1 vertex on P5 is joined with a V30 vertex on P1. They gain a new V60-3 vertex.  
 
 
 

 

14. A V50-1 vertex on P5 is joined with a V31 vertex on P3. They gain a new V63-3 vertex.  
 
 

 

15. A V50-1 vertex on P5 is joined with a V50-1 vertex on P6, so all the incident edges 
coincide in pairs. They gain a new V60-6 vertex. 
 
  

 

16. Only a V30 vertex on P1 is joined with a V30 vertex on P2. They gain a new V60-0 
vertex. 
 

 

.

. 

-

.

. 
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TABLE III 
RELATIONSHIP AMONG VERTEX CONFIGURATIONS ON SIMPLER OPP 

Arithmetic Sequence of vertices No. Vertices Illustrations 
Vertex 1 2 3 … N 

Vertices relationship 

1. V30  
 
 
 

PV30 8 8 8 … 8 PV30=8 

2. V30 and V31 PV30 8 10 12 … 2n+6 2n+6 = (2n-2) + 8 ↔ 
  

 
PV31 0 2 4 … 2n-2 PV30 - PV31=8 

 
 

3. V30, V31 PV30 8 11 14 … 3n+5 3n+5=(2n-2)+(n-1)=8↔ 
 and V32 PV31 0 2 4 … 2n-2 PV30-PV31-2PV42=8 
  

 

PV32 0 1 2  n-1  
 

4. V30, V31 PV30 10 12 14 … 2n+8 (6n+4)+(n-1)=(3n-1)+(n-1)+3(n-1) =8 ↔ 
 and V33 PV31 3 7 11 … 4n-1 PV30+PV431 - (PV31 + PV32+ 3PV401) = 8 
  

 

PV33 1 3 5 … 2n-1  
 

5. V30 and V41 PV30 8 14 20 … 6n+2 6n+2 =3(2n-2) + 8 ↔ 
  

 
PV41 0 2 4 … 2n-2 PV30-3V41=8 

 
 

6. V30, V31, PV30 17 24 31 … 2n-1 7n+10=n+2 + 3(2n)+8 ↔ 
 V40-1, and PV31 3 4 5 … n+2 PV30 + 0PV412 - PV31 -3PV401 =8 
 V41-2 PV401 2 4 6 … 2n  
  

 

PV412 1 2 3 … N  
7. V30, V31, PV30 8 12 16 … 4n+4 4n+4 = (2n-2) + 2(n-1) + 8 ↔ 
 And V42-0 PV31 0 2 4 … 2n-2 PV30-PV31-2PV42=8 
  

 

PV42 0 1 2 … n-1  
 

8. V30, V31, PV30 10 16 22 … 6n+4 (6n+4)+ (n-1)=(3n-1)+(n-1)+3(n-1)=8 ↔ 
 V32, V40-1 PV31 2 5 8 … 3n-1 PV30+PV431 - (PV31 + PV32+ 3PV401) = 8 
 and V43-1 PV32 0 1 2 … n-1  
  PV401 0 1 2 … n-1  
  

 

PV431 0 1 2 … n-1  
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