
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3594

Abstract—This paper presents a smart-card applet that is able to

verify X.509 certificates and to use the public key contained in the
certificate for verifying digital signatures that have been created
using the corresponding private key, e.g. for the purpose of authenti-
cating the certificate owner against the card. The approach has been
implemented as an operating prototype on Java cards.

Keywords—Public key cryptographic applications, smart cards.

I. INTRODUCTION
MART cards are used as tamper-resistant devices for creat-
ing digital signatures, but usually not for verifying digital

signatures of unknown origin [1]. A reason for this is the diffi-
culty of verifying X.509 certificates, i.e. electronic documents
in the format defined in the ITU-T recommendation X.509 [2]
for binding a public key to its owner. The verification of digi-
tal signatures is usually carried out in the host PC. The public
key of the root certification authority is stored as trust anchor
on the hard drive and must be protected there.

The smart-card applet presented in this paper is able to ver-
ify X.509 certificates and digital signatures. This allows stor-
ing and retaining the trust-anchor public key in the smart card,
where it remains securely protected against tampering. When
the verification result and the signed data are finally presented
to the user via the host PC, still the same attacks are possible
as if when the entire signature verification process is carried
out in the host PC. Nevertheless, keeping back the trust an-
chor in the smart card is useful to better ground the trust in it.

The smart card applet can use the public key contained in
the certificate for verifying digital signatures that have been
created using the corresponding private key. The digital sig-
natures to be verified could, for instance, be created for the
purpose of authenticating the certificate owner against the
card in a challenge-response protocol using public-key crypto-
graphy. For the purpose of device authentication, [1] defines
so-called card-verifiable certificates (CVC’s). The attribute
“card-verifiable” may suggest that other certificate formats,
like X.509 certificates or PGP (Pretty Good Privacy) certifi-
cates, could not be verified on smart cards, but this is not
entirely true. It is convenient if the authentication against the
card can be carried out using the widely used X.509 certifi-
cates, without a card-specific certificate format.

Manuscript received August 31, 2006.
O. Henniger (phone: +49-6151-869-264; fax: +49-6151-869-224; e-mail:

henniger@sit.fraunhofer.de).
K. Lafou, D. Scheuermann, and B. Struif are with the Fraunhofer Institute

for Secure Information Technology, Darmstadt, Germany.

Related work on verifying X.509 certificates on smart cards
has been done in the context of Java cards for authentication
in wireless LAN networks [4].

The remainder of this paper is organised as follows. Section
II introduces the structure and usage of X.509 certificates.
Section III describes the implementation platform. Section IV
describes the design of an X.509 parser suitable for smart
cards. Section V suggests applications and extensions.

II. PUBLIC-KEY CERTIFICATES

A. Structure of X.509 Certificates
A public-key certificate is a mechanism for binding a public

key to its owner, which can be a person, organisation, or
device. A certification authority (CA), usually a trusted third-
party commercial service provider, binds a public key to its

Verifying X.509 Certificates on Smart Cards
Olaf Henniger, Karim Lafou, Dirk Scheuermann, and Bruno Struif

S

Certificate extensions
Key usage

Authority key identifier

Basic constraints

Subject
Country

Organization

State

Common name

Certificate validity
Not before

Not after

Issuer name

Contents signed by the issuer

Issuer signature algorithm identifier
Signature upon the contents

X.509 certificate

Issuer signature algorithm identifier

Certificate serial number

X.509 version number

Subject public key info
Signature algorithm identifier

Subject public key

Fig. 1 Structure of an X.509 certificate

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3595

owner by digitally signing the public key together with data
identifying the owner. These signed data together form a
public-key certificate.

A widely used format for certificates is defined in the ITU-
T recommendation X.509 [2]. X.509 is adapted to the Internet
in [3]. These specifications define what information, and in
what form, a certificate must or may contain. Fig. 1 illustrates
the basic structure of X.509 certificates. An X.509 certificate
contains the following attributes:

– Version number: Indication of the X.509 version (must be
version 3 if certificate extensions are present). Most cur-
rently valid X.509 certificates follow version 3.
– Serial number: Unique serial number of the certificate;
– Issuer signature algorithm identifier: Identifier for the

signature algorithm used by the issuing CA for signing the
certificate contents;
– Issuer: Name of the issuing CA;
– Validity: Validity period for this certificate;
– Subject: Name or alias of the certificate owner;
– Subject public key info: Public key of the certificate owner

and identifier for the signature algorithm with which the
key is to be used;
– Certificate extensions: Entry for extensions that are

attached to the certificate and that cover information about
keys and procedures, attributes of owners and issuers, and
constraints of the certification path. The standard fields of
X.509 certificates turned out not to be sufficient for many
applications. Therefore, the syntax of version 3 was ex-
tended to allow including additional data. An extension is a
triple (type, criticality, and value of the extension). Exten-
sions marked as critical must not be ignored.

