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Using Teager Energy Cepstrum and HMM distances
in Automatic Speech Recognition and Analysis of
Unvoiced Speech
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Abstract—In this study, the use of silicon NAM (Non-Audible
Murmur) microphone in automatic speech recognition is presented.
NAM microphones are special acoustic sensors, which are attached
behind the talker’s ear and can capture not only normal (audible)
speech, but also very quietly uttered speech (non-audible murmur).
As a result, NAM microphones can be applied in automatic speech
recognition systems when privacy is desired in human-machine com-
munication. Moreover, NAM microphones show robustness against
noise and they might be used in special systems (speech recognition,
speech conversion etc.) for sound-impaired people. Using a small
amount of training data and adaptation approaches, 93.9% word
accuracy was achieved for a 20k Japanese vocabulary dictation
task. Non-audible murmur recognition in noisy environments is also
investigated. In this study, further analysis of the NAM speech has
been made using distance measures between hidden Markov model
(HMM) pairs. It has been shown the reduced spectral space of NAM
speech using a metric distance, however the location of the different
phonemes of NAM are similar to the location of the phonemes
of normal speech, and the NAM sounds are well discriminated.
Promising results in using nonlinear features are also introduced,
especially under noisy conditions.

Keywords—Speech recognition, unvoiced speech, nonlinear fea-
tures, HMM distance measures

I. INTRODUCTION

The NAM microphone [1] belongs to the acoustic sensor
paradigm, in which speech is conducted not through the air,
but within body tissues, bone, or the ear canal. The NAM
microphone is attached behind the talker’s ear and speech is
captured through body tissue. Fig. 1 shows the attachment of
a NAM microphone to the talker.

The bone-conductive microphone used in [2], [3], the throat
microphone used in [4] and the ear-plug used in [5] are
acoustic sensors similar to NAM microphones. Basically, in
those studies a non-conventional acoustic sensor combined
with a standard microphone was used to increase the ro-
bustness against noise. In [6] a prototype stethoscope NAM
microphone and a throat microphone were used for soft
whisper recognition in a clean environment.

NAM microphones are special acoustic sensors, which can
capture not only normal (audible) speech, but also very quietly
uttered speech (non-audible murmur). As a result, NAM
microphones can be applied in automatic speech recognition
systems when privacy is desired in human-machine commu-
nication. Moreover, since a NAM microphone receives the
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Fig. 1. Silicon NAM microphone attached to the talker.

speech signal directly from the body, it shows robustness
against the environmental noises. In addition to these, it might
be also used in special systems (speech recognition, speech
conversion, etc.) for sound-impaired people.

The stethoscope microphone is based on stethoscopes used
by medical doctors to examine the patients. In a very similar
device, a microphone is used covered by a membrane. On the
other hand, the silicon microphone uses a microphone wrapped
by silicon. The idea to use silicon is based on the fact that
silicon has similar impedance to that of human flesh.

Using a small amount of adaptation data, 93.9% word
accuracy for a 20k Japanese vocabulary dictation task was
achieved [7]. Moreover, the authors conducted experiments
using simulated and real noisy test data to prove the noise ro-
bustness of NAM microphones. Although, NAM microphones
show high robustness against noise when using simulated
noisy data, their performance decreases using real noise data
because of the effect of Lombard reflex [8], [9], [10], [11],
[12], [13].

In previous experiments by the authors, mel-frequency cep-
stal coefficients (MFCC) features were derived. In this study,
experimental results using nonlinear Teager energy operator
(TEO) features have also been introduced. Nonlinear features
introduced in speech classification under stress conditions
show very promising results [14]. The nature of NAM speech
(e.g., the efforts to utter very quiet speech) might be considered
to have similarities with speech under stress conditions. On the
other hand, NAM speech is a new phenomena and might be
possible to also use other features than MFCC. In addition to
this, in [22] significant impromevent was reported when using
TEO features under noisy conditions. The obtained results
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Fig. 2. Spectrogram of an audible Japanese utterance captured by NAM
microphone

Fig. 3. Spectrogram of an audible Japanese utterance captured by close-
talking microphone

show the effectiveness of using nonlinear features in NAM
recognition.

