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Using Single Decision Tree to Assess the Impact of
Cutting Conditions on Vibration

S. Ghorbani, N. 1. Polushin

Abstract—Vibration during machining process is crucial since it
affects cutting tool, machine, and workpiece leading to a tool wear,
tool breakage, and an unacceptable surface roughness. This paper
applies a nonparametric statistical method, single decision tree
(SDT), to identify factors affecting on vibration in machining
process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum
alloy, A48-class30 Gray Cast Iron), cutting tool (conventional,
cutting tool with holes in toolholder, cutting tool filled up with
epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000
rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm)
were used as input variables, while vibration was the output
parameter. It is concluded that workpiece material is the most
important parameters for natural frequency followed by cutting tool
and overhang.

Keywords—Cutting condition, vibration, natural frequency,
decision tree, CART algorithm.

[. INTRODUCTION

OR manufacturing of metal parts, turning is commonly

used metal cutting process and specially for finishing
machined parts. In a turning operation, the workpiece rotates,
while the fixed tool cuts in the workpiece [1]. One of the most
important problems during turning operation is unstable
cutting due to chatter vibration, which results tool breakage,
tool wear, dimensional errors, high cutting forces, reduced
productivity and poor machined surface finish. Therefore, it is
an important task to avoid chatter vibrations [2]. During the
past decades, much research has been undertaken in the field
of stability during a turning process. Turning operation
contains many parameters such as spindle speed, feed rate,
depth of cut, workpiece, cutting tool, coolant, tool nose radius,
tool edge angles and tool overhang. Therefore, it is difficult to
obtain an optimum cutting condition for achieving the
required surface quality [3]-[5]. One of the methods to reduce
the chatter in a machining process and improve the
productivity is selection of stable cutting conditions [6].
Process damping by tool-workpiece contact is another
successful strategy to avoid the chatter vibration as severe
chatter occurs due to a relative dynamic motion between
cutting tool and work piece [7]-[9]. Reference [2] proposed a
realistic analytical stability model of regenerative chatter in
orthogonal turning operation. They concluded that work cross-
section and tool overhang are the main factors affecting the
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stability. Reference [7] improved stiffness and damping
capability of the tool and suppressed the chatter using impact
dampers with different materials such as cast iron, copper,
phosphor, brass, structured steel, aluminum, gun metal, and
bronze in boring tools. Reference [9] proposed a multiple
degree of freedom model for chatter prediction while
investigating the compliance between the workpiece and
cutting tool in turning process. A new tool design with an
increased vibration damping ability was suggested by [10],
which includes special elements made of damping materials.
They experimentally investigated the impact of damping
properties of the proposed model on vibration amplitude, tool
life, and surface roughness. References [11] and [12], in their
investigation, improved the surface finish in machining
operation by predicting and suppressing the vibration level of
cutting tool using a passive damping pad of viscoelastic
material of neoprene and a passive vibration damping,
respectively. Consequently, literature review revealed that
vibration during machining process can be reduced by
increasing dynamic stiffness of machining system, changing
its main natural frequency or feedback-controlled actuators
using toolholder made of material with high damping
capability, special coating on a cutting insert or vibration
damper.

In order to achieve high cutting performance in a turning
operation, the cutting parameters should be chosen properly.
According to [13], data mining means “solving problems by
analyzing data that already exist in databases”. Most of the
studies [14]-[18] have mathematically established the cause
and effect relationship between cutting parameters and
vibration based on statistical regression techniques. They then
formulated an objective function to solve the optimal cutting
parameters using optimization techniques. All developed
equations, for any combinations of parameter levels in a range
specified, have the form:

Y= bo+b1X1+b2X2+b3X3 +...+prp

where Y represents the estimated vibration value, by, by, by, b,
..., by estimate the regression parameters, and x;, X,, X3, ..., X,
are the logarithmic transformation of independent parameters
(such as cutting speed (m/min), feed rate (mm/rev), depth of
cut (mm), tool nose radius (mm), tool overhang, and material
hardness (HRB)).

