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Variable Regularization Parameter Normalized Least
Mean Square Adaptive Filter
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Abstract—We present a normalized LMS (NLMS) algorithm
with robust regularization. Unlike conventional NLMS with the
fixed regularization parameter, the proposed approach dynamically
updates the regularization parameter. By exploiting a gradient
descent direction, we derive a computationally efficient and robust
update scheme for the regularization parameter. In simulation, we
demonstrate the proposed algorithm outperforms conventional NLMS
algorithms in terms of convergence rate and misadjustment error.
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I. INTRODUCTION

THE normalized least mean square (NLMS) is one of the

widely used adaptive algorithms due to its simplicity.

Originally, NLMS incorporates the step-size divided by

the squared norm of the input regressor. But in practical

applications ε-NLMS is widely used where the step-size is

divided by the squared norm with a small positive constant

ε added [1]–[5]. This is for avoiding the situation when

the norm of the input regressor is close to zero. The small

positive constant is so-called the regularization parameter.

Besides the numerical stability, it is well-known that the

regularization parameter plays a critical role in performance

of ε-NLMS [6]–[8]. The trade-off between convergence rate

and misadjustment error exists in ε-NLMS with a fixed

regularization parameter.

To overcome the trade-off in ε-NLMS, recently the

generalized normalized gradient descent (GNGD) algorithm

has been proposed [6]. GNGD uses an adaptive regularization
parameter, i.e., the regularization parameter is suitably

updated at every iteration. The updating scheme for the

regularization parameter works well in initial transient phase

but shows limited performance as iteration goes. This is

because the adaptation of the regularization parameter is not

robust to the status of adaptive filters.

In this paper, we propose a NLMS with the robust

regularization parameter. The proposed approach dynamically

updates the regularization parameter so that adaptive filters

not only converge faster but also have lower misadjustment

error. This is achieved by exploiting a state of gradient

descent direction at every iteration. To make the regularization
parameter robust, we introduce a normalized gradient for

updating the regularization parameter. Also, we show that the

proposed method is computationally efficient. In simulation we
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demonstrate the proposed method outperforms conventional

NLMS algorithms in terms of convergence speed and

misadjustment error for both linear and nonlinear input signals.

II. THE PROPOSED NLMS ALGORITHM

Consider data d(i) that arise from the model

d(i) = uiw
◦ + v(i) (1)

where w◦ is an unknown column vector that we wish to

estimate, v(i) is a measurement noise and ui denotes a 1×M
input vector,

ui = [u(i) u(i− 1) · · ·u(i−M + 1)] (2)

A. Conventional Regularization for NLMS

Let wi be an estimate for w◦ at iteration i. Then the a
priori output estimation error is given by

e(i) = d(i)− uiwi−1 (3)

The ε-NLMS algorithm computes wi via

wi = wi−1 +
μ

‖ui‖2 + ε
e(i)ui

∗ (4)

where μ is the step-size ,ε is the regularization parameter
and (·)∗ denotes Hermitian transpose. Besides the numerical

stabilization of the denominator in (4), the regularization
parameter ε plays a critical role in convergence performance

of NLMS. If we choose a large regularization parameter, the

effective step-size becomes small and thus ε-NLMS results

in small misadjustment error but shows slow convergence. On

the other hand, when a small regularization parameter is used,

the effective step-size becomes relatively large and thus NLMS

converges fast but results in large misadjustment errors. From

this point of view we may expect performance improvement

by using a variable ε(i) instead of a fixed ε.

B. NLMS with Robust Regularization

To achieve this goal, we propose a NLMS with robust

regularization which continuously updates the regularization
parameter so that J(i) = 1

2 e
2(i) is minimized. In the

proposed method, we normalize the gradient, ∇εJ(i), by its

norm. The proposed parameter ε(i) is recursively updated by

ε(i) = ε(i− 1)− ρ
∇εJ(i)

‖∇εJ(i)‖ (5)

where

∇εJ(i) = μ
e(i) e(i− 1)ui ui−1

∗

(‖ui−1‖2 + ε(i− 1))2
(6)
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By introducing the normalized gradient, the proposed

parameter ε(i) is less sensitive and robust to e(i). Also, the

normalized version of gradient ∇εJ(i) with a fixed ρ always

make the same stride, neglecting how steep the slope of J(i)
is. This properties make the regularization parameter ε(i)
updated effectively when ∇εJ(i) is very small.

