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Abstract—The intention of this paper is, to help the user of
evolutionary algorithms to adapt them easier to their problem at hand.
For a lot of problems in the technical field it is not necessary to reach
an optimum solution, but to reach a good solution in time. In many
cases the solution is undetermined or there doesn’t exist a method
to determine the solution. For these cases an evolutionary algorithm
can be useful. This paper intents to give the user rules of thumb
with which it is easier to decide if the problem is suitable for an
evolutionary algorithm and how to design them.
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I. INTRODUCTION

The use of evolutionary algorithms (EAs) has entered many
areas in engineering disciplines beyond computer science.
EAs use the benefits of the biological evolutionary process
to successively generate an optimal solution. The basic idea
behind this is to create a set of potential solution candidates,
which undergo a simulated evolutionary process. Terms used
in nature like individual, population, selection, mutation,
recombination and fitness have different characteristics
depending on the design of the EA. In the last couple of
years new developments in this areas merge different EAs to
hybrid or memetic algorithms. This is done by combining the
advantages of the different approaches.
The simulation group of the Virtual Reality lab of the
Fraunhofer Institute IPK in Berlin started with the work
on EAs in 2006 with a concrete optimization problem, the
assignment of stiffness values in mass-spring models. On one
hand a lot of papers which describe a specific optimization
problem and the use of EAs for the specific adaption to this
problem can be found. On the other hand there can be found
a lot of books on specialized topics about different kinds
of implementations or parameter settings within specific
evolutionary operators. But it is difficult to find a paper
describing a procedural method, how to compose an EA from
scratch and adopt it to a problem. This paper is intended to
fill this gap and give the reader some rules of thumb, how to
proceed when designing an EA.

The main scope is to help the reader, to find an easier
decision about the following issues:
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• Is the problem suitable for EAs
• Choice of algorithm type
• Choice of design
• Choice of parameters and evolutionary operators
At this point it has to be stated clearly, that EAs are not

generic problem solvers. If the optimization problem can be
solved by a specialized method, than in general with this
method better results can be achieved. Therefore evolutionary
algorithms should only be used in cases where no specialized
algorithms exist. For a lot of problems in the engineering
domain it is not necessary to achieve the best solution, but
to receive a good solution in an acceptable time. Typical areas
of application are:

• Technical design of circuits
• Shortest path selection routing
• Parameter optimization of machine tools
• Forming optimization of mechanical components
Further information about areas of application can be found

in [1]. In the next section follows a description of the class of
optimization problems for which evolutionary optimization is
suitable. Afterward the description of evolutionary algorithms
and usable operators and with instructions how to design
an EA is given. In section 4 follows a description of a
concrete implementation for the earlier mentioned example of
the optimization of spring constants in a mass-spring system.
Finally a set of rules of thumb for the reader which should
be useful when adapting an EA for their own optimization
problem is given.

II. OPTIMIZATION PROBLEMS

For the formulation of an optimization problem a search
space, an objective function and possible constraints are
needed. Whereas the search space S consists of a set of
feasible solutions, the objective function f assigns to every
element of S a real number, f : S → R. In case of
minimization of the objective function f the problem is to
find x∗ ∈ S such that

f(x∗) = min {f(x)|x ∈ S} . (1)

A. Classification

The optimization problem have to be classified according
to specified criteria, because of the problem dependency of
the various optimization methods. The criteria have to comply
with the type of the objective function, the search space and
the constraints.
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Criteria for classification of optimization problems:
1) Continuous or discrete: depending on whether the op-

timization parameters consists of of real or discrete
values.

2) Constrained or unconstrained: depending on whether the
search space is reduced by constraints.

3) Linear or nonlinear: depending on whether the objective
function and the corresponding constraints are linear.

4) Multi-criteria optimization: depending on whether the
objective function is composed of multiple objectives.
Most problems in practice with conflicting objective
functions fall into this class, for example the weight
minimization of a structure with simultaneously mini-
mization of the deformation. In general a set of possible
solutions, the so called Pareto set, is achieved. In solving
methods which ascertain only one element of the Pareto
set of the entire objective function is constituted over
the weighted sum of the individual objective functions.

B. Nonlinear Optimization Methods

Before going into detail about EAs, a short survey of
nonlinear optimization methods is given.
The general structure of an iterative optimization method
consists of:

1) Initialization: During the initialization process the op-
timization variables xj , j = 1, . . . , n get an adequate
initial value.