Although the studies using regression techniques as a
method estimate vibration, the optimal cutting parameters and
the effect relationship between cutting parameters, they have
difficulties in showing the important factors affecting on
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vibration. Besides, linear regression techniques need
assumptions to be made, including assumptions about the
normality, linearity, and homoscedasticity of the data among
others; therefore, it is likely that the assumptions that are made
in a regression technique may be violated [19]. The prediction
of significant cutting parameters for vibration is not easy to
accomplish by using deterministic equations. The growth in
the database industry and the resulting market needs for
methods that are capable of extracting valuable knowledge
from large data stores. For such data, the flexible and robust
analytical method is required to deal with high-order
interactions, nonlinear relationships and missing values. In
addition, the method should be simple to understand and give
easily interpretable results. Decision trees method repeatedly
splits the data into more homogeneous groups in order to
explain the variation of a single response variable using
combinations of explanatory variables that may be numeric
(regression tree) and/or categorical (classification tree) [20].
The characterization of each group is defined by the value of
the response and explanatory variables and the number of
observations in the group. The graphical representation of the
tree makes it easy to explore and understand [21]. Decision
trees method can explore the interactive to descript and predict
the patterns and processes. As compared to the other methods,
decision tree has several advantages such as flexibility to
handle a broad range of response types, including categorical,
numeric, survival data and ratings; ease and robustness of
construction; invariance to monotonic transformations of the
explanatory variables; ease of interpretation and the ability to
handle missing values in both response and explanatory
variables. Therefore, decision trees represent an alternative
method to many traditional statistical techniques such as
analysis of variance, multiple regression, linear discriminant
analysis, logistic regression, survival models, and log-linear
models [20].

Reference [22] used decision tree in their investigation and
they stated that the proposed approach has a higher
recognition rate than other methods on the same dataset.
Reference [23] applied decision tree to diagnose the
component fault of rotational mechanical system and assess
the workpiece surface roughness. Reference [24] provided a
simple way to monitor machine status by synthesizing the
knowledge and experiences on the diagnostic case histories of
the rotating machinery. For this purpose, a traditional decision
tree has been constructed using vibration-based inputs.
Reference [25] applied decision tree method to select machine
tools and cutting tools, calculate machining parameters and
generate CNC part programs for process planning in
machining process.

The present study uses SDT model to assess the effect of
different parameters such as workpiece material, cutting tool
design, and cutting parameters on the vibration during
machining operation.

II. MATERIALS AND METHOD

To perform machining experiments, the lathe machine
model 16K20VF1 (Russia) with a maximum power of 5.5 kW
and maximum spindle speed of 1600 rpm was used. Three
types of cutting tools were used: conventional cutting tool,
cutting tool with horizontal holes (@ 7 mm) in toolholder
arranged in a chess-board pattern, and cutting tool with
horizontal holes (& 7 mm) filled up with epoxy-granite, with
general specification of PCLNR 2525M12 made of AISI 5140
(Fig. 1). The cutting tool with holes in Fig. 1 (c) is filled up
with epoxy granite, the physical and mechanical
characteristics of which is illustrated in Table I. Carbide
rhombic cutting insert with a general specification of CT35M
coated with TiC, manufactured by Sandvik Coromant, was
used as a tool insert. AISI 1045 steel, A48-class30 gray cast
iron and AA2024 Aluminum alloy were used as workpieces
with 65 mm diameter and 200 mm length. This research
applies the Taguchi approach to design experiments. Taguchi
method is one of the important tools used in the industry to
shortage product design, develop time and produce lower
product cost. Taguchi method is highly flexible and can
allocate different levels of factors, even when the numbers of
the levels of factors are not the same [26]. Conventional
cutting parameters were spindle speed (s), feed rate (f), depth
of cut (d), and tool overhang (). Three levels were specified
for each of the factors as shown in Table II.

(a) (b)

(©

Fig. 1 (a) Conventional cutting tool (b) cutting tool with holes in
toolholder; (c) modified cutting tool filled up with epoxy granite:
1 — toolholder and 2 — epoxy granite

In this study, the natural frequency, which is one of the
most important criteria in machining process, is selected.
Frequencies occurred during machining was measured by
using piezoelectric accelerometer KD-35 attached on the
lower side of the cutting edge of the tools and ZETLAB
software (Russia). Accelerometer KD-35, multifunctional
spectrum analyzer A17-U8 and personal computer were used
for recording and visualizing vibration during machining
process. Design of experiment based on Taguchi approach and
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natural frequency values achieved in experimental results
during machining of three different workpieces are shown in
Tables III-V.

