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Abstract—In this paper, using a model transformation approach a
system of linear delay differential equations (DDEs) with multiple
delays is converted to a non-delayed initial value problem. The
variational iteration method (VIM) is then applied to obtain the ap-
proximate analytical solutions. Numerical results are given for several
examples involving scalar and second order systems. Comparisons
with the classical fourth-order Runge-Kutta method (RK4) verify that
this method is very effective and convenient.
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I. INTRODUCTION

T IME delay systems arise from an inherent time delay in

the components of the system or a deliberate introduction

of time delay into the system for control purposes. Time delay

systems can be represented by delay differential equations

(DDEs) which belong to the class of functional differential

equations and have been extensively studied [1]-[3]. Recent

studies in diverse fields such as biology, economics, control

and electromagnetic have shown that DDEs play an important

role in explaining many physical phenomena. Indeed, many

physical events do not occur instantaneously and can be

modeled with delays.

The system of linear DDEs with multiple delays may be

expressed as{
ẋ(t) = A0x(t) +

∑m
d=1Adx(t− τd) + p(t)

x(t) = φ(t)

t ∈ [0, tf ],

t ∈ [−τ, 0],
(1)

where x(t) = [x1(t) x2(t) . . . xn(t)]
T ∈ R

n, φ(t) =
[φ1(t) φ2(t) . . . φn(t)]

T ∈ R
n, A0, A1, . . . , Am ∈ R

n×n

and p(t) = [p1(t) p2(t) . . . pn(t)]
T ∈ R

n is a known contin-

uous function representing the external excitation. The delays

τ1, τ2, . . . , τm are known, positive and constant numbers. The

set [0, tf ] is a time interval and τ = max{τ1, τ2, . . . , τm}.

Delay differential equations are often solved using nu-

merical methods, asymptotic solutions and graphical tools.

One of the approximation methods is the well-known Pade

approximation which results in a shortened repeating fraction

for the approximation of the characteristic equation of the

delay [4]-[5]. However, the lack of an analytical solution form

remains a major obstacle to the analysis and control of time

delay systems. During recent decades, the Lambert W function

has been used to develop an approach for the solution of linear

time invariant systems of DDEs with a single delay (see [6]-[7]

and the references therein).
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As we know, the variational iteration method (VIM) pre-

sented by He [8]-[13] is a powerful mathematical tool for

finding solutions of linear and nonlinear problems and it can

be implemented easily in practice. There are some papers

concerning about the use of VIM for a particular class of

DDEs [14]-[17]. In this paper, we apply the VIM to solve the

problem (1) using a model transformation approach.

This paper is organized as follows. A brief description of

the VIM is given in Section 2. In Section 3, first the problem

(1) is converted to a system without time-delayed arguments

and using the transition matrix method, a non-delayed initial

value problem is obtained and then the VIM is applied to solve

the attained problem. The accuracy of the method with several

examples is demonstrated in Section 4. Section 5 contains a

brief summary.

II. A BRIEF DESCRIPTION OF THE VIM

The main idea in the variational iteration method is to

construct an iterative sequence of the functions converging to

an exact solution. Consider the following general problem:

Lu(t) +Nu(t) = g(t),

where L is a linear operator, N is a nonlinear operator and

g(t) is a known analytical function. In the VIM a correction

functional as

un+1(t) = un(t) +

∫ t

0

λ(s)(Lun(s) +N ũn(s)− g(s))ds, (2)

is made, where λ is a general Lagrange multiplier [12]-

[13] which can be identified optimally via the variational

theory. The index n denotes the nth iteration and ũn(s)
is considered as the restricted variation, i. e. δũn(s) = 0
[12]-[13]. After determining the Lagrange multiplier λ and

selecting an appropriate initial function u0, the successive

approximations un of the solution u can be readily obtained.

III. MODEL TRANSFORMATION AND SOLUTION METHOD

Now we study the model (1) with multiple delays

τ1, τ2, . . . , τm. We shall use a transformation technique that

requires the technical assumption that the interval length

Δt = tf is a rational multiple of all the delays τ1, τ2, . . . , τm:

Δt = q1τ1, Δt = q2τ2, . . . ,Δt = qmτm,

where q1, q2, . . . , qm ∈ Q. With this assumption, we divide the

time interval [0, tf ] into l equidistant subintervals such that l
is the minimum number of divisions of [0, tf ] which satisfies

all of the following conditions:

lτ1
Δt

= z1 ∈ N,
lτ2
Δt

= z2 ∈ N, . . . ,
lτm
Δt

= zm ∈ N.
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Let T = Δt
l and N = nl. For each t ∈ [0, T ], we define

yk(t) = xj(t+ (k − 1− (j − 1)l)T ),

k = (j − 1)l + 1, . . . , jl, j = 1, 2, . . . , n. (3)