2) Iteration code: By the iteration rules a sequence xi, i =
1, 2, . . . of the variable vector is generated, which cause
an improvement in respect to the objective function in
each iteration step i.

3) Abort criteria: The abort criteria exist in form of an
inequation which is used to decide about the termination
or further iteration steps.

The different methods of nonlinear optimization algorithms
consists of two classes deterministic and stochastic methods.
Furthermore deterministic methods are subdivided into direct
and indirect methods. While direct methods use heuristics
to determine the search direction, whereas indirect methods
work on the basis of partial derivatives of the objective
function and therefore require differentiability of the objective
function. Stochastic methods are based on the usage of random
numbers and probabilities. The benefit of these methods is, that
they don’t demand an objective function which is continuous
and differentiable. In figure 1 the most important nonlinear
optimization methods are shown.

III. EVOLUTIONARY ALGORITHMS

EAs are an optimization method which are orientated on
the evolution of living organisms by copying the behavior of
the nature in abstract form. A set of solution candidates are
created and undergo a simulated evolution. Through variation
and selection the solution candidates get better and better
until the optimal solution is reached.
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Fig. 1. Nonlinear optimization methods

EAs have many advantages which justify their usage:

• The objective function does not require continuity or
differentiability

• Strong tendency for locating the global optima
• Flexible adaptation possibilities thereby universally ap-

plicable
• Handling of complex search spaces (i.e. with a lot of

optimization parameters)
• Handling of complex objective functions
• Possibility of parallelization

A. Concept of Evolution

To understand the basic idea of EAs, it is necessary to
become familiar with the original terms and concepts of the
theory of evolution.
A gene is part of a chromosome, which is the smallest unit
of genetic information. Every gene is able to assume different
values, each called allele. All genes of an organism form a
genome, which affects the appearance of an organism, also
called phenotype. The genome and the phenotype combined
describe an individual. A set of individuals is called popula-
tion. The population of the evolution at a point in time is called
generation. New individuals can be created by a recombination
mechanism. Thereby two individuals are combined by permu-
tation of their alleles to produce one or two new individuals.
Additionally to the recombination, mutations can occur, these
are caused by a failure during the reproduction of the genotype.
Thereby a few alleles of an individual get slightly modified.
In principle only those organisms are able to survive, whose
characteristics are the most advantageous to organize food, to
exploit their habitat and to find mating partners. The weaker
organisms get replaced and become extinct, according to the
principle of: “survival of the fittest”.
Assigning the principles of the biological evolution to an
optimization problem, a solution candidate is considered as
individual, whose genes are the parameters to be optimized.
A set of possible solution candidates compose a population,
which is subject to a simulated evolutionary cycle. Therefore
each individual is reproduced, varied, and evaluated through
the usage of evolutionary operators. By the use of evolutionary
operators like recombination and mutation combined with se-
lection, as site-directed evolutionary operator, an evolutionary
interplay can be received.
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B. Types of Algorithms

Since the middle of the 60s emerged three types of al-
gorithms of EAs independent of each other: genetic algo-
rithms (GAs), evolutionary strategies (ESs) and evolutionary
programming (EP). At the beginning of the 90s a further type
of algorithm, genetic programming (GP) was established. Al-
though all methods are orientated on the biological evolution,
there exists big differences in the realization of the principles
of evolution. The difference lies especially in the functioning
of the evolutionary operators. Whereas the initialization, the
evaluation and the abort criteria are the same in all methods.
The genetic algorithms are based on the work of HOLLAND
and DE JONG [2], [3]. In the foreground of these algorithms
stands the recombination operator, whereas the mutation op-
erator is inferior. This can be seen like in the biological evo-
lution where mutations also do appear with minor probability.
Evolutionary strategies were developed by RECHENBERG and
SCHWEFEL for optimization problems in the technical physi-
cal field [4], [5]. In these methods the optimization process is
brought forward by mutation, while the recombination plays a
minor role. The evolutionary programming is based on the
work FOGEL, OWENS and WALSH and further developed
by FOGEL [6], [7]. As biological variation mechanism only
the mutation operator is used. Genetic programming was
developed in combination with genetic algorithms mainly by
KOZA [8]. In this method the recombination is the primary
and the mutation the secondary operator, just like in genetic
algorithms.
In the last couple of years new developments in this research
area dealt mainly with the combination of different EAs to
hybrid or memetic algorithms (MAs). The aim of this research
is to resolve the deficits of classical genetic algorithms like
slow convergence by combination of the advantages of diverse
methods. The name memetic algorithm leads back to the
concept of meme developed by DAWKINS [9]. The meme are
regarded as units of cultural evolution and have the ability of
local improvement unlike the genes in the genetic evolution.
Through this concept further evolutionary parameters like
learning for lifetime, learning through imitation and cultural
transmission of knowledge are taken into account.

