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Abstract—The purpose of this paper is to demonstrate the ability 

of a genetic programming (GP) algorithm to evolve a team of data 
classification models. The GP algorithm used in this work is 
“multigene” in nature, i.e. there are multiple tree structures (genes) 
that are used to represent team members. Each team member assigns 
a data sample to one of a fixed set of output classes. A majority vote, 
determined using the mode (highest occurrence) of classes predicted 
by the individual genes, is used to determine the final class 
prediction. The algorithm is tested on a binary classification problem. 
For the case study investigated, compact classification models are 
obtained with comparable accuracy to alternative approaches. 
 

Keywords—classification, genetic programming.  

I. INTRODUCTION 
ENETIC programming [1] is a biologically inspired 
machine learning method that evolves computer 

programs to perform a task. It does this by randomly 
generating a population of computer programs (represented by 
tree structures) and then mutating and crossing over the best 
performing trees to create a new population. This process is 
iterated until the population contains programs that (hopefully) 
solve the task well.  

GP is often used to evolve predicted numerical models but 
it can also be used to evolve classifiers, i.e. rules that can 
classify a number of data “objects” (using a set of known 
attributes) correctly into 2 or more classes. In [2] a review of 
classification algorithms developed using GP is provided. The 
authors of [2] conclude that when compared to decision trees 
or neural networks GP can evolve models and rules that have 
comparable (or better) performance, see e.g. [3], [4], [5]. 
Recent literature [6] reports improved accuracy through the 
fusion of multiple independent classifiers into ensemble 
classifiers, using (for instance) majority voting strategies. 
However, as autonomous algorithms are not specifically 
developed to trade-off contributions made by individual 
members of the ensemble, fusion can result in complex 
algorithm structures whose improved performance is not 
guaranteed [6], [7]. The purpose of this paper is to 
demonstrate that the multigene GP algorithm [8], [9], [10] has 
the potential to produce an accurate, relatively compact co-
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operating ensemble (team) of classifiers. Here, the members of 
the ensemble are evolved together as a team in order to solve 
the classification task. 

This paper is structured as follows. Section II provides a 
brief overview of the multigene GP algorithm. Next, in section 
III, the methodology adopted for the development of 
classification rules using the multigene algorithm is described. 
In section IV, the results obtained for the classification of a 
public domain data set, the Wisconsin breast cancer data, are 
presented. Finally, in section V, a concluding discussion is 
given. The following material assumes a basic familiarity with 
GP. If this is not the case then an excellent, free to download 
introduction and review of the literature is provided by [11]. 

II.  MULTIGENE GP 
Typically, GP evolves a population of individual trees, each 

of which encodes a single mathematical equation or rule that 
predicts a (N × 1) vector y of real numbers using a 
corresponding (N × M) matrix of inputs X where N is the 
number of observations of the response variable and M is the 
number of input (predictor) variables. That is, the ith column 
of X comprises the N input values for the ith input variable. 

  

 
Fig. 1 An example of a multigene “team” of models. 

 
In contrast, in multigene GP a single population member 

consists of a number of trees. For instance, Fig. 1 shows a 
multigene individual with four trees. The mathematical 
models that each tree represents are: 
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In practice, the user specifies the maximum number of 

genes Gmax a model is allowed to have and the maximum tree 
depth Dmax any gene may have and therefore can exert control 
over the maximum complexity of the evolved models.  

In particular, we have found that enforcing stringent gene 
number and tree depth restrictions (e.g. maximum number of 6 
genes and tree depth of 5) allows the evolution of relatively 
compact individuals that may be used for the development of 
classification rules, even when there are a large number of 
input variables in the dataset. 

The initial population is constructed by creating individuals 
that contain randomly generated GP trees with between 1 and 
Gmax genes. During a GP run, genes are acquired and deleted 
using a tree crossover operator called two point high level 
crossover. This allows the exchange of genes between 
individuals and it is used in addition to the “standard” GP 
recombination operators. 

If the ith gene in an individual is labelled Gi then a two 
point high level crossover is performed as in the following 
example. Here, the first parent individual contains the genes 
(G1 G2 G3) and the second contains the genes (G4 G5 G6 G7) 
where Gmax = 5. Two randomly selected crossover points are 
created for each individual. The genes enclosed by the 
crossover points are denoted by < … >. 

 
(G1 < G2 > G3)   (G4 < G5 G6 G7 >) 
 
The genes enclosed by the crossover points are then 

exchanged resulting in the two new individuals below. 
 
