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Abstract—This paper presents a simple and effective method 

for approximate indexing of instances for instance based 

learning. The method uses an interval tree to determine a good 

starting search point for the nearest neighbor. The search stops 

when an early stopping criterion is met. The method proved to 

be very effective especially when only the first nearest 

neighbor is required. 

Keywords—Instance based learning, interval trees, the knn 

algorithm, machine learning.  

I. INTRODUCTION

The knn algorithm [1] is an important form of Instance-based 

learning. It is a lazy learner, because it simply retains a 

number of classified examples and uses them to classify new 

examples. The instance memory, where we retain instances, is 

usually represented as a table. Each row represents a classified 

instance and each column represents an attribute (feature), 

with one column designated as the class attribute.  

To classify a new instance, the most similar (or the nearest) k 

instance(s) are retrieved.  The class of the example is 

predicted to be the class with majority votes among the classes 

of k instances. k is usually chosen as a small odd number such 

as 1, 3, or 5.  

To achieve good classification accuracy, the knn method 

retains a large number of classified examples, which requires 

storage space and slows the classification process. Several 

methods appeared in the literature that attempt to address 

these two problems. These methods can be categorized into 

two main categories: reduction techniques and indexing 

techniques. Reduction techniques [7] reduce the size of the 

instance memory by retaining the most informative instances 

(examples) and eliminating irrelevant instances.   An example 

is considered informative (relevant) if removing it has a 

substantial effect on the classification of other examples. 

Reduction techniques make a tradeoff between accuracy and 

storage. Furthermore, these methods are not suitable if all 

instances must be retained for reasons other than 

classifications. Indexing techniques using k-d trees [4,6] were 

developed to reduce the time required to find the nearest 

neighbor without eliminating instances. However, they are 
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most suitable for applications with a low number of attributes. 

They become less effective when the number of attributes 

increases [7].

In this work, we investigate the use of simple interval trees, 

combined with early stopping criterion [2], for approximate 

indexing of instances. The aim is to avoid searching the whole 

instance space to find the k nearest neighbors. Results show 

that the proposed techniques is highly effective specially when 

k=1.  

In section 2, we review the similarity function we used in our 

experiments. Section 3 reviews the early stopping criterion we 

use. In section 4 we present a simple form of range trees that 

we used in our experiments. Section 4 discusses our results. 

Section 5 discusses our main conclusions and direction, for 

future work.  

II. MEASURING SIMILARITY BETWEEN INSTANCES 

Despite their simplicity, instance based learners proved to give 

good classification accuracy in many applications, comparable 

with those achieved by more sophisticated approaches such as 

neural networks and identification trees [1, 5]. This accuracy 

is highly dependent on the function used to measure the 

similarity between instances.  To measure the similarity 

between instances, a similarity (distance) function is used [5 

(see also [8] for an excellent survey of such functions). The 

function that we use in this work is defined below. It is a 

variant of the HVDM  

m

a

aaa yxdYXHVDM
1

2 ),(),(

where X and Y are two instances, m is the number of 

attributes, ax  and ay  are the values for attribute a in 

instances  X and Y respectively. The distance function ad

between two values depends on the type of the attribute 

symbolic or numeric. It is defined as follows 
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where: 

maxa
 and mina

are the maximum and minimum values of 

attribute a

Na,x is the number of instances in the training set  that 

have the value x for the attribute a. 

Na,x,c is the number of instances in the training set that 

have value x for attribute a and belong to output class c. 

C is the total number of output classes in the problem 

domain 

III. EARLY STOPPING

In [2] we presented some early stopping criteria for the knn 

algorithm that allow it to find reasonably close neighbors (but 

not necessarily the nearest neighbors) for classification 

purposes without having to search the whole instance space. A 

simple early stopping criterion finds, for each instance in the 

instance memory (training set), the distances to its nearest 

enemy, which we call Nearest Enemy-Instance Distance 

NEID. When classifying a new instance, the knn algorithm 

halts once it finds k close instances. An instance is considered 

close enough to the new instance if the distance between it 

and the new instance is smaller than the distance between it 

and its nearest enemy (i.e., less than its NEID).  

IV. INTERVAL INDEXING TREES

In traditional databases, indexing refers to the task of mapping 

the record key to the storage location [3]. Several techniques 

have been used for this purpose such as hashing, B trees, and 

R trees. However, there is an important difference between 

traditional indexing and indexing in instance based learning 

[3]. Traditional indexing is based on exact matching i.e., a 

given value is either present or not present. While indexing 

instances, should be content-aware or approximate in that if it 

cannot find an exact matching value it should return the 

location of the nearest value.  

In this section, we describe how interval trees can be used for 

this approximate matching. The idea is to estimate the distance 

between two instances i and j relative to a base instance b,

using the formula 

dist(i,j) dist(b,i)-dist(b,j) 

Of course, this only gives an approximate estimation of the 

distance between i and j. However when classifying a new 

instance, it gives a clue about the instances that are more 

likely to be close to it and should, therefore, be considered 

first.

To determine these possibly close instances, an interval tree 

such as the one shown in fig 1, is used. The tree indexes all 

instances in the training set according to their distance from 

the base instance.  

DistLo   Mid   DistHi

DistLo   Mid   DistHi

DistLo   Mid   DistHi

DistLo   Mid   DistHi

DistLo   Mid   DistHiDistLo   Mid   DistHi DistLo   Mid   DistHi

The training instances sorted in order of their distances to the base instance  

Fig 1 the general structure of  an interval tree. 