Then the problem (1) is converted to the following N -

dimensional non-delayed system:{
ẏ(t) = Cy(t) + f(t)

y(0) = y0

t ∈ [0, T ],
(4)

where C ∈ R
N×N , y(t) = [y1(t) y2(t) . . . yN (t)]T ∈ R

N ,

f(t) = [f1(t) f2(t) . . . fN (t)]T ∈ R
N and the initial value

y0 = [y10 y20 . . . yN0]
T ∈ R

N is determined as follows:

yk0 = φj(0), k = (j−1)l+1, j = 1, 2, . . . , n,

yk0 = yk−1(T ), k = (j−1)l+2, . . . , jl, j = 1, 2, . . . , n.

Let y(T ) = [r1 r2 . . . rN ]T ∈ R
N denote the final value.

The transition matrix method assumes the existence of two

transition matrices Y (t) ∈ R
N×N and F (t) ∈ R

N×N such

that

y(t) = Y (t)y(T ), (5)

f(t) = F (t)y(T ). (6)

According to (5) and (6), it is easy to see that the transition

matrix Y (t) must satisfy the following non-delayed initial

value problem:{
Ẏ (t) = CY (t) + F (t)

Y (T ) = I

t ∈ [0, T ],
(7)

Now we construct the correction functional (2) for problem

(7) as follows:

Yn+1(t) = Yn(t) +

∫ t

T

λ(s)(Ẏn(s)− CỸn(s)− F (s))ds.

By taking variation with respect to independent variable Yn
and noticing that δYn(T ) = 0 and δỸn = 0, we get

δYn+1(t) = δYn(t)+λ(s)δYn(s)|s=t−
∫ t

T

λ̇(s)δYn(s)ds = 0,

which imply the following stationary conditions

1 + λ(s)|s=t = 0, λ̇(s) = 0.

The general Lagrange multiplier, therefore, can be readily

identified as λ = −1. As a result, we obtain the following

iteration formula:

Yn+1(t) = Yn(t)−
∫ t

T

(Ẏn(s)− CYn(s)− F (s))ds, (8)

with initial approximation Y0(t) = I . So we achieve the

approximate value for y(t) as

y(t) � Yn(t)y(T ). (9)

Incorporating the initial condition of the system (4) into

(9), we can determine the unknown constants r1, r2, . . . , rN .

Finally, from (3), the solution of (1) can be easily obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

t

x

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

−0.5

0

0.5

t

x

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

−0.5

0

0.5

t

x

VIM
RK4

VIM
RK4

VIM
RK4

Fig. 1. Comparison of the VIM with the numerical RK4 for Example IV.1.

IV. ILLUSTRATIVE EXAMPLES

In this section, we present several examples to show the

efficiency of the method described in the previous section.

The package MATLAB 9 is used for computation.

Example IV.1. Consider a single-delay scalar system as
follows [18]:{

ẋ(t) = − 3
2x(t− 1),

x(t) = 0.5,

t ∈ [0, 3]

t ∈ [−1, 0]

Following transformations reformulate Example IV.1 into a
non-delayed system on the interval [0, 1]:

y1(t) = x(t), t ∈ [0, 1],
y2(t) = x(t+ 1), t ∈ [0, 1],
y3(t) = x(t+ 2), t ∈ [0, 1].

The resulting non-delayed reformulation of Example IV.1 is as
follows:

ẏ(t) =

⎡
⎢⎣

0 0 0

− 3
2 0 0

0 − 3
2 0

⎤
⎥⎦ y(t) +

⎡
⎢⎣

− 3
4

0

0

⎤
⎥⎦ ,

with initial value

y(0) =

⎡
⎢⎣

0.5

r1

r2

⎤
⎥⎦ ,

where y(t) = [y1(t) y2(t) y3(t)]
T and y(1) = [r1 r2 r3]

T .
Now the non-delayed initial value problem (7) can be solved
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on the interval [0, 1] by the iteration formula (8) with

C =

⎡
⎢⎣

0 0 0

− 3
2 0 0

0 − 3
2 0

⎤
⎥⎦ ,

F (t) =

⎡
⎢⎣

− 3
4r1

0 0

0 0 0

0 0 0

⎤
⎥⎦ , r1 �= 0.

Figure 1 depicts the approximate analytical solution of Exam-
ple IV.1 after using 3 iterations by the VIM. Comparison with
the numerical RK4 (h = 0.01) shows good agreement between
two methods.

