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Abstract—The purpose of this paper is to provide a practical 

example to the Linear Quadratic Gaussian (LQG) controller. This 
method includes a description and some discussion of the discrete 
Kalman state estimator. One aspect of this optimality is that the 
estimator incorporates all information that can be provided to it. It 
processes all available measurements, regardless of their precision, to 
estimate the current value of the variables of interest, with use of 
knowledge of the system and measurement device dynamics, the 
statistical description of the system noises, measurement errors, and 
uncertainty in the dynamics models.  

Since the time of its introduction, the Kalman filter has been the 
subject of extensive research and application, particularly in the area 
of autonomous or assisted navigation. For example, to determine the 
velocity of an aircraft or sideslip angle, one could use a Doppler 
radar, the velocity indications of an inertial navigation system, or the 
relative wind information in the air data system. Rather than ignore 
any of these outputs, a Kalman filter could be built to combine all of 
this data and knowledge of the various systems’ dynamics to 
generate an overall best estimate of velocity and sideslip angle. 
 

Keywords—Aircraft motion, Kalman filter, LQG control, Lateral 
stability, State estimator.  

I. INTRODUCTION 
HE Feedback control systems are widely used in 
manufacturing, mining, automobile and military hardware 

applications. In response to demands for increased efficiency 
and reliability, these control systems are being required to 
deliver more accurate and better overall performance in the 
face of difficult and changing operating conditions. In order to 
design control systems to meet the demands of improved 
performance and robustness when controlling complicated 
processes, control engineers will require new design tools and 
better underlying theory. In particular, a standard method of 
improving the performance of a control system is to add extra 
sensors and actuators. This necessarily leads to a multi-input 
multi-output control system. Thus, it is a requirement for any 
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modern feedback control system design methodology that it 
be able to handle the case of multiple actuators and sensors. 

Linear Quadratic Gaussian optimal control theory (LQG) is 
one of the major achievements of the modern control area. 
This controller design methodology enables a controller to be 
synthesized which is optimal with respect to a specified 
quadratic performance index. Furthermore, this theory takes 
into account the presence of 
Gaussian white noise disturbances acting on the system. 
Indeed, in many practical control problems, it is 
straightforward to translate the required performance 
objective into a problem of minimizing a quadratic cost 
functional. Also, in many practical control problems, the 
system is subject to disturbances and measurement noise 
which are most naturally modeled as stochastic white noise 
processes.  

The LQG controller design methodology based on the 
Kalman filter who in 1960 published his famous paper 
describing a recursive solution to the discrete-data linear 
filtering problem. A more complete introductory discussion 
can be found in [1] which also contains some interesting 
historical narrative. More extensive references include [2], [3] 
and [4]. It has also been used for motion prediction [7] and it 
is used for multi-sensor [10]. In practice, although it is 
possible to obtain process models either from first principles 
or from experimental measurements, these models will always 
be subject to errors. Thus, the control system needs to be 
designed to be robust against these modeling errors.  

II. LINEAR QUADRATIC GAUSSIAN REGULATOR 
Linear Quadratic Gaussian (LQG) control is a modern state-

space technique for designing optimal dynamic regulators. It 
enables you to trade off regulation performance and control 
effort, and to take into account process and measurement 
noise. Like pole placement, LQG design requires a state-space 
model of the plant. This section focuses on the discrete-time 
case. To form the LQG regulator, simply connect the Kalman 
filter and LQ-optimal gain K as shown below: 
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Fig. 1 Block diagram of LQG Controller 

 
The goal is to regulate the output y around zero. The plant 

is driven by the process noise and the controlsu , and the 
regulator relies on the noisy measurements vyyv +=  to 
generate these controls. The plant state and measurement 
equations are of the form 

 

)()(
)()()1(

kCxky
kukxkx

=
Γ+Φ=+

                                         (1) 

 
The LQG regulator consists of an optimal state-feedback 

gain and a Kalman state estimator. You can design these two 
components independently as shown next. 

 

A. Optimal State-Feedback Gain 
In LQG control, the regulation performance is measured by 

a quadratic performance criterion of the form  
 

[ ]∑
∞

=

++=
1

)()(2)()()()()(
n

TTT nNunxnRununQxnxuJ    (2) 

The weighting matrices are user specified and define the 
trade-off between regulation performance (how fast goes to 
zero) and control effort. The first design step seeks a state-
feedback law that minimizes the cost function. This gain is 
called the LQ-optimal gain. 

 

B. Kalman State Estimator 
As for pole placement, the LQ-optimal state feedback 

)()( nxknu −=  is not implementable without full state 

measurement. However, we can derive a state estimate x̂  
such that )(ˆ)( nxknu −= remains optimal for the output-
feedback problem. This state estimate is generated by the 
Kalman filter.  