TABLEI
PHYSICAL AND MECHANICAL CHARACTERISTICS OF EPOXY GRANITE

Parameter Epoxy-granite
Density (kg/m®) 2400-2600
Strength stress (MPa) 150-160
Compression Tensile 15-20
Elasticity module (MPa*10™) 3.5-4.0
Poisson's ratio 0.25-0.40
Thermal conductivity (W/(m*K)) 1.7-1.75

Linear expansion coefficient (1/°C) (12-16)*10°

Damping ratio 0.6
TABLE I
CUTTING PARAMETERS AND THEIR LEVELS
Variables Level 1 Level 2 Level 3
s - Spindle speed (rpm) 630 800 1000
f - Feed rate (mm/rev) 0.05 0.06 0.075
d- Depth of cut (mm) 0.05 0.1 0.15
1- Overhang (mm) 41 50 65
TABLEIII
NATURAL FREQUENCY VALUE DURING MACHINING OF AA2024 ALUMINUM
ALLOY
Experiment No. s f d 1 f; (Hz) fo(Hz) f3 (Hz)
1 1 1 1 1 34912 33325  3039.6
2 1 2 2 2 2771.0  2917.5  2417.0
3 1 3 3 3 2038.6 2124 2050.8
4 2 1 2 3 21484 21484 1928.7
5 2 2 3 1 31982 39734 29175
6 2 3 1 2 2868.7 27649 26855
7 3 1 3 2 2978.5  2740.5  2392.6
8 302 1 3 2038.6  2185.1 1843.1
9 33 2 1 3173.8 33142 31555
TABLE IV

NATURAL FREQUENCY VALUE DURING MACHINING OF
AISI 1045 STEEL

d 1 f.(Hz) f(Hz) f3(Hz)
27954 32715 29785
3161,6 28442 24536
2069,1 21851 20874
2111, 2124 20142
31738 3727.8 30273
28564 29053 23804
2636,7 29663 23682
20752 21362 35217
30396 31921 31676

Experiment No.

© U N AW N —
W W W N NN = = = ®n
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Refer to Tables III-V, the f), f; and f; represent natural
frequency values for conventional cutting tool; f, f5 and fy—
natural frequency values for cutting tool with holes and f;, f5
and fy —natural frequency values for cutting tool with epoxy
granite.

TABLE V
NATURAL FREQUENCY VALUE DURING MACHINING OF A48-CLASS30 GRAY
CAST IRON
Experiment No. S f d 1 f; (Hz) fa(Hz) fo (Hz)

3405.8 3271.5 3094.5
2697.8 2807.6 2673.3
2050.8 2185.1 2044.7
2087.4 2148.4 2026.4
3112.8 4028.3 3448.5
2819.8 2905.3 2417
1452.6 2862.5 26123
2331.5 2105.7 1989.7
3283.7 3137.2 3112.8

O 0 N N B W N —
LW W NN N = ==
W N = W= W N =
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Data mining, such as statistical analysis, machine learning
and other processes, is the science of extracting useful
information from various data sets to discover patterns,
models and relationships in data used to make predictions. All
of the data mining processes are concerned with certain
aspects of data analysis, so they have much in common; but
each data mining process also has its own distinct flavor,
emphasizing particular problems and types of solution [27].

To classify and predict problems, the decision trees can be
applied as a powerful and simple data mining [28]. Decision
tree is a diagnostic tool that builds the knowledge-based
system by the inductive inference from case histories. A
decision tree consists of leaf nodes that contain class name and
decision nodes that specify some test to be carried out on a
single attribute value of an instance, with one branch and sub-
tree for each possible outcome of the test. Starting at the root
node of the tree, the instance is classified [29]. If this node is a
test, the outcome for the instance is determined, and the
process continues using the appropriate subtree. When a leaf is
eventually encountered, its label gives the predicted class of
the instance [27]. The decision is described graphically in
order to obtain a target value through the classification and
analysis. Once the relationship between the object of analysis
and input fields is extracted, then the decision rules can be
derived describing the relationships between inputs and
targets. Decision rules can predict the values of new or unseen
observations that contain values for the inputs, but might not
contain values for the targets [30].

In 1986, the application of decision trees to classification in
machine learning was popularized by [31] where a tree-
growing algorithm to induce decision trees ID3 was
introduced. Then, in 1993, the ID3 was upgraded with an
algorithm called C4.5 [29]. These algorithms build a decision
tree using the statistical calculation of information gain from a
single attribute. The algorithm basically chooses the attribute
that provides the maximum degree of discrimination between
classes locally. Theoretical concepts related to decision trees
can be found in many text books [27], [31].