(G1 G5 G6 G7 G3)   (G4 G2) 
 
Two point high level crossover allows the acquisition of 

new genes for both individuals but also allows genes to be 
removed. If an exchange of genes results in an individual 
containing more genes than Gmax then genes are randomly 
selected and deleted until the individual contains Gmax genes. 

The standard GP subtree crossover is referred to as low 
level crossover. In this case, a gene is selected randomly from 
each parent individual, standard subtree crossover is 
performed and the resulting trees replace the parent trees in 
the otherwise unaltered individual in the next generation. 

III. DATA CLASSIFICATION USING THE MULTIGENE ALGORITHM 
When presented with real valued inputs, each gene will 

output a real number that theoretically lies within the range - 

∞ to ∞. In order to predict which class an object lies in, this 
output needs to be processed so that the output of a tree 
indicates a discrete class number (e.g. class 0, class 1etc.). To 
achieve this, the outputs are first ‘squashed’ to lie within a 
pre-determined range which is defined according to the total 
number of classes. The function used to do this is shown 
below. 

 

1
1

1 exp  

 
Where NC is the number of output classes and go is the 

output of a particular gene. Therefore, for a four class 
problem, each gene output will lie in the range 0 – 3. Each 
numeric value is then rounded to the nearest integer, in this 
example, 0, 1, 2 or 3 enabling each gene to predict either class 
‘0’, ‘1’, ‘2’ or ‘3’. Similarly for a two class problem, the 
output of a gene will now be squashed within the range 0 – 1. 
Subsequent rounding of these numbers to the nearest integer 
will produce a prediction that an object is in either class ‘0’ or 
class ‘1’. 

The predictions obtained from each gene are then 
interpreted to produce an overall prediction of the output class 
when presented with the input data for an object. To do this, a 
voting strategy is adopted; accepting the majority vote 
determined using the mode (highest occurrence) of the classes 
predicted by the individual genes. For example, given a six 
gene model predicting binary classes, if the individual gene 
outputs are: {0,1,0,0,1,0} the mode, and hence the final 
prediction is class ‘0’. If there is a draw – which can happen if 
a particular population member has an even number of genes - 
the prediction is assigned to the lowest class number.      

In order to evolve accurate classification rules, a suitable 
fitness function is required. There are many situations where 
data has unequal class representation and commonly it is the 
smaller class that is of interest. For example, in the chemical 
and allied industries the interest is normally in those variables 
that fail a quality test. In this situation fitness functions based 
upon measures of sensitivity and specificity are required. 
Consider binary classification where an outcome is either class 
‘0’ or class ‘1’. The sensitivity rule is the proportion of true 
cases which it correctly predicts as being class ‘0’. Specificity 
refers to the portion of class ‘1’ cases which it correctly 
predicts as being class ‘1’. The fitness function used is a 
weighted combination of these two measures. For binary 
classification problems, this Sensitivity Fitness Function 
(SFF) is given by 
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where nc(i,k) is the number of cases in class k correctly 

predicted by the ith solution to be in class k; na(i,k) is the 
number of records which are actually in class k and w is a 
weight in the range [0, 1]. 

Normally equal weights are used. That is, the average of the 
sensitivity and specificity values is taken. Thus the fitness 
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function takes into account the proportion of correct 
classifications in each class, so that the fitness for a rule that 
misclassifies all the cases in one of the classes is at most 0.5. 
In some situations, the weighting may need to be adjusted 
depending upon the cost associated for misclassifying cases 
from each class or to deal with an unbalanced dataset. The 
fitness function may be easily generalised to cover multi-way 
classifications. 

In order to promote the evolution of compact models a 
solution length penalty was also included within the fitness 
function 

 
, 0
, 0

1
, 1
, 1  

 
where p is an additional weighting and N is the number of 

nodes in a given population member. 

IV. THE WISCONSIN BREAST CANCER DATASET 
The data set used is the Wisconsin diagnostic breast cancer1 

dataset which consists of 569 occurrences of 30 tumour related 
measurements from women with either a benign or malignant 
tumour. The dataset is partitioned, with approximately 60% 
having a benign tumour and the remainder malignant. The 
classification objective is to develop a model to predict 
whether a tumour is malignant or benign using as few of the 
input dimensions as possible. For the purposes of 
classification, those with malignant tumour have been given 
class ‘1’ and benign, class ‘0’. The input data consists of ten 
real-valued features obtained from a suspicious tumour; 
radius, texture, perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry and fractal dimension. 
For each record the mean, standard error and worst error is 
provided (giving 30 dimensions in total). 

A. GP run settings 
All of the runs were performed using our free GPTIPS 

([9],[10]) software for MATLAB. A custom fitness function 
was written for the purposes of binary classification, using the 
SFF described above. 

