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Using Support Vector Machine for Prediction 
Dynamic Voltage Collapse in an Actual Power 

System
Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, and Aini Hussain 

Abstract—This paper presents dynamic voltage collapse 
prediction on an actual power system using support vector machines. 
Dynamic voltage collapse prediction is first determined based on the 
PTSI calculated from information in dynamic simulation output. 
Simulations were carried out on a practical 87 bus test system by 
considering load increase as the contingency. The data collected from 
the time domain simulation is then used as input to the SVM in which 
support vector regression is used as a predictor to determine the 
dynamic voltage collapse indices of the power system. To reduce 
training time and improve accuracy of the SVM, the Kernel function 
type and Kernel parameter are considered.  To verify the 
effectiveness of the proposed SVM method, its performance is 
compared with the multi layer perceptron neural network (MLPNN). 
Studies show that the SVM  gives faster and more accurate results for 
dynamic voltage collapse prediction compared with the  MLPNN.

Keywords—Dynamic voltage collapse, prediction, artificial 
neural network, support vector machines. 

I. INTRODUCTION

N recent years, voltage instability which is responsible for 
several major network collapses have been reported in many 

countries [1]. The phenomenon was in response to an 
unexpected increase in the load level, sometimes in 
combination with an inadequate reactive power support at 
critical network buses. Voltage instability phenomenon has 
been known to be caused by heavily loaded system where 
large amounts of real and reactive powers are transported over 
long transmission lines or lines are overloaded. It may also 
occur at the operating loading condition when a system is 
subjected to the contingency [2-3]. In this situation, it is 
important to assess voltage stability of power systems by 
developing tools that can predict the distance to the point of 
collapse in a given power system. Much effort is currently 
been put into research on the phenomenon of voltage collapse 
and many approaches have been explored. However, there is  
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still a need for reducing the computational time in dynamic 
voltage stability assessment. Presently, the use of artificial 
neural network (ANN) in dynamic voltage collapse prediction 
has gained a lot of interest amongst researchers due to its 
ability to do parallel data processing with high accuracy and 
fast response. Several voltage stability prediction studies have 
been carried out by using multi layer perceptron neural 
network (NN) model [4]. Reference [5] proposed the use of 
radial basis function (RBF) and recurrent NN [6] for voltage 
stability assessment. Another method to assess power system 
stability using ANN is by means of classifying the system into 
either stable or unstable states for several contingencies 
applied to the system [7]. Support Vector Machine (SVM) is 
another method used for solving classification problems [8] in 
which the method has several advantages such as automatic 
determination of the number of hidden neurons, fast 
convergence rate and good generalization capability.  

In this paper, a new method for dynamic voltage prediction 
is proposed by using SVM for fast and accurate prediction of 
voltage collapse. The procedures of dynamic voltage collapse 
prediction using SVM are explained and the performance of 
the SVM is compared with the multilayer perceptron neural 
network (MLPNN) so as to verify the effectiveness of the 
proposed method. The MLP NN was developed using the 
MATLAB Neural Network Toolbox, whereas SVM were 
developed using the LSSVM Matlab Toolbox [9].  

Initially, the work focused on the development of a new 
dynamic voltage collapse indicator named as the Power 
Transfer Stability Index (PTSI). The index is calculated by 
using information of total apparent power of the load, 
Thevenin voltage and impedance at a bus and the phase angle 
between Thevenin and load impedance. The value of PTSI 
will fall between 0 and 1 in which when PTSI value reaches 1, 
it indicates that a voltage collapse has occurred. Dynamic 
simulations were carried out for determining the relation 
between voltage, reactive power and real power at a load bus 
and the PTSI. Load increase at all the load buses was 
considered for generating the training and testing data sets. 
The performance of the proposed SVM technique developed 
for dynamic voltage stability prediction was evaluated by 
implementing it on the 87 bus practical power system which is 
shown in Fig. 1. The performance of the SVM was compared 
with the MLPNN in order to determine the effectiveness of the 
SVM in terms of accuracy and computation time in dynamic 
voltage collapse prediction.   
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II. DYNAMIC VOLTAGE COLLAPSE INDICATOR

An indicator used for predicting dynamic voltage collapse 
at a bus is the power transfer stability index (PTSI). The PTSI 
is calculated by knowing information of the total load power, 
Thevenin voltage and impedance at a bus and the phase angle 
between Thevenin and load bus [3]. The formula for the PTSI 
can be described as, 