Fig. 2 shows the contents of an example X.509 certificate in
textual representation (cryptographic data are shortened).

For specifying the structure of X.509 certificates, [2] and

[3] use the Abstract Syntax Notation One (ASN.1) [5]. 0
shows the specification of an X.509 certificate in ASN.1 [3].
Section IV.A refers back to some of these definitions. For
brevity, some optional data elements that may be ignored and
some definitions that are not used in this paper have been
omitted from Fig. 3.

For a uniform representation of data in different computer
systems, a platform-independent encoding is needed. X.509
certificates are encoded using the Distinguished Encoding
Rules (DER) for ASN.1 [6], which yield a unique binary rep-
resentation. Each data element is encoded as a sequence of
tag, length, and value. The tag octets identify the type of the
data element, the length octets indicate its size, and the value
octets contain the actual contents of the data element.

B. Structure of Card-Verifiable Certificates
Unlike X.509 certificates, CVC’s are signed using a signa-

ture scheme with message recovery [1]. This saves space and
time because essentially only the signature value has to be
stored and to be transmitted rather than the signature value to-
gether with the plaintext contents. Furthermore, CVC’s do not
contain data elements that are hard to be verified on a card,
like the validity period.

A CVC contains a certificate holder authorisation (CHA)
data element that identifies the role that the certificate holder
is allowed to take on in a smart-card application. Checking the
CHA data element contained in a verified certificate may be

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=DE, L=Darmstadt, O=Trust Me Ltd,
 OU=CA, CN=Premium CA
 Validity
 Not Before: Jul 7 14:42:16 2005 GMT
 Not After: Aug 4 14:42:16 2007 GMT
 Subject: C=DE, CN=Karim /
 Email=nospam@nowhere.my
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:cb:41:02:03:45:ad:d1:a2:84:f8:c5:dc:6c:
 [..]
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Key Usage:
 Digital Signature, Non Repudiation
 Signature Algorithm: md5WithRSAEncryption
 Signature:
 7c:5e:9b:e6:6d:52:c0:aa:b4:f9:3a:68:18:05:b8:84:
 [..]

Fig. 2 Example of X.509 certificate contents

Certificate ::= SEQUENCE {
 tbsCertificate TBSCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING
}
TBSCertificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 -- If extensions are present, version MUST be v3
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 extensions [3] EXPLICIT Extensions OPTIONAL
}
Name ::= CHOICE {RDNSequence}
RDNSequence ::= SEQUENCE OF
 RelativeDistinguishedName
RelativeDistinguishedName ::= SET OF
 AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue
}
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY DEFINED BY AttributeType
SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING
}
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension
Extension ::= SEQUENCE {
 extnId OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
}

Fig. 3 Specification of an X.509 certificate in ASN.1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3596

part of a file-access rule that is enforced on the card [7]. The
CHA data element allows giving the right to access a file on
the smart card to all individual certificate holders that may
take on a certain role, e.g., all certified pharmacists. Role-
based authentication using X.509 data elements is not yet
specified in [7].

C. Verification of Certificates
A digital signature, created using some private key, can be

verified using the corresponding public key. To ensure that
the public key that is used really belongs to the remote signer,
the corresponding public-key certificate has to be verified. To
verify an X.509 certificate, the verifying system has

– to verify the digital signature of the issuing CA upon the
certificate contents,
– to check whether the current time is within the validity pe-

riod of the certificate, and
– to check whether the certificate serial number is not on a

suitably recent certificate revocation list (CRL).

In case the public key of the issuing CA is not the trusted
anchor, verifying the CA’s digital signature would require to
verify the CA’s public-key certificate; and so on, till finally a
certificate is reached that can be verified using the trust an-
chor. A certification path (or chain) starts with the signer cer-
tificate and may proceed through a number of intermediate
certificates up to a certificate issued by a trusted CA.