In (6), since μ and the denominator are always positive, (5)

is rewritten as

ε(i) = ε(i− 1)− ρ sgn[e(i)e(i− 1)uiui−1
∗] (7)

where sgn(x) = x
‖x‖ =

⎧⎨
⎩

1 if x > 0
0 if x = 0
−1 if x < 0

.

Since ∇wJ(i) = −e(i)ui and ∇wJ(i−1) = −e(i−1)ui−1,

the updated equation (7) can be expressed as

ε(i) = ε(i− 1)− ρ sgn[∇wJ(i)∇∗
wJ(i− 1)] (8)

Note that the inner product of two gradient vectors is

∇wJ(i)∇∗
wJ(i− 1) =

‖∇wJ(i)‖ · ‖∇wJ(i− 1)‖ · cos θ (9)

where θ is the acute angle between two vectors. Therefore it

holds

sgn[∇wJ(i)∇∗
wJ(i− 1)] = sgn(cos θ) (10)

since ‖∇wJ(i)‖ > 0. Using (10), (8) is compactly rewritten

as

ε(i) = ε(i− 1)− ρ sgn(cos θ) (11)

From (11), we know that when the angle between two

gradient vectors, ∇wJ(i− 1) and ∇wJ(i) is from 0◦ to 90◦,

cos θ becomes positive and thus ε(i) decreases. On the other

hand, when the two vectors are diverse such that the acute

angle is from 90◦ to 180◦, cos θ is negative and thus ε(i)
increases. Thus we know that the proposed parameter ε(i) is

updated according to a status of gradient descent direction at

present and past iterations.
The proposed NLMS algorithm incorporating the robust

regularization (7) is summarized as

ε(i) = ε(i− 1)− ρ sgn[e(i)e(i− 1)uiui−1
∗]

wi = wi−1 +
μ

‖ui‖2+max(ε(i),εmin)
e(i)ui

∗ (12)

where εmin is a minimum allowable value of ε(i).
The preceding algorithm, GNGD [6], has been proposed

for the same goal of the proposed method. GNGD updates the

regularization parameter as

ε(i) = ε(i− 1)− ρ (∇εJ(i)) (13)

where ρ is a small positive constant.
From (4), (6) and (13) we know that Δε(i) = ε(i)−ε(i−1)

is proportional to the square order of e(i) while Δwi = wi−
wi−1 is proportional to e(i). So a small e(i) after the initial

adaptation results in very small Δε(i) and correspondingly

ε(i) undergoes small variation. This is a reason why GNGD

shows limited performance as iteration goes although it works

well during initial transient period. Comparing the proposed

method with GNGD, we know that the merits of GNGD

are inherited and the shortcomings of it are overcome in the

proposed method.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY

Algorithms multiplications divisions
Proposed 2M + 7 1
GNGD 2M + 10 2
ε-NLMS 2M + 3 1

C. εmin and Stability

To guarantee the stability of the proposed algorithm, we

need to set εmin. Let us define the a posteriori output
estimation error

r(i) = d(i)− uiwi (14)

Then from (3) the following holds

r(i) =

(
1− μ‖ui‖2

ε+ ‖ui‖2
)
e(i) (15)

Since the magnitude of the a posteriori output error will not

exceed that of the a priori output error, i.e,. |r(i)| < |e(i)|,
εmin must satisfy ∣∣∣∣∣1− μ‖ui‖2

εmin + ‖ui‖2
∣∣∣∣∣ < 1 (16)

Therefore we get

εmin > ‖ui‖2
(μ
2
− 1
)

(17)

The inequality (17) can be written in terms of μ as

0 < μ <
2(εmin + ‖ui‖2)

‖ui‖2 (18)

When εmin = 0, the stability bound in (18) reduces to 0 <
μ < 2 which is that of conventional NLMS.

D. Computational Complexity

To show that the proposed method is computationally

efficient, Table I compares computational cost in terms of

multiplication and division for various algorithms. As can be

seen in Table I, the proposed method has a computational

complexity less than GNGD and similar to that of ε-NLMS.

