
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1119

Abstract—This paper presents a simple and effective method

for approximate indexing of instances for instance based

learning. The method uses an interval tree to determine a good

starting search point for the nearest neighbor. The search stops

when an early stopping criterion is met. The method proved to

be very effective especially when only the first nearest

neighbor is required.

Keywords—Instance based learning, interval trees, the knn

algorithm, machine learning.

I. INTRODUCTION

The knn algorithm [1] is an important form of Instance-based

learning. It is a lazy learner, because it simply retains a

number of classified examples and uses them to classify new

examples. The instance memory, where we retain instances, is

usually represented as a table. Each row represents a classified

instance and each column represents an attribute (feature),

with one column designated as the class attribute.

To classify a new instance, the most similar (or the nearest) k

instance(s) are retrieved. The class of the example is

predicted to be the class with majority votes among the classes

of k instances. k is usually chosen as a small odd number such

as 1, 3, or 5.

To achieve good classification accuracy, the knn method

retains a large number of classified examples, which requires

storage space and slows the classification process. Several

methods appeared in the literature that attempt to address

these two problems. These methods can be categorized into

two main categories: reduction techniques and indexing

techniques. Reduction techniques [7] reduce the size of the

instance memory by retaining the most informative instances

(examples) and eliminating irrelevant instances. An example

is considered informative (relevant) if removing it has a

substantial effect on the classification of other examples.

Reduction techniques make a tradeoff between accuracy and

storage. Furthermore, these methods are not suitable if all

instances must be retained for reasons other than

classifications. Indexing techniques using k-d trees [4,6] were

developed to reduce the time required to find the nearest

neighbor without eliminating instances. However, they are

1 KASIT, University of Jordan, Amman, Jordan. Email: hindi@ju.edu.jo

most suitable for applications with a low number of attributes.

They become less effective when the number of attributes

increases [7].

In this work, we investigate the use of simple interval trees,

combined with early stopping criterion [2], for approximate

indexing of instances. The aim is to avoid searching the whole

instance space to find the k nearest neighbors. Results show

that the proposed techniques is highly effective specially when

k=1.

In section 2, we review the similarity function we used in our

experiments. Section 3 reviews the early stopping criterion we

use. In section 4 we present a simple form of range trees that

we used in our experiments. Section 4 discusses our results.

Section 5 discusses our main conclusions and direction, for

future work.

II. MEASURING SIMILARITY BETWEEN INSTANCES

Despite their simplicity, instance based learners proved to give

good classification accuracy in many applications, comparable

with those achieved by more sophisticated approaches such as

neural networks and identification trees [1, 5]. This accuracy

is highly dependent on the function used to measure the

similarity between instances. To measure the similarity

between instances, a similarity (distance) function is used [5

(see also [8] for an excellent survey of such functions). The

function that we use in this work is defined below. It is a

variant of the HVDM

m

a

aaa yxdYXHVDM
1

2),(),(

where X and Y are two instances, m is the number of

attributes, ax and ay are the values for attribute a in

instances X and Y respectively. The distance function ad

between two values depends on the type of the attribute

symbolic or numeric. It is defined as follows

numericisaif
aa

yx

elsesymbolicisaifyxvdm

yxd

a

a

minmax

),,(

),(

Using Interval Trees for Approximate Indexing

of Instances

Khalil el Hindi1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1120

C

a ya

cya

xa

cxa

a
N

N

N

N
yxvdm

1

2

,

,,

,

,,
),(

where:

maxa
 and mina

are the maximum and minimum values of

attribute a

Na,x is the number of instances in the training set that

have the value x for the attribute a.

Na,x,c is the number of instances in the training set that

have value x for attribute a and belong to output class c.

C is the total number of output classes in the problem

domain

III. EARLY STOPPING

In [2] we presented some early stopping criteria for the knn

algorithm that allow it to find reasonably close neighbors (but

not necessarily the nearest neighbors) for classification

purposes without having to search the whole instance space. A

simple early stopping criterion finds, for each instance in the

instance memory (training set), the distances to its nearest

enemy, which we call Nearest Enemy-Instance Distance

NEID. When classifying a new instance, the knn algorithm

halts once it finds k close instances. An instance is considered

close enough to the new instance if the distance between it

and the new instance is smaller than the distance between it

and its nearest enemy (i.e., less than its NEID).