C. Memetic Algorithms

In this section we will discuss memetic algorithms (MAs)
and their properties in more detail. The population size μ,
with common values between 5 and 100 individuals, has a
great influence on the run of the MA. The population size
decides how many genes are provided in the gene pool for
recombination and mutation. Another important parameter is
the number of generated children λ. In MAs μ = λ is true for
most cases. In figure 2 the entire evolutionary cycle of a MA
is shown.

At the beginning of the optimization a start population
with solution candidates is generated through an appropriate
initialization. The individuals are evaluated by an fitness
function which assigns every individual a particular quality.
It is necessary that the fitness function is reasonable and well-
defined. Therewith, we are able to compare two individuals
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Fig. 2. Evolutionary cycle of a MA

and to decide if an individual is better than another one.
During parent selection the search for an optimum gets a
definite direction, whereby the optimization is gradually fo-
cused on the relevant areas of the search space. In the course
of parent selection some individuals are selected from the
current population for recombination. The selection probability
of each individual should depend on their fitness. Well-known
methods for parent selection are roulette wheel selection,
stochastic universal sampling and tournament selection.
The recombination is the primary operator, its task is to cross
the search space efficiently. By adequate methods regions of
the search space with upper average quality will be reached
faster than by random search. All recombination methods
is common that at least two parent individuals are crossed
with a certain probability, they produce at least one child
individual. Well-known methods are multipoint crossover, uni-
form crossover and arithmetic crossover. In addition to the
recombination method, the recombination probability is of
significance with frequent used values between 0.7 and 1.0.
By the mutation, as secondary operator, the alleles of the
produced child individuals are modified slightly, which enables
further exploration of the search space. An often used mutation
probability is 1/n, with n as amount of the genes of an
individual. The most popular mutation methods are: shuffle
mutation, uniform mutation and non uniform mutation.
By introducing local search a faster convergence of the EAs
is reached in most cases. The local search is based on the
concept of learning for lifetime. With local search the best
child individuals are selected and locally optimized. For the
selected individuals optimization steps are accomplished by
usage of Hill Climbing or Simulated Annealing. Thereby the
alleles of the individuals become slightly modified by a new
usage of the mutation operator, whereas an improvement of
the quality of the individual shall be gained.
After the creation of the children, it has to be decided which
individuals should be taken into the next generation. The
methods of child selection are not based on random numbers,
but exclusively on the fitness of the individuals, in contrast
to the parent selection. According to this, individuals with
good quality will be preferable taken to the next generation.
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The most popular methods are: generational replacement and
steady-state.
At the end of the evolutionary cycle an abort criteria decides if
the evolution process should be stopped. Typical abort criteria
are the achievement of a certain quality value or of a fixed
number of generations.
Detailed descriptions of the methods for selection, recombi-
nation and mutation are provided in [10], [11], [12] and [1].

D. Design of Algorithms

In case of an optimization problem, the use of EAs for
finding a global optimum is a good choice, if a traditional
optimization method only deliver a local solution or if a
specialized method doesn’t exist at all. Prior to the use of an
EA, an adaption to the optimization problem has to be done.
Therefore it is necessary to set up a pilot survey with serial
tests to find the optimal settings for the specific problem
like population size or evolutionary operators. By ascertaining
adequate and inadequate methods the effort of pilot surveys
could be reduced. The design of an EA requires the following
steps:

1) Classification of the optimization problem
2) Assignment of an algorithm type
3) Pilot survey

a) Creation of a test model
b) Finding constraints of the search space
c) Creation of the evaluation function (the objective

function of the optimization problem)
d) Creation of an adequate initialization of the start

population
e) Choice of an adequate fitness function for the

parent selection
f) Choice of adequate mutation operators (e.g. phys-

ical or topological)
g) Exclusion of inadequate methods for variation and

selection
4) Parameter detection through setting up of serial tests
The serial test for parameter detection are evaluated by the

quality of the best individual, the speed of convergence and the
computing time. The quality of the best individual is measured
by its objective function value. For the speed of convergence
the number of required generations to reach a given quality
can be used. In the following section we describe the set up
of pilot surveys for a concrete problem at hand in order to
reduce the effort to a minimum by ascertaining adequate and
inadequate methods.