Another issue that is dealt with is the location of HMMs in
the acoustic space using different kinds of speech. The location
of HMMs in normal speech, NAM speech and BTOS speech
have been investigated using a three-dimensional principal
components analysis (PCA) and results showed that in all
cases sounds are well discriminated. A distance measure
between pairs of HMMs was also calculated showing that
although NAM speech has limited frequency components, the
phonemes of Japanese language are also discriminated and
recognized correctly in NAM speech. This is may be an
evidence of obtaining high word accuracy in NAM recog-
nition. Similar study had been introduced by Furui et al.,
[15] showing a strong relationship between spectral distance
between phonemes and phoneme recognition acuracy. This
relationship was reflected using a two-dimensional PCA.

II. NON-AUDIBLE MURMUR CHARACTERISTICS

Non-audible murmur and audible speech captured by a
NAM microphone have different characteristics compared
with air-conducted speech. Similarly to whisper speech, non-
audible murmur is unvoiced speech produced by vocal cords
not vibrating and does not incorporate any fundamental (FO)
frequency. Moreover, body tissue and loss of lip radiation
act as a low-pass filter and the high-frequency components
are attenuated. However, the non-audible murmur spectral
components still provide sufficient information to distinguish
and recognize sounds accurately.

Fig. 2 shows the spectrogram of an audible Japanese
utterance captured by a stethoscope NAM microphone and
fig. 3 shows the spectrogram of the same utterance captured
by a close-talking microphone. Figures show that the utterance
captured by a NAM microphone is of limited frequency band,
namely it contains frequency components up to 3000-4000 Hz.

Because of these differences, normal-speech hidden Markov
models (HMMs) cannot be used for recognition of speech cap-

TABLE I
SYSTEM SPECIFICATIONS

Sampling frequency | 16 kHz

Frame length 25 ms
Frame period 10 ms
Pre-emphasis 1—-0.9727 1T

12-order MFCC,

12-order AMFCCs

1-order AE

HMM PTM , 3000 states
Training data JNAS/Non-audible murmur
Test data Non-audible murmur

Feature vectors

tured by a NAM microphone. To realize non-audible murmur
recognition, new HMMs have to be trained using non-audible
murmur database.

III. NON-AUDIBLE MURMUR AUTOMATIC RECOGNITION

In this section, experimental results for speaker-dependent
non-audible murmur recognition using NAM microphones are
presented. The recognition engine used was the Julius 20k
vocabulary Japanese dictation toolkit [16]. The recognition
task was large vocabulary continuous speech recognition. A
trigram language model trained with newspaper articles was
used. The perplexity of the test set was 87.1. The initial
models were speaker-independent, gender-independent, 3000-
state phonetic PTM HMMs , trained with the JNAS database
[17] and the feature vectors were of length 25 (12 MFCC (Mel-
Frequency Cepstral Coefficients), 12 AMFCC, AE). Table I
shows the system specifications.

The non-audible murmur HMMs were trained using a
combination of supervised 128-class regression tree MLLR
[18] and MAP [19] adaptation methods. Using, however, the
MLLR and MAP combination, the parameters are initially
transformed using MLLR, and the transformed parameters are
used as priors in MAP adaptation. In this way, during MLLR
the acoustic space is shifted and the MAP adaptation performs
more accurate transformations. Moreover, because of the use
of a regression tree in MLLR, parameters which do not appear
in the training data, and therefore are not transformed during
MAP, are transformed initially during MLLR.

Due to the large difference between the training data and
the initial models, single-iteration adaptation is not effective
in non-audible murmur recognition. Instead, a multi-iteration
adaptation scheme was used. The initial models are adapted
using the training data and the intermediate adapted models
were trained. The intermediate models were used as initial
models and were re-adapted using the same training data.
This procedure was continued until no further improvement
was obtained. Results show, that after 5-6 iterations significant
improvement was achieved compared with the single-iteration
adaptation. This training procedure is similar to that proposed
by Woodland et al. [20], but the object is different.

A. Experiments using clean and simulated noisy test data

In this experiment, both training and test data were recorded
in a clean environment by a male speaker using NAM mi-
crophones. For training, 350 and for testing 48 non-audible
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Fig. 4. Non-audible murmur recognition in clean environment
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Fig. 5. Non-Audible murmur recognition in noisy environments (superim-
posed noisy data)

murmur utterances of a male speaker were used. Fig. 4
shows the achieved results. As the figure shows, the results are
very promising. Using a small amount of data and adaptation
techniques, we achieved high word accuracies. Using a silicon
NAM microphone we achieved a 93.9% word accuracy for
non-audible murmur recognition. The results also show the
effect of the multi-iteration adaptation scheme. As can be
seen, with increasing number of adaptation iterations, the word
accuracy was markedly increased.