Example IV.2. Consider the following multiple-delays scalar
system [19]:{
ẋ(t) = −x(t)− 5x(t− 1)− 2x(t− 2),

x(t) = sin(t),

t ∈ [0, 3]

t ∈ [−2, 0]

Following transformations reformulate Example IV.2 into a
non-delayed system on the interval [0, 1]:

y1(t) = x(t), t ∈ [0, 1],
y2(t) = x(t+ 1), t ∈ [0, 1],
y3(t) = x(t+ 2), t ∈ [0, 1].

The resulting non-delayed reformulation of Example IV.2 is as
follows:

ẏ(t) =

⎡
⎢⎣

−1 0 0

−5 −1 0

−2 −5 −1

⎤
⎥⎦ y(t) + f(t),

f(t) =

⎡
⎢⎣

−5 sin(t− 1)− 2 sin(t− 2)

−2 sin(t− 1)

0

⎤
⎥⎦

with initial value

y(0) =

⎡
⎢⎣

0

r1

r2

⎤
⎥⎦ ,

where y(t) = [y1(t) y2(t) y3(t)]
T and y(1) = [r1 r2 r3]

T .
Now the non-delayed initial value problem (7) can be solved
on the interval [0, 1] by the iteration formula (8) with

C =

⎡
⎢⎣

−1 0 0

−5 −1 0

−2 −5 −1

⎤
⎥⎦ ,

F (t) =

⎡
⎢⎢⎣

−5 sin(t−1)−2 sin(t−2)
r1

0 0

0 −2 sin(t−1)
r2

0

0 0 0

⎤
⎥⎥⎦ ,

where r1, r2 �= 0.
Figure 2 depicts the approximate analytical solution of Exam-
ple IV.2 after using 5 iterations by the VIM. Comparison with
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Fig. 2. Comparison of the VIM with the numerical RK4 for Example IV.2.

the numerical RK4 (h = 0.01) shows good agreement between
two methods.

Example IV.3. Consider a single-delay second order system
as follows [20]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) =

[ −1 −3

2 −5

]
x(t) +

[
1.66 −0.697

0.93 −0.330

]
x(t− 1) + p(t),

x(t) =

[
1

0

]
, t ∈ [−1, 0]

where for each t ∈ [0, 2],

p(t) =

[
cos(t)

sin(t)

]

and
x(t) = [x1(t) x2(t)]

T .

Following transformations reformulate Example IV.3 into a
non-delayed system on the interval [0, 1]:

y1(t) = x1(t), t ∈ [0, 1],
y2(t) = x1(t+ 1), t ∈ [0, 1],
y3(t) = x2(t), t ∈ [0, 1],
y4(t) = x2(t+ 1), t ∈ [0, 1].

The resulting non-delayed reformulation of Example IV.3 is as
follows:

ẏ(t) =

⎡
⎢⎢⎢⎢⎣

−1 0 −3 0

1.66 −1 −0.697 −3

2 0 −5 0

0.93 2 −0.330 −5

⎤
⎥⎥⎥⎥⎦ y(t)+

⎡
⎢⎢⎢⎢⎣

1.66 + cos(t)

cos(t+ 1)

0.93 + sin(t)

sin(t+ 1)

⎤
⎥⎥⎥⎥⎦ ,
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Fig. 3. Comparison of the VIM with the numerical RK4 for Example IV.3.

with initial value

y(0) =

⎡
⎢⎢⎢⎢⎣

1

r1

0

r3

⎤
⎥⎥⎥⎥⎦ ,

where y(t) = [y1(t) y2(t) y3(t) y4(t)]
T and y(1) =

[r1 r2 r3 r4]
T . Now the non-delayed initial value problem

(7) can be solved on the interval [0, 1] by the iteration formula
(8) with

C =

⎡
⎢⎢⎢⎢⎣

−1 0 −3 0

1.66 −1 −0.697 −3

2 0 −5 0

0.93 2 −0.330 −5

⎤
⎥⎥⎥⎥⎦ ,

F (t) =

⎡
⎢⎢⎢⎢⎢⎣

1.66+cos(t)
r1

0 0 0

0 cos(t+1)
r2

0 0

0 0 0.93+sin(t)
r3

0

0 0 0 sin(t+1)
r4

⎤
⎥⎥⎥⎥⎥⎦
,

where r1, r2, r3, r4 �= 0.
Figure 3 depicts the approximate analytical solution of Exam-
ple IV.3 after using 8 iterations by the VIM. Comparison with
the numerical RK4 (h = 0.01) shows good agreement between
two methods.

V. CONCLUSION

In this paper, the VIM has been successfully applied to

derive approximate analytical solutions for systems of linear

DDEs. We suggest the procedure which is simple and illus-

trative examples demonstrate that the method is valid and

effective.
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