In all the experimental runs the following GPTIPS settings 
were used: Population size = 200, Number of generations = 
150, Tournament size = 6 (with lexicographic selection 
pressure), Dmax = 5, Gmax = 6, function node set = {plus, 
minus, times, tanh, sin, square, cos, max, min, if-then-else, 
exp}. Terminal set = {the input values x1 – x30, random 
ephemeral constants in the range [-10 10]}.  

The following (default) recombination operator event 
probabilities were used: Crossover events = 0.80, mutation 
events = 0.1, direct reproduction = 0.1.  The following sub-
event probabilities were used: high level crossover = 0.2, low 
level crossover = 0.8, subtree mutation = 0.9, replace input 
terminal with another random terminal = 0.05, Gaussian 
perturbation of randomly selected constant = 0.05 (with 

 
1 

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) 

standard deviation of Gaussian = 0.1). These settings were 
based on experience with the predictive modelling of other 
data sets of similar size, and so they may not be optimal.  

To attempt to the prevent overfitting, 25% of the data were 
randomly selected for use as a holdout validation dataset. 
Holdout validation was performed as follows: at the end of 
each generation, the “best” individual (as evaluated on the 
training data) is then evaluated on the holdout validation set. 
The individual that performs best on the holdout set (over the 
course of the run) is stored and may be accessed after the run. 
To test the accuracy of the final models a further 25% of the 
data was used as an additional (unseen) testing data set. 

A weighting of 0.9 was given to the malignant class in the 
breast cancer dataset to promote classification models / rules 
that misclassify cases that are malignant cancer and not 
benign; the safer misclassification. The length penalty p was 
set to 0.001. 

B. Results 
Due to the stochastic nature of GP, multiple runs (20) of the 

algorithm were performed. Table 1 shows the classification 
accuracy obtained.  

 
TABLE I 

CLASSIFICATION ACCURACY (WISCONSIN BREAST CANCER DATA) 
Data Set Best (%) Mean (%) Std.  (%) 
Training 96.8 90.3 3.8 
Validation 94.9 88.4 3.7 
Testing 94.8 90.3 2.8 

  
For each GP run, good classification accuracies were 

obtained. The best classifier found, on the hold out validation 
data had a 94.9% classification accuracy with 88.4% of the 
misclassified cases were being classified as malignant - the 
more serious diagnosis. The mean prediction accuracy over 
the twenty runs was 88.4% on the validation data with a 
standard deviation of 3.7%. Similar performance was observed 
on the unseen testing data, with 94.8% classification accuracy. 
The mean number of nodes obtained within the classifiers was 
37.3. The best classifier found had three genes and 29 nodes 
and is shown below 

 
sin cos  

 
9.615 0.6370  

 0.6370  
 

9.615 sin 3.929  
 
This classifier has 3 genes and uses 6 of the input variables 

- x8 concave points, x12 the texture (standard error),  x21 the 
radius (worst error), x28 concave points (worst error), x29 the 
symmetry (worst error) and x30 the fractal dimension (worst 
error). The authors of [12] used this data set to compare 56 
different classification algorithms available within Weka 
3.5.52 (a suite of classification algorithms). Using the full 
 

2 http://www.cs.waikato.ac.nz/ml/weka/ 
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attribute set (all tumour dimensions) and 10 fold cross 
validation [12] examined the percentage of correctly classified 
instances. The best performing classifier correctly classified 
97.9% of the data (reported over the entire data set). Two 
additional tests were performed using a reduced set of 
attributes. The first test used all records associated with mean 
area, mean perimeter and mean radius (giving nine inputs in 
total) as suggested by [13]. Here, the best performing classifier 
correctly classified 90.5% of the data. The second test used 
each of the 3 input records associated with mean texture, the 
worst area and the worst smoothness as suggested by [14]. In 
this case, the best classifier (a multilayer perceptron) correctly 
classified 97.2% of the data. Hence it can be seen that the 
evolved multigene model can achieve classifier performance 
of the order of the current state of the art classification 
algorithms. Moreover, the final model comprises a relatively 
compact team of mathematical models, which uses only six 
input dimensions. 

V. CONCLUSIONS 
In this article we have used GP to evolve multigene (team 

based) classifiers and demonstrated the approach with an 
application to a binary classification problem. It was shown 
that the evolved model was compact and offered similar high 
performance to published results using the same data. We 
emphasise that the multigene (team based) classifier 
methodology is not necessarily better or worse than other 
methods, but that it is a complementary alternative to existing 
approaches. 
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