An experiment using simulated noisy data was also con-
ducted. In this experiment, the same clean 350 utterances were
used for adaptation. For testing, 48 noisy non-audible murmur
utterances were used. Noise recorded in an office was played
back at 50 dBA (decibels adjusted), 60 dBA and 70 dBA levels
and was recorded using NAM microphones. The recorded
noises were superimposed onto the clean data to create the
noisy test data.

Fig. 5 shows the obtained results. As can be seen, for
the 50 dBA and 60 dBA noise levels the performance was
almost equal to that of the clean case. When the noise level
became 70 dBA, the performance decreased, however, still
non-audible murmur recognition with reasonable results was
possible. Note, that no additional noise reduction approaches
were used, and that the HMMs were trained using clean data.
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Fig. 6. Acoustic locations of Japanese vowels

IV. LOCATIONS OF SOUNDS IN NORMAL SPEECH, NAM
SPEECH, AND BTOS SPEECH

In this section, the location of phonemes was investigated
to show that NAM sounds are also well discriminated. The
location of different phonemes in BTOS speech was also
investigated. In these experiments, three sets of HMMs were
used. Each set consists of 43 monophones trained with clean
speech, NAM speech, and BTOS speech, respectively. For
training NAM and BTOS HMMs, MLLR was used with
clean initial models and 763 training utterances. For PCA
analysis, the means of the center state were used. Fig. 6 shows
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Fig. 7. Acoustic locations of Japanese vowels

the results obtained for the five Japanese vowels, and fig.7
shows the results obtained for the Japanese fricatives. The
results show that the phonemes of different speeches are well
discriminated.

V. HMM DISTANCE MEASURES BETWEEN PHONEMES

Although fig. 6 and fig. 7 show the discrimination between
sounds in the cases of normal speech, BTOS speech and NAM
speech, they do not provide a metric distance for comparison
purposes. To do this, distance measures between HMM pairs
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Fig. 8. HMM distance measure between /p/ and /t/ consonants.
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Fig. 9. HMM distance measure between /a/ and /e/ vowels.

using the Juang and Rabiner distance [21] given by the
Equation 1 were also calculated.

N
1
D(A1, \g) = ZT— log P(0%, |A1)—log P(O%, |A2)] (1)

where A1 and A\ are the two HMM models, Q% is the
feature sequence generated by A, model, N is the number
of utterances and T2 is the length of feature sequence. The
D(A1,\2) is not symmetric and therefore we consider the
distance of two HMMs as to be

D(A1,x2) + D(A2, A1)
3 2
Fig. 8 and 9 show the HMM distance measures in the function
of the frames used in calculation. The distance measures show
convergence after using a specific number of frames.

Fig. 10 shows the calculated distance measures between the
Japanese vowel /a/ and the other four vowels. Fig. 11 shows
the distance measures between the Japanese vowel /o/ and
the other four vowels. As it shown on the figures, the distance
measures are comparable and they follow the same tendency
in all of the three cases. The normal speech shows the biggest
distance followed by the BTOS and NAM distances.

D=
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Fig. 10. Juang and Rabiner distance measures between Japanese vowel /a/
and the other four vowels.
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Fig. 11. Juang and Rabiner distance measures between Japanese vowel /o/
and the other four vowels.

A. Phoneme recognition experiment

To evaluate the performance of NAM microphones and
investigate the relationship between the HMM distance mea-
sures and the phoneme recognition accuracy, a phoneme
recognition experiment was conducted using normal speech,
BTOS speech, and NAM speech data. In the experiment,
43 monophones were trained using 763 Japanese utterances
from a male speaker. For testing, 187 utterances for each
kind of speech were used. The achieved results showed that
there were no significant differences in the performance. More
specifically, phoneme accuracy achieved for normal speech
was 90.8%, 89.5% for BTOS, and 88.1% for NAM. The
spectral reduction which is represented by the HMM distances
may be the reason for the small differences in the performance.
However, in some cases when the distance between an HMM
pair becomes smaller, confusions appear between the two
phonemes. It is shown, however that using NAM microphones
high phoneme recognition accuracies were obtained. The
recognition performance achieved by a NAM microphone was
comparable to the performance achieved by a close-talking
microphone for normal-speech recognition.