Optimal estimation provides an alternative rationale for the 
choice of observer gains in the current estimator. Instead of 
arguments based on the pole placement, the optimal estimator 
is based on observer performance in the presence of process 
noise and measurement errors.  

 

Suppose the discrete plant model of Eq.1 is extended 
 

)()()(
)()()()1( 1

kvkCxky
kwkukxkx
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                    (3) 

where the process noise )(kw and measurement noise 

)(kv are white Gaussian random sequences with zero mean, 
that is 

{ } 0)( =kwE   and  { } 0)( =kvE  

where { }E denotes the statistical expectation, and zero 
correlation (white) 

 
{ } 0)()( =jwiwE T   and { } 0)()( =jvivE T   for  ji ≠  

and have covariances defined by 
 

{ } w
T RkwkwE =)()( and   { } V

T RkvkvE =)()(  
 

The optimization task is to determine a set of observer gains 

eK  to minimize the variance of the estimation error, which is 
denoted )(kP : 

( )( ){ }TkxkxkxkxEkP )(ˆ)()(ˆ)()( −−=                   (4) 
 
The derivation is beyond the scope of this handout, we 

simply state that the solution is a structure the same as the full-
state current observer with set of time-varying gains 0K  

 
[ ])()()()()(ˆ 0 kxCkykKkxkx −+Φ=                     (5) 

where 
          1

0 )()( −= v
T RCkPkK                                        (6) 

and where )(kP is found from 

[ ] )()()()()( 1 kCMRCkCMCkMkMkP v
TT −

+−=     (7) 
 
The matrix )(kM  is the covariance of the state estimates 

)(kx  before the measurement. The estimate )(kx is found 

from )1(ˆ −kx  using Eq.3 with 0)1( =−kw  because we 
know that this is the expected value since the expected value 
of the plant noise is zero. Thus 
 

)1()1(ˆ)( −Γ+−Φ= kukxkx                                   (8) 
 
This equation is known as the "time update", whereas the 

change in the estimate from )(kx to )(ˆ kx after 

measuring )(ky  in Eq.5 is known as the "measurement 

update". The matrix )(kM is updated as 
 

T
w

T RkPkM 11)()1( ΓΓ+ΦΦ=+                             (9) 
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TABLE I 
DISCRETE KALMAN FILTER TIME AND MEASUREMENT UPDATE EQUATIONS 

)()(ˆ)1( kukxkx Γ+Φ=+  
T

w
T RkPkM 11)()1( ΓΓ+ΦΦ=+  

Time update 
equations 
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Measurement 
update 
equations 

The specific equations for the time and measurement 
updates [12] are presented below in Table I.       

 
A block diagram for the closed-loop control of a continuous 

plant using a Kalman filter estimator is shown in Fig. 2. 
 

 
 

Fig. 2 Control of a plant with a Kalman filter based observer 
 
 

In an actual design problem, meaningful values can be 
assigned to vR , which is based on sensor noise which can 
often be found from the specifications. The same cannot be 
said of the process noise, which is often a mathematical 
artifice that is used to expedite the optimization. Physically, 

wR is used to account for unknown disturbances and 
uncertainties in the plant model. The disturbance noise model 
should be chosen to approximate any known disturbances, but 
the designer is often forced to use "acceptable" values based 
on simulation studies. 

III. EQUATIONS OF AIRCRAFT MOTION  
Fig. 3 shows the origin of the axes is at the aircraft’s center 

of gravity. The x  axis is along the fuselage, the y axis is 
along the wingspan, and the z axis points downward. 

 

 
Fig. 3 Definition of the aircraft’s axis system 

 
The rigid body equations of motion are the differential 

equations that describe the evolution of the basic states of an 
aircraft. These equations of motion are all nonlinear first order 
ordinary differential equations. In addition they are highly 
coupled, i.e., each differential equation depends upon 
variables. However, we may gain some insight into the 
equations of motion by examining in steady state solutions, 
which then are in the matrix form: UBXAX +=  

Where  
             [ ]φβ rpX T =  : state vector  

             [ ]ra
TU δδ=  : control vector 

            ra δδ , : aileron and rudder deflection 

           φβ , : sideslip and roll angle 
           rp , : roll and yaw rate 
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IV. APPLICATION TO CESSNA-182 AIRCRAFT 
The CESSNA-182 was introduced in 1956, as a tricycle 

gear variant of the 180. In 1957, the name was changed to the 
182A and the name Skylane was introduced. The 
characteristics of CESSNA-182 are presented [9], [11] on 
Table II and having the following lateral factors of stability 
represented on Table III.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