Each node in the tree represents a cluster of nearby instances 

that belong to the same class. It can also be seen as 

representing a distance range. A node stores the distance 

between the base instance and the nearest and farthest 

instances in the clusters, DistLo and DistHi respectively. It 

also stores the location of the instance at the center of the 

cluster, Mid.

function Build_interval_tree(instances,m,b) 

// instances is the training set  

// m is the number of instances in the training set 

// b is the base instance 

begin 

   compute the distance between each instance in instances 

and the base instance, b. 

   sort the instances according to their distance to the base 

instance 

   return TreeBuild(1,m) 

end 

function TreeBuild(lo,hi) 

// lo and hi are the left and right boundaries of the instance 

region for which the tree is  

//being build  

begin 

    if lo<=hi 

 determine the median cluster, in the region between lo and 

hi 

 let mid be the location of the center instance of the median 

cluster. 

 left=the location of the leftmost element in the cluster; 

 right=the location of the rightmost element in the cluster; 

            root.DistLo=distance(left,Base); 

            root.DistHi=distance(right,Base); 

            root.mid=mid; 

           // build the left subtree 

           TreeBuild(lo,left-1); 

           // build the right subtree 

           TreeBuild(right+1,hi); 

    end if 

end 

Fig 2 The interval tree construction algorithm 
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Table I shows the classification accuracy (Acc) and the 

proportion of training set searched (Size). 

knn interval trees 

k=1 k=3 k=1 k=3 

Training set Acc% Acc% Acc%  Size% Acc% Size%

Zoo 96.7 94.4 91.1 3.8 93.3 10.0

Wine 95.5 96.1 90.5 5.8 94.4 16.0

Iris 96.0 95.3 95.3 3.0 95.3 7.4

Flag 70.7 70.7 68.8 22.8 70.7 53.3

Sonar 85.5 82.2 82.7 17.4 86.6 39.7

Lymph 50.0 52.1 51.3 37.2 54.1 70.8

Vehicle 68.8 66.4 66.6 11.9 69.0 44.1

Hepatitis 80.5 80.0 79.2 14.8 81.1 34.5

horse-colic 72.4 72.8 74.4 27.9 74.1 57.5

pima-indians-

diabetes 70.8 72.0 73.1 15.1 72.7 45.8

Promoters 92.5 94.3 91.4 6.1 93.4 15.5

liver_bupa 62.9 61.4 59.7 19.9 63.5 66.1

heart-

hungarian-2 74.5 77.9 78.1 16.9 79.5 38.9

heart-long-

beach-va-2 64.0 73.0 67.0 19.3 68.5 52.9

Heart 77.0 83.7 79.3 13.6 81.5 42.1

heart-

cleveland-2 75.6 80.9 76.9 16.5 79.2 39.4

Average 77.1 78.3 76.6 15.7 78.6 39.6

To construct an interval tree we begin by sorting the 

instances in ascending order according to their distances 

from the base case. This step gives a list of clusters; each 

cluster consists of nearby instances that belong to the same 

class. Each cluster is represented by a tree node. To ensure 

that the resulting tree is height balanced, the cluster that is 

represented by the root of the tree is the median cluster. The 

algorithm calls itself recursively to construct left and right 

subtrees, representing the clusters to the left and right of the 

cluster represented by the root. The details of the algorithm 

are shown in fig 2. The resulting tree is a balanced tree 

which makes the tree search time of order log2n, where n is 

the number of clusters. 

To classify a new instance, its distance from the base case, 

db, is measured. Next, the interval tree is used to determine 

the range in which the distance falls and the location of the 

center instance, Mid, of the corresponding cluster. If the 

distance, db, lies in no range the closest range is returned.  

The search for the nearest instance starts at location Mid

and spreads in both directions until the early stopping 

criterion is met (i.e., until an instance, that finds the new 

instance closer to it than its enemy, is found). In the worst 

case, the whole instance space is searched for the nearest 

instance. However, as our empirical study shows this not 

the usual case.  

Choosing a suitable base instance is important. A good base 

instance should give a good approximation of the distance 

between a pair of instances i and j. We use an artificial (not 

necessarily in the training set) base instance, that is 

constructed from the most common values for discrete 

attributes and the median value for continuous attributes.   

I. RESULTS

To study the effectiveness of the discussed method, an 

empirical work using 16 data sets, obtained from the 

Machine Learning Repository at the University of 

California Irvine, was conducted. Ten-fold cross validation 

was used in all experiments. Table-I shows a summary of 

the results. The first column shows the name of the training 

set, the second and third columns show the classification 

accuracy obtained using the knn algorithm (searching all 

the training sets) with k=1 and k=3.  The remaining 

columns show the classification accuracy and the searched 

proportion of the training set, using interval trees with k=1 

and k=3.  

The table shows that with k=1, and using interval trees we 

achieved an average classification accuracy of 76.6% 

which is very close to the classification accuracy obtained 

using the original knn algorithm (also with k=1) which is 

77.1%. However using interval trees and the discussed 

early stopping criterion the algorithm had to search on 

average only 15.7% of the training sets. However, using 

interval trees with k=3 we had to search a larger proportion 
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of the training set. On average, it searched 39.6% of the 

training set, achieving a slight increase in the 

average classification accuracy of 78.6% compared to that 

achieved using the knn algorithm with k=3, which is 

78.3%. 

II. CONCLUSION

This work presented an approximate indexing method that 

uses simple interval trees to determine a good starting point 

to search the instance space for reasonably close 

instance(s). The search terminates once an early stopping 

criterion is met. Our empirical study using 16 different 

training sets show a great reduction in the proportion of the 

training set that needs to be searched while maintaining 

comparable classification accuracy to that obtained by the 

knn algorithm searching the whole training sets.  Future 

work may investigate the use of other early stopping 

criteria and other methods to determine the base instance 
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