2

2 1 cosL Thev

Thev

S Z
PTSI

E
                       (1) 

where, 
SL     : load power at a bus 

     : phase angle of  the Thevenin impedance  
ZThev  : Thevenin impedance 

     :  phase angle of load bus impedance   
EThev    : Thevenin voltage 

III. SUPPORT VECTOR MACHINE

Support vector machine (SVM) [9] is gaining popularity 
due to its many attractive features and promising empirical 
performance. It adopts the structure risk minimization (SRM) 
principle which has been shown to be superior to the 
traditional empirical risk minimization (ERM) principle, 
employed by conventional neural network. SRM minimizes an 
upper bound of the generalization error on Vapnik-
Chernoverkis  dimension, as opposed to ERM that minimizes 
the training error. This difference equips SVM with good 
generalization performance, which is the goal of the learning 
problems. Strong theoretical background provides SVM with 
global optimal solution and can avoid local minimization. It 
can solve high-dimension problems with Reproducing Kernel 
Hilbert Spaces Theory and avoid “dimension disaster”. Now, 
with the introduction of -insensitive loss function, SVM has 
an advantage in solving nonlinear regression estimation. 

Support Vector Regression (SVR) 
In SVR, the basic idea is to map the data x of the input 

space into a high dimensional feature space F via a nonlinear 
mapping  and to do linear regression in this space [5]: 

( ) , ( )f x w x b  with : ,nR F w F         (2) 
        where,  

f x  :  output function 
w :  weight vector  
x :  input 
b :  bias threshold 

          < . , . >        :   dot products in the feature space.  

Thus, linear regression in a high dimensional feature space 
F corresponds to nonlinear regression in the low dimensional 
input space Rn. Since  is fixed, thus w is determined from the 
finite samples {xi, yi} (i=1,2,3, …, N) by minimizing the sum 
of the empirical risk  Remp [f] and a complexity term ||w||2,
which enforces flatness in feature space: 

2 2

1

, ,
l

reg emp i i
i

R f R f w L y f x w w   (3) 

where l denotes the sample size,  is regularization constant, 
L is the -insensitive loss function which is given by, 
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f x y otherwise
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The target function (3) can be minimized by solving 
quadratic programming problem, which is uniquely solvable. 
It can be normalized as follows:  

21,
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subject to w x b y
                (5) 

where, 
C         :  a pre-specified value 

- , +  :   slack variables representing upper and lower  
                constraints on the outputs of the system 

The first part of this cost function is a weight decay which 
is used to regulate weight size and penalizes large weights. 
Due to this regulation, the weight converges to smaller values. 
Large weights deteriorate the generalization ability of SVM 
because, usually, they can cause excessive variance. The 
second part is a penalty function which penalizes errors larger 
than +  using a so called -insensitive loss function L for 
each of the training points. The positive constant C determines 
the amount, up to which deviations from  are tolerated. Errors 
larger than +  are denoted with the so-called slack variables 
representing values above  ( +) and below  ( -), respectively. 
The third part of the equation represents constraints that are 
set to the values of errors between regression 
prediction ( )f x and true values yi.    

The solution is given by,  

* *

* * *
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With constraints, 

      
*

*

1

0 , , 1,...,

0

i i
l

i i
i

C i l
                           (7) 

By solving Equation (6) with constraints of Equation (7), we 
can determine the Lagrange multipliers , * and the weight 
as in the regression function of Equation (2), which is given 
by,  
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w x and b w x x        (8) 

The Karush-Kuhn-Tucker  conditions that are satisfied by 
the solution are, 

* 0, 1,...,i i i l                         (9) 

Therefore, the support vectors are points where exactly one 
of the Lagrange multipliers are greater than zero (on the 
boundary), which means that they fulfill the Karush-Kuhn-
Tucker condition [10]. Training points with non-zero 
Lagrange multipliers are called support vectors and give shape 
to SVR. When 0 , we get L loss function and the 
optimization problem is simplified as, 

1 1 1

1min ,
2

l l l

i j i j i i
i j i

x x y               (10) 

With constraints,  
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and the regression function is given by Equation (2), where 

1

1 ,
2

l

i i r s
i

w x and b w x x                (12) 

A non-linear mapping can be used to map the data into a 
high dimensional feature space where linear regression is 
performed. The Kernel approach is again employed to address 
the curse of dimensionality. The non-linear SVR solution, 
using an -insensitive loss function, 
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With constraints, 
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Solving Equation (13) with constraints as in Equation (14),
determines the Lagrange multipliers, , *  and the regression 
function which is given by, 

*( ) ,i i i
SVs

f x K x x b                 (15) 

where,  
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The support vector equality constraint may be dropped if 
the Kernel contains a bias term, b being accommodated within 
the Kernel function. The regression function becomes,  

*

1

( ) ,
l

i i i
i

f x K x x                    (17) 

In (15) the Kernel function, ( , ) ( ), ( )i j i jk x x x x . It 

can be shown that any symmetric Kernel function, k satisfying 
Mercer’s condition corresponds to a dot product in some 
feature space [9, 11]. Several Kernel functions are named as 
Gaussian radial basis function (RBF) Kernel, linear Kernel 
and multilayer perceptron Kernel. The commonly Kernel 
function used is the Gaussian RBF Kernel which is written as  

2

22( , )
x y

k x y e                              (18) 
Note that 2 is a parameter associated with RBF function 
which has to be tuned. 