Classification and Regression Trees (CART) analysis is a
tree-building technique which has been found quite effective
to create decision rules. CART is a nonparametric technique,
which is able to select the most important variables and their
interactions to determine the outcome variable to be explained.
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CART is also able to uncover complex interactions between
predictors, which are difficult or impossible using traditional
multivariate techniques. The CART methodology was
developed in 80s by [32] in their paper called “Classification
and Regression trees”.

In CART, the observations are successively separated into
two subsets based on associated variables significantly related
to the response variable. CART as a recursive partitioning
method builds classification and regression trees to predict
categorical predictor variables (classification) and continuous
dependent variables (regression). Each (classification and
regression) deals with the prediction of a response variable y
given the values of a vector of predictor variables X. The major
tasks in classification or regression tree algorithm are: how to
partition the data at each step?, when to stop partitioning?, and
how to predict the value of y for each X in a partition? [33].
The objective is to partition the response into homogeneous
groups, but also to keep the tree reasonably small. Splitting is
continued until an overlarge tree is grown, which is then
pruned back to the desired size [34]. For interpretation of the
model, a large majority of algorithms apply univariate splits of
the form X; € B (if X; is a categorical dependent variables) or
X; < d (if X; is a continuous dependent variable). The split set
B or the variable X; and the split point d are found by an
exhaustive search optimizing a node impurity criterion such as
sum of squared residuals (for regression) or entropy (for
classification). The predicted y value at a leaf node is the class
minimizing the estimated misclassification cost (for
classification), or the fitted value from a model estimated at
the node (for regression) [33]. In regression tree, the least
squared deviation (LSD) impurity measure is applied to split
rules and goodness of fit criteria. The LSD measure R(t) is the
weighted within node variance for node t, and it is equal to the
resubstitution estimate of risk for the node. It is defined as:

R(D) = 1= Tiee Wefi 0 = 9(0)? )
§(O) = Wiy @
Ny (t) = Xiee wif; 3)

The Ny(t) represents the weighted number of records in node
t, the weighting field value for record i (if any) and the
frequency field value (if any) are shown as w; and fj,
respectively. y; is the value of the target field, and y(t) is the
mean of the dependent variable (target field) at node t. The
LSD criterion function for split s at node t is defined as:

Q(S,T) = R(®) — R(t,) — R(tp) “)

where, R(tr) and R(ty) are the sum of squares of the right and
left child nodes, correspondently. Maximization of Q(s,t) is
done by choosing the split s. Decision of the algorithm for
stopping the splitting nodes in the tree are controlled by
stopping rules. Tree growth continues until each tree leaf node
causes at least one stopping rule. A node may not be split if:

a. All records in the node have the same value for all
predictor fields used by the model.

b. The number of records in the node is less than the
minimum parent node size (user defined).

c. If the number of records in any of the child nodes
resulting from the node's best split is less than the
minimum child node size (user defined).

d. The best split for the node decreases impurity which is
less than the minimum change in impurity (user defined).
In regression trees the j(t) is the predicted category of
each terminal node.

III. APPLICATION OF DECISION TREE AND THE RESULTS

In order to develop a model, using single decision, a tree
should be created. At first, after examination of each node the
best possible split is found. Then, each predictor variable and
each possible split on each predictor are examined. In the next
stage, it should be determined each row goes into which child
node. This may involve using surrogate splitters. The process
continues when the criterion is stopped (e.g. the minimum
node size is reached). The next step is pruning the tree. Firstly,
a set of cross-validation trees is created. Then, for each
possible tree size, the cross validated misclassification cost is
computed. Finally, the primary tree is pruned to the optimal
size.