IV. INTERVAL INDEXING TREES

In traditional databases, indexing refers to the task of mapping

the record key to the storage location [3]. Several techniques

have been used for this purpose such as hashing, B trees, and

R trees. However, there is an important difference between

traditional indexing and indexing in instance based learning

[3]. Traditional indexing is based on exact matching i.e., a

given value is either present or not present. While indexing

instances, should be content-aware or approximate in that if it

cannot find an exact matching value it should return the

location of the nearest value.

In this section, we describe how interval trees can be used for

this approximate matching. The idea is to estimate the distance

between two instances i and j relative to a base instance b,

using the formula

dist(i,j) dist(b,i)-dist(b,j)

Of course, this only gives an approximate estimation of the

distance between i and j. However when classifying a new

instance, it gives a clue about the instances that are more

likely to be close to it and should, therefore, be considered

first.

To determine these possibly close instances, an interval tree

such as the one shown in fig 1, is used. The tree indexes all

instances in the training set according to their distance from

the base instance.

DistLo Mid DistHi

DistLo Mid DistHi

DistLo Mid DistHi

DistLo Mid DistHi

DistLo Mid DistHiDistLo Mid DistHi DistLo Mid DistHi

The training instances sorted in order of their distances to the base instance

Fig 1 the general structure of an interval tree.

Each node in the tree represents a cluster of nearby instances

that belong to the same class. It can also be seen as

representing a distance range. A node stores the distance

between the base instance and the nearest and farthest

instances in the clusters, DistLo and DistHi respectively. It

also stores the location of the instance at the center of the

cluster, Mid.

function Build_interval_tree(instances,m,b)

// instances is the training set

// m is the number of instances in the training set

// b is the base instance

begin

 compute the distance between each instance in instances

and the base instance, b.

 sort the instances according to their distance to the base

instance

 return TreeBuild(1,m)

end

function TreeBuild(lo,hi)

// lo and hi are the left and right boundaries of the instance

region for which the tree is

//being build

begin

 if lo<=hi

 determine the median cluster, in the region between lo and

hi

 let mid be the location of the center instance of the median

cluster.

 left=the location of the leftmost element in the cluster;

 right=the location of the rightmost element in the cluster;

 root.DistLo=distance(left,Base);

 root.DistHi=distance(right,Base);

 root.mid=mid;

 // build the left subtree

 TreeBuild(lo,left-1);

 // build the right subtree

 TreeBuild(right+1,hi);

 end if

end

Fig 2 The interval tree construction algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1121

Table I shows the classification accuracy (Acc) and the

proportion of training set searched (Size).

knn interval trees

k=1 k=3 k=1 k=3

Training set Acc% Acc% Acc% Size% Acc% Size%

Zoo 96.7 94.4 91.1 3.8 93.3 10.0

Wine 95.5 96.1 90.5 5.8 94.4 16.0

Iris 96.0 95.3 95.3 3.0 95.3 7.4

Flag 70.7 70.7 68.8 22.8 70.7 53.3

Sonar 85.5 82.2 82.7 17.4 86.6 39.7

Lymph 50.0 52.1 51.3 37.2 54.1 70.8

Vehicle 68.8 66.4 66.6 11.9 69.0 44.1

Hepatitis 80.5 80.0 79.2 14.8 81.1 34.5

horse-colic 72.4 72.8 74.4 27.9 74.1 57.5

pima-indians-

diabetes 70.8 72.0 73.1 15.1 72.7 45.8

Promoters 92.5 94.3 91.4 6.1 93.4 15.5

liver_bupa 62.9 61.4 59.7 19.9 63.5 66.1

heart-

hungarian-2 74.5 77.9 78.1 16.9 79.5 38.9

heart-long-

beach-va-2 64.0 73.0 67.0 19.3 68.5 52.9

Heart 77.0 83.7 79.3 13.6 81.5 42.1

heart-

cleveland-2 75.6 80.9 76.9 16.5 79.2 39.4

Average 77.1 78.3 76.6 15.7 78.6 39.6

To construct an interval tree we begin by sorting the

instances in ascending order according to their distances

from the base case. This step gives a list of clusters; each

cluster consists of nearby instances that belong to the same

class. Each cluster is represented by a tree node. To ensure

that the resulting tree is height balanced, the cluster that is

represented by the root of the tree is the median cluster. The

algorithm calls itself recursively to construct left and right

subtrees, representing the clusters to the left and right of the

cluster represented by the root. The details of the algorithm

are shown in fig 2. The resulting tree is a balanced tree

which makes the tree search time of order log2n, where n is

the number of clusters.