For prediction cases, any data can be regarded as an input-
output system with nonlinear mechanism. Therefore, the 
support vector machines will essentially build a network 
which is capable of approximating the underlying functions 
with acceptable accuracy according to learning samples data.  

IV. METHODOLOGY

Before the SVM implementation, time domain simulations 
considering several contingencies were carried out for the 
purpose of gathering the training data sets. Simulations were 
carried out by using the PSS/E commercial software. 

A.  Data Preprocessing 
The training data was obtained by carrying out time domain 

simulation in which load was increased at every load bus for 
every second at a certain rate from the base case until the 
occurrence of a voltage collapse. The training data for each 
contingency was then recorded. About three hundred training 
and testing data were generated for use in the SVM and 
MLPNN.   

The selection of input features is an important factor which 
needs to be considered in the SVM and MLPNN 
implementation. The input features selected for this work are 
real and reactive power load (PLoad, QLoad) and the load voltage 
and phase angle (VLoad, Load). Altogether, there are 224 input 
features considered for both SVM and MLPNN.  

B.  Procedure 
The SVM implementation procedure is described as 

follows: 
i. Input load, generator and line data of the test system. Run 

the load flow for the base case. 
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ii. Generate training and testing data for the SVM, by 
carrying out simulations considering a) increase loads at 
all the load buses at a rate of 2% MVA/sec until the 
system collapse, b) increase loads at individual load buses 
at a rate of 5% MVA/sec with the loads at the other load 
buses remaining constant.  Measure the voltage, phase 
angle, real and reactive powers and calculate PTSI at all 
the load buses 

iii. Create a data base for the input vector in the form of [PL,
QL, VL, ] where PL and QL are the load real and reactive 
powers,  VL is the voltage magnitude at a load bus and 
is the voltage phase angle. The target or output vector is 
in the form of PTSI indices for the corresponding input 
vector. 

iv. For the training data sets, select data sets that give   low 
and high values of PTSI.  

v. Select the parameter values of Kernel type and Kernel 
parameter used for training the SVM.  

vi. Train the SVM using the selected training data sets. 
vii. Repeat steps (v) to (vii) by changing the parameter values 

of number of epochs, learning rate and performance goal.    
viii. Compare results of SVM and MLPNN  in terms of  

computational time and  accuracy which is in terms of 
mean square error (MSE),  given as:  

2

1

( )n
i i

i

X YMSE
n

                           (18) 

where Xi  is output value and  Yi  is target value.  

V. RESULTS AND DISCUSSION

Fig. 1 The 87 bust test system 

To evaluate the performance of the SVM in predicting 
dynamic voltage collapse, a practical 87 bus test system is 
used for verification of the method. The test system which 
consists of 23 generators and 56 load buses is shown in Fig. 1.  

In this study, time domain simulations were carried out 
using the PSS/E simulation software so as to generate the 
training data sets. From the simulation results, the PTSI was 
calculated at every load bus using the power and voltage 
information. In the SVM training, initially the Kernel function 
type and Kernel parameter,  were determined by trial and 
error. The various Kernel types considered for the SVM were 
the RBF, linear and MLP Kernels [12]. For achieving the 
required SVM accuracy, the MSE value was chosen to be less 
than or equal to 0.0003.  To investigate the effect of varying 
the Kernel parameters in determining the SVM accuracy, the 
values of  were varied according to  0.1, 0.2, 0.5 and 1.0 as 
shown in Table I.  

TABLE I
PERFORMANCE OF KERNEL PARAMETER IN SVM

  Kernel Function Type Computational 
Time (s) 

MSE 

RBF,  = 0.1 13.4164 0.0003 
RBF,  = 0.2 10.41 0.0001 
RBF,  = 0.5 21.04 0.00009 
RBF,  = 1.0 22.24 0.00009 

Linear,  = 0.1 83.92 1.10-5 

Linear,  = 0.2 41.059 1.10-5 

Linear,  = 0.5 69.78 1.10-5 

Linear,  = 1.0 81.34 1.10-5 

MLP,  = 0.1 5.2335 0.879 
MLP,  = 0.2 8.33 0.167 
MLP,  = 0.5 7.10 0.093 
MLP,  = 1.0 6.80 0.057 

It can be seen that by increasing , the  values of MSE 
decrease for RBF and MLPNN. But for the linear Kernel, the 
effect of  is not significant because the MSE value remains 
constant. 