Computational savings are obtained by using the normalized

gradient in the proposed method.

III. SIMULATION RESULTS

We illustrate the performance of the proposed NLMS

algorithm by carrying out computer simulations in the channel

estimation scenario. The unknown channel H(z) is represented

by FIR structure with 10 taps. The adaptive filter and the

unknown channel are assumed to have the same order. The

performance of the proposed algorithm is compared with

that of GNGD and ε-NLMS. For simulations, a linear and

a nonlinear signal are used as a input signal. The linear input

signal is obtained by filtering a white, zero-mean, Gaussian

random sequence x(i) through an AR filter

u(i) = 0.9u(i− 1) + x(i) (19)
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Fig. 1 Comparison of ε-NLMS, GNGD and the proposed method for the
linear input signal (19)
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Fig. 2 Comparison of GNGD and the proposed method for the linear input
signal (19)

and the nonlinear signal is formed by

u(i) =
u(i− 1)

1 + u(i− 1)2
+ x(i− 1)3 (20)

The sinal-to-nose ratio(SNR) is calculated by

SNR = 10 log10(E[y(i)2]/E[v(i)2]) (21)
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Fig. 3 Comparison of ε-NLMS, GNGD and the proposed method for the
nonlinear input signal (20)
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Fig. 4 Comparison of GNGD and the proposed method for the nonlinear
input signal (20)
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Fig. 5 (a) Reference speech (b) Prediction error of the ε-NLMS (ε = 0.0001)
(c) Prediction error of the GNGD (d) Prediction error of the proposed

method

where y(i) = uiw
o.

The measurement noise v(i) is added to y(i) such that SNR

= 30dB. The mean square deviation (MSD), E‖wo − wi‖2,

is taken and averaged over 50 independent trials. The initial

value ε(0) and εmin is set to zero for all simulations. We use

the input signals (19) and (20) for Figs. 1, 2 and Figs. 3, 4,

respectively. Fig. 1 compares the MSD curves of ε-NLMS,

GNGD and the proposed method for μ = 0.5. Dashed lines
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indicate learning curves of ε-NLMS with fixed ε where we

choose ε = 0, 10 and 30. For GNGD, ρ is set to 0.15

and for the proposed method ρ is set to 0.075. As can be

seen, the proposed method shows faster convergence rate and

lower misadjustment error than ε-NLMS and GNGD. Fig. 2

illustrates the performance comparison between the proposed

method and GNGD for various ρ. The proposed method

outperforms GNGD for various ρ. Fig. 3 shows a performance

comparison of ε-NLMS, GNGD and the proposed method for

the nonlinear input signal (20). We choose ρ = 0.005 and

μ = 1.99 for GNGD and ρ = 0.01 and μ = 1.99 for the

proposed method. Fig. 4 compares the performance of GNGD

with ρ = 0.01, 0.1, 0.8 and 1.2 and that of the proposed

method. As in the case of the linear input signal, the proposed

method shows better performance than conventional NLMS

algorithms even for the nonlinear input signal.

In this experiment, we consider a prediction of a speech as

a nonstationary signal. The order of the adaptive filter is 10

and a one-step predictor is used. Fig. 5(a) shows the speech

signal that is used as the reference signal. The speech prepared

in the experiment is sampled by 8KHz. The initial value ε(0)
and εmin are set to zero. The step-size μ is set to 1.5. In

the ε-NLMS, ε = 0.0001 is chosen. We use ρ = 0.001 for

the both the GNGD and the proposed method. Figs. 5(b)–5(d)

show prediction error e(i) of the ε-NLMS, the GNGD, and

the proposed method, respectively. We see that the prediction

error of the proposed method is smaller than those of the

ε-NLMS and the GNGD. Consequently, the proposed method

outperforms the ε-NLMS and the GNGD for a nonstationary

signal such as speech.

IV. CONCLUSIONS

We have proposed a novel NLMS algorithm with robust

regularization. The performance improvement of NLMS has

been achieved by developing an efficient and robust adaptation

scheme for the variable regularization parameter ε(i) using

the normalized gradient. In simulation we have illustrated the

proposed method outperforms conventional NLMS algorithm

in terms of convergence rate and misadjustment error with an

efficient computation.
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