IV. OPTIMIZATION OF STIFFNESS CONSTANTS IN
MASS-SPRING MODELS

Below the practical adoption of memetic algorithms is
shown by using the example of the optimization of stiffness
constants in mass-spring models (MSM). MSM are often used
in Virtual Reality applications, because of their conceptual
simplicity and their computational speed. They approximate
a continuous body by a finite set of mass points, which
are connected by massless spring elements, usually modeled

as damped springs. The motion of the point masses are
described by a differential equation system which are solved
by methods such as the Runge-Kutta method. Whereas the
elastic deformation characteristics are controlled by the chosen
stiffness constants.
The main problem during the creation of the MSM consists in
choosing the right stiffness constants for the spring elements.
The basic material parameters young modulus and mass can
not be taken directly into the model. Assigning all spring
elements with the same stiffness constant leads in general to
a wrong deformation simulation. Furthermore there exists no
analytic solution to this problem in general as it was shown
by VAN GELDER [13]. In the last couple of years therefore a
lot of researchers used optimization algorithms to solve this
problem [14], [15], [16].

A. Classification of the Optimization Problem

The problem at hand is a continuous multi-criteria optimiza-
tion problem, for which a memetic algorithm can be adapted.
In the developed approach an individual consists of the spring
constants ki ∈ R, i = 1, . . . , m of an MSM. Therefore we
receive S = R

m as search space. In order to build the objective
function, nine different natures of load have to be considered
to describe all possible deformations of a body in 3 D space,
[17]. Therefore we generated FEM reference deformations for
all cases by using NX Nastran.
Let k ∈ S be the vector of the spring constants. With k nine
deformation calculations for each specific kind of load has
to be carried out. After a fixed number of simulation steps
N > 0 the MSM is in an equilibrium state and it is possible
to compare the simulated point positions xi, i = 1, . . . , n
with compatible positions xref

i , i = 1, . . . , n in the reference
model.
In [18] it is recommended to use the maximal distance of a
point as factor of the standard deviation, in order to distinguish
the quality of two simulation results with the same standard
deviation.
Which leads to the following objective function f for the nine
reference deformations:

f(k) =
9∑

j=1

⎛

⎝rj
max

√
√
√
√ 1

n

n∑

i=1

∥
∥
∥x

refj

i − xj
i

∥
∥
∥

2

2

⎞

⎠ . (2)

B. Classification of the Algorithm Type

From the four different main classes of EAs, genetic al-
gorithms, evolution strategies, evolutionary programming and
genetic programming, only genetic algorithms and evolution
strategies are suitable for continuous optimization problems.
Therefore the other algorithms were excluded from further
investigation.

C. Pilot Survey

First an workpiece was chosen, modeled as MSM and a
corresponding FEM model was created. The material proper-
ties for the chosen workpiece and the characteristics of the
corresponding MSM model can be seen in tables II and III
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in appendix A. Ahead of the start of the optimization process
the number N of simulation steps, until the MSM reach an
equilibrium state, have to be determined. This test has to be
done for each MSM.
Constraints to the underlying problem are the range of the
stiffness constants, due to experience it can be limited to
0 = kmin ≤ ki ≤ kmax = 1000. In general it can be
stated that as much as possible constraints should be defined to
reduce the search space. For the evaluation of each individual
the above objective function is used.
The next step is to create a start population, in the present case
a population with approximately 20 individuals is sufficient.
Two different initializations for the individuals have been
tested. First all spring constants are set to the same value and
second all spring constants are set to randomized values within
the above range.
For recombination three selection methods, roulette method,
stochastic universal sampling and tournament selection, have
been tried, whereas tournament selection delivers the best
results. The selected individuals are then used to create new
individuals by the uniform crossover method. Another impor-
tant issue is the choice of the mutation method. In the present
case this method enables further exploration of the search
space by two operators. The first operator picks a spring at
random of an individual and assigns a new value to them. The
second operator creates or deletes springs at random within an
individual. This leads to the development of new topologies.
Whereas this is especially important if an individual consists of
a MSM, which is coarsely meshed or contains coarsely meshed
parts. In this case it is difficult to adjust the deformation
behavior by applying new stiffness constants. The described
operators are furthermore used by the local search algorithm.