III. JAVA CARDS AS IMPLEMENTATION PLATFORM
Java cards are smart cards with an interpreter (Java Card

Virtual Machine) [8] for the execution of processor-independ-
ent byte code. Code development for Java cards is based on a
subset of Java and Java development tools. Java cards are very
well suited for the rapid development of prototype smart-card
applications. Their computing speed is rather limited because
of the limitations of the smart-card hardware and because the
Java byte code is interpreted at run-time. However, thanks to
the use of crypto-coprocessors, cryptographic operations on
Java cards are in general not slower than on other smart cards.

On Java cards, only a subset of the Java language is avail-
able. Java cards support the data types Boolean, byte, short,
and optionally also int; the data types char, double, float, and
long are not available. Only one-dimensional arrays are sup-
ported. By default, only basic arithmetic operations and no
mathematical libraries are available. There is no garbage col-
lection. Objects and arrays once created cannot be deleted;
their storage location remains occupied. Therefore, all neces-
sary objects and arrays have to be created when the Java card
applet is installed and to be reused later. Dynamic loading of
classes is not supported; all necessary classes must be brought
onto the Java card at production time or during the installation
of a Java card applet.

The Java cards deployed as implementation platform have a
CPU word length of 8 bit, 2300 bytes of RAM, 32 Kbytes of
EEPROM, and a default clock rate of 3.5712 MHz [9].

IV. X.509 PARSER

A. Outline of the Algorithm
The task of the X.509 parser is to analyze a given X.509

certificate and to extract from it the data elements that are
needed for verifying and for using the certificate. The re-
source constraints on Java cards need to be taken into consid-
eration in the design and implementation of the X.509 parser.
Not all possible approaches to parsing X.509 certificates are
applicable on smart cards. This section describes a concept of
an X.509 parser that is suitable for smart cards.

The X.509 certificate is given as a one-dimensional array
on the card. The main ideas of the X.509 parser algorithm are:

– The X.509 certificate is scanned only once. All required
information is collected during this run.
– For each required data element the offset, i.e. the distance

from the beginning of the array, and the length are stored.
Using its offset and length, each data element can be
accessed directly from the array. This approach saves mem-
ory space as it avoids the duplication of data elements, and
also time.

What information from an X.509 certificate is needed for
verifying and for using the certificate? In the following, the
most important fields of the X.509 certificate, whose offsets
and lengths are collected, are listed:

– Name of the certificate owner: The name could consist of
several relative distinguished name (RDN) elements (cf. 0),
e.g. common name, organisational unit, organisation coun-
try, distinguished name qualifier, state and province name.
Since their order is not fixed, one cannot access a certain
RDN element by index. Instead, each RDN element’s
attribute type is compared with the globally unique object
identifiers (OID) of the desired RDN elements until they
match. If they match, then offset and length of the desired
RDN element are noted.
– Public key of the certificate owner;
– Intended usage of the key: The key-usage certificate exten-

sion determines the purpose of a certificate. More precisely,
it specifies the cryptographic operations that may be accom-
plished with the key pair. As the order of the certificate ex-
tensions is not fixed, one cannot access a certain extension
by index. Instead, each extension’s OID (cf. 0) is compared
with the OID of the desired extension until they match. If
they match, then offset and length of the key-usage
extension are noted.

The temporal validity of an X.509 certificate is usually
checked based on the current system time and the validity
entries in the certificate. However, checking the temporal
validity is not easily possible on today’s smart cards since
they do not possess a system clock. The current implementa-
tion ignores the validity entries in the certificate.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3597

B. Time Complexity
The time complexity of a problem is a measure for the num-

ber of steps that an optimal algorithm would need for solving
the problem, as a function of the size of the input. Applied to a
concrete algorithm, the term time complexity refers, in gen-
eral, to a measure for the number of steps that this algorithm
takes in the worst case, as a function of the size of the input.
The exact duration of the program execution on a certain
machine is only of secondary interest. Of primary interest is
how the duration grows when the size of the input grows. Due
to the resource constraints on smart cards, it is important to
analyze the time complexity of the X.509 parser algorithm as
a function of the certificate size n in bytes.

The X.509 parser algorithm does not process the certificates
byte by byte, but attribute by attribute. Because the number of
possible attributes is fixed in the specification, their maximum
number is constant. Hence, the number of steps required for
parsing an X.509 certificate is independent of the certificate
size n in bytes; it depends only on the (upper bounded) num-
ber of attributes in the certificate. Thus, the X.509 parser
algorithm has a constant time complexity ()1Ο .