TABLE VI
RESULTS OF THE ERROR STATISTICS CALCULATED NATURAL FREQUENCY
Correlation between actual and predicted 0.8632
Maximum error 0.9471
RMSE (Root Mean Squared Error) 0.3884
MSE (Mean Squared Error) 0.1508
MAE (Mean Absolute Error) 25.890

MAPE (Mean Absolute Percentage Error) 27.915
Normalized mean square error (NMSE) 0.3230

TABLE VII
RELATIVE IMPORTANCE OF VARIABLE ON NATURAL FREQUENCY
Workpiece material 100
Cutting tool 233
Overhang 13.9
Spindle speed 8.4
Depth of cut 7.3
Feed rate 6.2

At the end of a training process, the model with the lowest
error was selected as the final model. For qualitative
evaluation of the models, the statistical measures such as the
correlation between actual and predicted, maximum error, root
mean squared error, mean squared error, mean absolute error,
mean absolute percentage error, and the normalized mean
square error were used. The SDT diagrams and the error
statistics of calculated significant cutting parameter on natural
frequency by CART are illustrated in Fig. 2 and Table VI,
respectively. The information displayed in each node in Fig. 2,
depends on whether it is part of a classification tree
(categorical target variable). Each decision tree is a
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hierarchical structure that contains rules of prediction.
Relative abundance of a functional group was first split into
two branches by a variable which best explained the variance.
In order to define the predicted value of a row start with the
root node (node 1 in Fig. 2). Then, decide whether to go into
the left or right child node based on the value of the splitting
variable. Continue this process using the splitting variable for
successive child nodes until one reaches a terminal, leaf node.
The value of the target variable shown in the leaf node is the
predicted value of the target variable.

The relative importance of environmental and management
variables in influencing the functional group abundance in a
decision tree was indicated by the order they were selected in
splitting the tree. The variable selected first was more
influential than those selected after it. As can be seen from
Fig. 2, the greatest number of branching was performed using
workpiece material Thus, workpiece material is the most
important parameters for natural frequency. Table VII
illustrates the relative importance of variables on natural
frequency.

Node 1
Node 2 (Entire Group) Node 3
Overhang (mm) <= 45.5 e N=81 \. Overhang (mm)> 45.5
N=27 Natural frequency (Hz) = 2689.2 N =54
Natural frequency (Hz) =3246.8 Std. dev. =537.6 Natural frequency (Hz) =2410.3
Std. dev. =270.6 Std. dev. =404.6
/___*i_‘*‘—_ﬂ -
Node 4 Node 5 / Node 9
Cutting tool = {Conventional, Cutting tool = Cutting Node 8 Overhang (mm)>57.5
Cutting tool with tool with holes Overhang (mm) <= 57.5 N=27 .
composite material} N=9 N=27 Natural frequency (Hz) = 2140.8
N=18 Natural frequency (Hz) = Natural frequency (Hz) =2679.9 Std. dev. =285.4
Natural frequency (Hz) = 34498 Std. dev. =317.1
31453 Std. dev.=311.8
Std. dev. = 1743 —— L .
Node 12 Node 13
l\ ~ Node10 Work piece material = Work piece material =AISI
Cutting tool = Cutting (A48.class30, AA2024} 1045 Steel
Node 6 Node 7 tool with composite U N=18 N=9
Work piece material =AISI Work piece material = material Natural frequency (Hz) = Natural frequency (Hz) =
1045 Steel {A48.class30, AA2024} N=9 2082.0 22583
N=6 N=12 Natural frequency (Hz) = std. dev. = 105.0 Std. dev. =449.7
Natural frequency (Hz) = Natural frequency (Hz) = 2488.9
3030.4 32028 Std. dev.=122.5
Std. dev.=1274 Std. dev. = 165.9
Node 11

Cutting tool = {Conventional,

Node 14
N=6

Std. dev. = 513.0

Cutting tool with Node 15 )
Holes} Work piece material =
/ N=18 T {A2024. AISI 1045 Steel}
Natural frequency (Hz) =2775.4 N=12
Std. dev. =340.7 Natural frequency (Hz) =

Work piece material =A48.class30

Natural frequency (Hz) = 2590.9

2867.6
Std. dev. =129.7

Fig. 2 SDT generated by CART algorithm

IV. CONCLUSION

Decision tree learning is a promising approach for
classification and regression problems. In this paper, we have
applied this approach to assessment the impact of cutting
conditions (workpiece material, cutting tool, spindle speed,
feed rate, depth of cut and tool overhang) on vibration. The
overall predictive accuracy of R*=0.86 is high considering the
strict criterion used in the model validation. The hierarchical
structure of the decision trees clearly revealed the relative
importance of environmental and management variables in
influencing relative abundance of the functional groups.
Workpiece material was indicated as the most important
factors influencing the abundance of vibration. In addition, we
can use the tree to make inferences that help us understand the

“big picture” of the model. One of the great advantages of
decision trees is that they are easy to interpret even by non-
technical people.
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