D. Determination of parameters using tests

In order to find the best evolutionary algorithm for the
problem, a serial test for every adjustment of the parame-
ters has to be done. For evaluation of the serial test, three
criteria, quality of the solution, speed of convergence and
calculating time have been used. After the determination of
the best parameters for three different types of evolutionary
algorithms, genetic algorithm with and without local search
and evolutionary strategies, could be tested.

E. Results of the Optimization Process

With genetic algorithms individuals with higher quality
could be received whereas with evolution strategies the speed
of convergence was better. With the adapted algorithms tetra-
hedron and hexahedron meshes could be optimized. The
simulation behavior of a MSM is besides the choice of stiffness
constants dependent on the mesh resolution and the topology.
It is not possible to reach a physical plausible behavior accord-
ing to reference deformations for every topology. Therefore
especially for tetrahedron meshes it is important to optimize
the topology as well inside the optimization algorithm. This
was done by the mutation operator. Furthermore the conver-
gence to a good solution could be fasten up by inclusion of
local search. The quality of the individuals could be optimized

of approximately 90 % with both types of meshes. In figure
3 an hexahedron MSM after the optimisation process can be
seen.

Fig. 3. Optimized MSM with different loads

V. CONCLUSION

In this paper, an overview of EAs has been given and
MAs has been discussed in detail according to continuous
optimization problems. The most popular methods for
selection, recombination and mutation have been mentioned.
Furthermore the important steps for developing an EA for
a concrete technical problem has been shown and has been
demonstrated on the optimization of stiffness constants of
mass-spring models. In table I the parameter settings of the
adapted algorithm are shown. These parameter settings were
successful at the present problem, but they are not necessarily
the best settings in general. In another optimization problem
other settings might be better. According to this a concrete
EA is not valid in general. An adaptation to the concrete
optimization problem is essential.

TABLE I
PARAMETER SETTINGS OF OUR ALGORITHM

Parameter Setting
Population size 20
Parent selection Tournament selection
Recombination Uniform crossover
Mutation Non uniform mutation
Local search Simulated annealing
Child selection Generational replacement

Nevertheless a set of rules of thumb should help the
reader to adapt an EA for a concrete optimization problem:

1) If the optimization problem is continuous genetic al-
gorithms, evolutionary strategies or memetic algorithms
should be used. Otherwise in case of discrete optimiza-
tion evolutionary or genetic programming should be
used.

2) In case of continuous optimization a memetic algorithm
with parameter settings according to table I could be a
useful start configuration for problem adaptation.
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3) The population size should be as low as possible and as
high as necessary. With upper population size a better
solution and a faster speed of convergence is expected,
but more computing time is required (linear increase).

4) The choice of the mutation operator should be con-
sidered very carefully. Dependent on the optimization
problem the mutation operator can have different shapes.
At the present problem two different types have been
used: a topological and a physical mutation operator.
In addition to this the mutation step size should be
monotonically decreasing in the course of the evolution.
At the beginning of the optimization a large step size is
profitable to make large steps through the search space.
At the end of the optimization a small mutation step size
is better.

In general EAs can be used for many problems, but they
might not always be the best choice. The adaptation of
an EA to the concrete problem can cost a lot of time. In
case the objective function is continuous and differentiable
derivative based methods such as the Newton method or the
Gradient method might provide a faster solution. In case
the objective function does not fulfill this requirements or a
complex objection function is given, the EAs may reach good
optimization results according to a global optimization.
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APPENDIX A

TABLE II
CHARACTERISTICS OF THE OBJECT

Characteristic Values
Dimensions (x/y/z) 0.06m/0.08m/0.04m
Total mass 76.8g
Material consistence homogeneous

isotropic
stress-strain behavior linear elastic with

E = 7 · 104N/m2 and ν = 0.32

TABLE III
CHARACTERISTICS OF THE MSM

Characteristics Values
mesh resolution 0.02m
Number of mass points 60
Number of spring elements 425
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