To classify a new instance, its distance from the base case,

db, is measured. Next, the interval tree is used to determine

the range in which the distance falls and the location of the

center instance, Mid, of the corresponding cluster. If the

distance, db, lies in no range the closest range is returned.

The search for the nearest instance starts at location Mid

and spreads in both directions until the early stopping

criterion is met (i.e., until an instance, that finds the new

instance closer to it than its enemy, is found). In the worst

case, the whole instance space is searched for the nearest

instance. However, as our empirical study shows this not

the usual case.

Choosing a suitable base instance is important. A good base

instance should give a good approximation of the distance

between a pair of instances i and j. We use an artificial (not

necessarily in the training set) base instance, that is

constructed from the most common values for discrete

attributes and the median value for continuous attributes.

I. RESULTS

To study the effectiveness of the discussed method, an

empirical work using 16 data sets, obtained from the

Machine Learning Repository at the University of

California Irvine, was conducted. Ten-fold cross validation

was used in all experiments. Table-I shows a summary of

the results. The first column shows the name of the training

set, the second and third columns show the classification

accuracy obtained using the knn algorithm (searching all

the training sets) with k=1 and k=3. The remaining

columns show the classification accuracy and the searched

proportion of the training set, using interval trees with k=1

and k=3.

The table shows that with k=1, and using interval trees we

achieved an average classification accuracy of 76.6%

which is very close to the classification accuracy obtained

using the original knn algorithm (also with k=1) which is

77.1%. However using interval trees and the discussed

early stopping criterion the algorithm had to search on

average only 15.7% of the training sets. However, using

interval trees with k=3 we had to search a larger proportion

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1122

of the training set. On average, it searched 39.6% of the

training set, achieving a slight increase in the

average classification accuracy of 78.6% compared to that

achieved using the knn algorithm with k=3, which is

78.3%.

II. CONCLUSION

This work presented an approximate indexing method that

uses simple interval trees to determine a good starting point

to search the instance space for reasonably close

instance(s). The search terminates once an early stopping

criterion is met. Our empirical study using 16 different

training sets show a great reduction in the proportion of the

training set that needs to be searched while maintaining

comparable classification accuracy to that obtained by the

knn algorithm searching the whole training sets. Future

work may investigate the use of other early stopping

criteria and other methods to determine the base instance

REFERENCES

[1] S. Cost, and S. Salzberg, (1993) A weighted Nearest Neighbor

Algorithm for Learning with Symbolic Features. Machine Learning,

Vol. 10, pp. 57-78.

[2] Hindi, K (2003) Early-Halting Criteria for Instance-Based Learning,

in Proc of ACS/IEEE International Conference on Computer Systems

and Applications, AICCSA03, Tunisia.

[3] S. K. Pal, S.C. K. Shiu, Foundations of Soft Case-Based Reasoning,

John Wiley & sons.2004.

[4] Sproull, Robert F. (1991). Refinement to Nearest-Neighbor

Searching in K-Dimensinal Trees. Algorithmica, Vol. 6, pp. 579-589.

[5] C. Stanfill, D. Waltz, (1986). Toward memory-based reasoning.

Communications of ACM, 29 No 12, pp 1213-1228.

[6] Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994).

Using k-d Trees to Improve the Retrieval Step in Case-Based

Reasoning. Stefan Wess, Klaus-Dieter Althoff, & M. M. Rithcher

(Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp.

167-181.

[7] D. R. Wilson, T. R. Martinez (2000). Reduction Techniques for

Examplar-Based Learning Algorithms. Machine Learning 38, pp.

257-268.

[8] D.R. Wilson , T. R. Martinez (1997). Improved Heterogeneous

Distance Functions. Journal of AI Research, 6, pp. 1-34.