VI. NAM RECOGNITION USING NONLINEAR FEATURES

The tradional acoustic theory assumes that the airflow from
the vocal folds propagate though the vocal tract as a plane
wave. Teager, however, suggested that the true source of
speech production is actually not linear. Teager developed an
energy operator to measure the energy of speech produced by
a nonlinear process as follows:

Uz(n)] = 2%(n) — z(n + Dz(n — 1) 3)

, where ¥ is the Teager Energy Operator (TEO) and z(n) the
sampled speech signal.

10
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Fig. 12. A 10-order Gammatone filter-bank.

In this experiment, features from Teager Energy Operator
to train HMMs and perform automatic speech recognition
for NAM speech were derived [22]. MFCC features were
also derived to compare the performance. The procedure of
deriving TEO Cepstral Coefficients (TECC) is as follows:

o Subband decomposition using a 10-order Gammatone
[23] filter-bank. Gammatone filters are used in order to
better model the frequency response characteristics of
the human ear. The gammatone filter is inspired by the
auditory system and has non-uniform bandwidths and
non-uniformf spacing of center frequency. The impulse
response of Gammatone filter is given by the following
equation:

gi(t) = t"flefz”b’tcos(wait) %)

where n is the filter order, b is the bandwidth and f is
the center frequency equally spaced on ERB (Equivalent
Rectangular Bandwidth) scale. In the previous Equation

b; = 1.O19ERB(f) (5)

and FRB(f) is the Equivalent Rectangular Bandwidth if
center frequency f.

ERB(f) = 0.108f + 24.7 (6)

Figure 12 shows frequency responses of a Gammatone
filter-bank.

¢ Calculation of energy using Teager Energy Operator for
each band as follows:

1
“@=1 2 0 [ X [n]] (7

where e; is the energy in the 1-th band (I=1..L), L is the
number of bands, and N; the frame number of the 1-th
band.

1939



International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:3, No:11, 2009

TABLE II
RECOGNITION RATES FOR NAM SPEECH RECOGNITION USING TECC
AND MFCC FEATURES.

Word Accuracy [%]

Test data
Clean 60dBA | 70dBA
MFCC 84.4 74.2 60.8
TECC 85.9 774 63.1

Features

e Derivation of TECC as follows:

L
TECC(k) = Zlog(el)cos[w} )
=1

where k£ = 1..N is the order of features.

Forty-three monophone HMMs were trained using 400
clean NAM utterances from a female speaker and Expectation-
Maximization (EM) training procedure. The HMMs were of
32 Gaussian mixtures. For testing, 130 clean utterances, 130
noisy utterances with 60 dBA noise level, and 130 noisy
utterances with 70 dBA noise level were used. Office noise
was played back and recorded using a NAM microphone. It
then superimposed onto clean NAM utterances to obtain noisy
data. The task was a 20k Japanese vocabulary dictation. The
authors derived 12 TECC, 12 ATECC and 12 AATECC
features. The performance was also compared using the same
dimension MFCC features.

Table II shows the obtained results. Results show that in
clean case the performance of TECC and MFCC are almost
equal and statistically not significant. On the other hand,
improvements were obtained using TECC features under noisy
conditions. The authors plan to conduct additional experiments
using a larger amount of data to justify the effectiveness of
TECC features under noisy conditions. The results show how-
ever, that TECC features provide at least similar performance
to MFCC features.

VII. CONCLUSION

In this study, NAM recognition and analysis is presented
and experiments using MFCC features are introduced. NAM
phenomenona was further analyzed using PCA and distance
measures between HMM pairs. The authors showed that in
NAM speech the HMMs of the Japanese phonemes are also
well discriminated, though the spectral distances between
NAM phonemes are reduced. To investigate the relationship
between HMM distance and recognition accuracy, a phoneme
recognition experiment was conducted using normal speech,
BTOS speech, and NAM speech showing that when distances
are similar, phoneme accuracy also show similarities. In
addition to MFCC features, an experiment using nonlinear
TECC features was also carried out. The obtained results
show that TECC features can be used in NAM recognition
effectively. As future work, the authors plan to investigate
the use of combined linear and nonlinear features in NAM
recognition and also to further investigate HMM distances
between Japanese vowels, plosives and fricatives.
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