V. SIMULATION AND RESULTS 
If we assume that the measurable outputs are the sideslip 

angle β and roll angleφ , the matrixes A , B  and C are: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0           0            1            0
0           1.2597−      0.3817−      10.119
0         2.5346       12.409−      28.749−

=

0.1498       0.9918-      0.0014-      0.1473-

A  
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⎢
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⎡

0            0
8.2512−      10.228

57.498       4.7485
=

0            0.0886

B

 
 

             ⎥
⎦

⎤
⎢
⎣

⎡
=

1        0       0     0
0       0       0      1

C  

 
Can solve for the eigenvalues of the matrix A to find the 

modes of the system: 
0112.01 −=λ                         ⇒             Spiral Mode 
4341.122 −=λ                       ⇒             Roll Damping 

i3073.36855.04,3 ±−=λ     ⇒             Dutch Roll 

Stable with 3 modes, and after converting to a discrete 
model, we have: 
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⎣
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0.98496      0.13779      0.076212     0.50476−
0.093014     0.077197     0.0033903−   2.4234 
0.075613−    0.52021      0.012649−    0.72234−

=Φ

0.044601     0.21875-     0.0092028    0.32598
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The following MATLAB script takes the plant model, 
discretizes it using a ZOH discrete model, chooses LQR gains, 
forms a Kalman filter observer for state estimation, combines 
the plant, controller, and observer models and plots some 
initial condition responses of the closed-loop system. 

For the weighting matrices, 

⎥
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0     2     0     0
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Q
 

Design the regulator by computing the LQR Gain 
matrix K ,  

          
⎥
⎦

⎤
⎢
⎣

⎡
=

0.1171    0.0679-   0.0121    0.1655-
0.1166    0.0027    0.0071    0.6421

K  

TABLE III 
LATERAL FACTORS OF STABILITY 

Quantity Values for CESSNA-182 

βL
 

-28.7492 / rad. sec2 

pL
 

-12.4092 / rad. sec 

rL  
2.5346 / rad. sec 

aLδ  
57.4984 / rad. sec2 

rLδ  
4.7485 / rad. sec2 

βN
 

10.1194 / rad. sec2 

pN
 

-0.3817 / rad .sec 

rN  
-1.2597 / rad. sec 

aNδ  
-8.2512 / rad. sec2 

rNδ  
-10.2284 / rad. sec2 

βY
 

-32.2554 ft / rad. sec2 

pY
 

-0.3147 ft / rad. sec 

rY  
1.7859 ft/ rad. sec 

aYδ  
0.0000 ft / rad. sec2 

rYδ  
19.4730 ft / rad. sec2 

TABLE II 
GEOMETRIC CHARACTERISTICS  

Description  Values for CESSNA-182 

Wing area 174.00 sq. ft 
Wight 2645.00 Ibs 
Wing span 35.80 ft 
Mean aerody. chord 4.90 ft 
Air speed 219.00 ft/sec 
Air density 0.00205 slugs/ cu. ft 
Initial theta 0.00 rad 
High 5000 ft 
xcg 0.25        

yyI
 

1346 slugs. sq. ft 

xxI
 

948 slugs. sq. ft 

zzI  
1967 slugs. sq. ft 

xzI
 

0.00 slugs. sq. ft 
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Compute the Kalman filter gains 0K , the process noise 

)(kw and measurement noise )(kv are white Gaussian 
random sequences with zero mean and have the following 
covariances matrices as: 
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The Kalman filter gain:   
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Fig. 4 Initial condition response of the aircraft 
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Fig. 5 Response of states and predictive estimates 

 

VI. CONCLUSION 
The Kalman filter estimates a process by using a form of 

feedback control: the filter estimates the process state at some 
time and then obtains feedback in the form of (noisy) 
measurements. As such, the equations for the Kalman filter 
fall into two groups: time update equations and measurement 

update equations. The time update equations are responsible 
for projecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are 
responsible for the feedback i.e. for incorporating a new 
measurement into the a priori estimate to obtain an improved a 
posteriori estimate.  

An application for lateral motion of aircraft was presented 
to show that phenomena such as a limited steady shift error 
(SSE) could occur. To eliminate some of the undesirable 
phenomena, we suggested a good choosing of the noise 
covariance data that is dominantly rich to eliminate the SSE.  

Finally, the LQG gives a very good following to the outputs 
of plant with a steady shift error limited and the Kalman filter 
is an optimal estimator when dealing with Gaussian white 
noise. Optimal estimation provides an alternative rationale for 
the choice of observer gains in the current estimator which is 
based on observer performance in the presence of process 
noise and measurement errors.  
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