In terms of computational time, it can be seen that the MLP 
kernel is the fastest but it is the least accurate because the 
MSE value is greater than 0.0001. The performance of the 
linear Kernel shows that it is most accurate because it gives 
the smallest MSE, but it has a drawback of long computation 
time. Comparing the performance of the RBF, linear and MLP 
Kernels in terms of accuracy and computation time, it can be 
concluded that the RBF Kernel is the best choice for this SVM 
because it is accurate (MSE < 0.0003) and it is relatively fast. 
In this case, the RBF Kernel function type with   = 0.2 is 
chosen as the parameter for the SVM. 

The performance of the SVM in dynamic voltage collapse 
prediction is then compared with the MLPNN. Both the SVM 
and MLPNN results are tabulated in terms of the training and 
testing accuracies.           
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A. Comparison of SVM and MLPNN Results in Dynamic 
Voltage Collapse Prediction 

Comparison of SVM and MLPNN for dynamic voltage 
collapse prediction in terms of absolute errors, the training 
result for some sampled data is given in Fig. 2. Results show 
comparison of the SVM and MLPNN absolute error compare 
to outputs with the actual values of PTSI obtained from 
simulations.  
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Fig. 2 Comparison of absolute error for result training using SVM 
and MLPNN  

Comparison of SVM and MLPNN methods in term of 
testing result and absolute errors is shown at Fig. 3. Fig. 3 
shows the absolute error for training sampled data set for 
SVM is less than MLPNN.   

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Data No.

A
bs

ol
ut

e 
E

rr
or

SVM
MLPNN

Fig. 3 Comparison of absolute errors for result testing using SVM 
and MLPNN 

The accuracy of the SVM and MLPNN are evaluated based 
on the absolute errors.  The average absolute errors for 
training and testing of SVM are 0.011 and 0.012 respectively, 
whilst the average absolute errors for training and testing of 
MLPNN are 0.01 and 0.021 respectively. The results prove 
that both the SVM and MLPNN give accurate results in 
dynamic voltage collapse prediction because the absolute 
errors are considered small (< 2%). For the purpose of 
comparing the actual PTSI values obtained from simulations, 
the PTSI from SVM and PTSI from MLPNN, the PTSI values 
are plotted as shown in Fig. 4. The results show that in terms 
of accuracy in predicting dynamic voltage collapse using the 
PTSI, there is no significant  difference between the SVM and 
MLPNN PTSI values when they arecompared with the actual 
PTSI values.  

Fig. 4 Comparison of actual PTSI, SVM PTSI and MLPNN PTSI   

In general, the performance of SVM and MLPNN in 
predicting dynamic voltage collapse can be evaluated from the 
results shown in Table II. It can be seen that SVM takes less 
computational time as compared to MLPNN. In terms of 
testing accuracy, the MSE for SVM (1.22 x 10-4) is less than 
MLPNN (2.09 x 10-4).  Hence, in general, it can be said that 
for dynamic voltage collapse prediction, SVM performs better 
than MLPNN from the speed and accuracy point of views. 
This feature is particularly important when used in the real-
time mode.  

TABLE II 
PERFORMANCE COMPARISON OF SVM AND MLPNN IN DYNAMIC VOLTAGE 

COLLAPSE PREDICTION

 SVM MLPNN 
Training Data 200 200 
Testing Data 100 100 
Training Error (MSE) 5.84 x 10-4 1 x 10-4

Testing Error (MSE) 1.22 x 10-4 2.09 x 10-4

Computational Time  10.38 s 92 min 30 s 

VI. CONCLUSION

Dynamic voltage collapse prediction in power systems 
using conventional analytical method requires long 
computational time and therefore to accelerate up the 
prediction process, SVM approach is proposed. In this study, 
the SVM is tested for dynamic voltage collapse prediction on 
a practical 87 bus system. The performance of the SVM 
method in predicting dynamic voltage collapse based on the 
PTSI values, is evaluated by comparing it with the MLP NN. 
In terms of training time, the SVM takes 10.38 secs whereas 
the MLPNN takes 92 minutes and 30 secs. In terms of 
accuracy, the SVM using the RBF Kernel function is more 
accurate than the MLPNN in predicting dynamic voltage 
collapse for the investigated 87 bus actual power system.     
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