This is to the users’ advantage. The lower the time com-
plexity of an algorithm, the faster the algorithm will perform
its work in practice. Anyway, though parsing does not take
longer when the certificate contains a longer public key, veri-
fying the CA’s digital signature will take longer, the longer
the signature value and the public key of the CA are.

C. Space Complexity
Due to the limited memory space on smart cards, not only

the time complexity but also the space complexity of the
X.509 parser algorithm is important. The space complexity of
an algorithm is a measure for the number of memory cells that
the algorithm needs. Again, of primary interest is how the
memory requirement grows when the size of the input grows,
but not the exact memory space needed.

In order to process a certificate of the size n bytes in a smart
card, an array of size n bytes for storing the certificate and a
certain constant number of auxiliary variables for storing the
offsets and lengths of the relevant certificate attributes are
needed. Thus, the algorithm has linear space complexity

()nΟ . The longer the certificates and keys are, the more stor-
age space is needed on the smart card.

V. CONCLUSION
The presented solution supports an essential part of the

verification of X.509 certificates on smart cards. It supports
the verification of the signature of a CA upon the certificate
contents, yet it does not support checking the temporal valid-
ity of the certificate and checking whether the certificate has
been revoked.

The temporal validity of a certificate is normally checked
based on the current system time and the validity entries in the
certificate. However, this examination is not possible on
today’s smart cards since they do not possess a clock. The cur-

rent time needs to be communicated to the card in a trust-
worthy way. A solution of this problem could be that the
smart card approximates the current time using the most
recent not-before date found in a certificate verified on the
card, starting from the smart card’s personalisation date, as
suggested in [10].

Checking whether the certificate has been revoked or not, is
not possible since the smart card cannot establish a direct
connection to a CRL server. A solution of this problem could
be that the host PC communicates the CRL to the card in a
trustworthy way. Then, the CRL can be examined on the card.

Due to the resource constraints on smart cards, the time
complexity and space complexity of the algorithm play
important roles. For algorithms implemented on smart cards,
both time and space complexity are desirable to be as low as
possible. The parser algorithm has a constant time complexity,
i.e. the number of steps required is independent of the certifi-
cate size. In addition it has linear space complexity, i.e. the
longer the certificates and keys are, the more memory space is
required on the smart card that contains the X.509 parser.

The design and implementation of the smart-card applet
take the existing standards into consideration to ensure its
interoperability with existing signature applications. To put
the X.509-based authentication on smart cards into practice,
the relevant specifications should be extended to allow for-
mulating role-based access rules using X.509 data elements.

ACKNOWLEDGMENT
The authors are grateful to Ulrich Waldmann for fruitful

discussions.

REFERENCES
[1] Application interface for smart cards used as Secure Signature Creation

Devices – Part 1: Basic requirements, CEN Workshop Agreement CWA
14890-1, 2004

[2] Information technology – Open Systems Interconnection – The Direc-
tory: Public-key and attribute certificate frameworks, ITU-T Recom-
mendation X.509, 2000

[3] R. Housley, W. Polk, W. Ford, and D. Solo, Internet X.509 Public Key
Infrastructure certificate and certificate revocation list (CRL) profile,
Request for Comments RFC 3280, 2002

[4] P. Urien, M. Badra, and M. Dandjinou, “EAP-TLS smartcards, from
dream to reality”, in Proc. 4th IEEE Workshop on Applications and Ser-
vices in Wireless Networks, Boston, Massachusetts, USA, 2004

[5] Information technology – Abstract Syntax Notation One (ASN.1): Speci-
fication of basic notation, ITU-T Recommendation X.680, 2002

[6] Information technology – ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distin-
guished Encoding Rules (DER), ITU-T Recommendation X.690, 2002

[7] Identification cards – Integrated circuit cards – Part 4: Organization,
security and commands for interchange, International Standard ISO/IEC
7816-4, 2005

[8] Java Card 2.1.1 Virtual Machine Specification. Sun Microsystems,
Revision 1.0, May 2000

[9] JCOP20 Technical Brief. Revision 2.3. IBM
[10] Technical guideline: Advanced security mechanisms for Machine-Read-

able Travel Documents, German Federal Office for Information Security
(BSI), TR-03110, version 1.0, 2006

