
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1835

Abstract—The purpose of this paper is to demonstrate the ability

of a genetic programming (GP) algorithm to evolve a team of data
classification models. The GP algorithm used in this work is
“multigene” in nature, i.e. there are multiple tree structures (genes)
that are used to represent team members. Each team member assigns
a data sample to one of a fixed set of output classes. A majority vote,
determined using the mode (highest occurrence) of classes predicted
by the individual genes, is used to determine the final class
prediction. The algorithm is tested on a binary classification problem.
For the case study investigated, compact classification models are
obtained with comparable accuracy to alternative approaches.

Keywords—classification, genetic programming.

I. INTRODUCTION
ENETIC programming [1] is a biologically inspired
machine learning method that evolves computer

programs to perform a task. It does this by randomly
generating a population of computer programs (represented by
tree structures) and then mutating and crossing over the best
performing trees to create a new population. This process is
iterated until the population contains programs that (hopefully)
solve the task well.

GP is often used to evolve predicted numerical models but
it can also be used to evolve classifiers, i.e. rules that can
classify a number of data “objects” (using a set of known
attributes) correctly into 2 or more classes. In [2] a review of
classification algorithms developed using GP is provided. The
authors of [2] conclude that when compared to decision trees
or neural networks GP can evolve models and rules that have
comparable (or better) performance, see e.g. [3], [4], [5].
Recent literature [6] reports improved accuracy through the
fusion of multiple independent classifiers into ensemble
classifiers, using (for instance) majority voting strategies.
However, as autonomous algorithms are not specifically
developed to trade-off contributions made by individual
members of the ensemble, fusion can result in complex
algorithm structures whose improved performance is not
guaranteed [6], [7]. The purpose of this paper is to
demonstrate that the multigene GP algorithm [8], [9], [10] has
the potential to produce an accurate, relatively compact co-

G. A. Morrison is with the School of Chemical Engineering and Advanced
Materials at the University of Newcastle, Newcastle-upon-Tyne, UK.

D. P. Searson is with School of Chemical Engineering and Advanced
Materials at the University of Newcastle, Newcastle-upon-Tyne, UK (e-mail:
d.p.searson@ncl.ac.uk).

M. J. Willis is with the School of Chemical Engineering and Advanced
Materials at the University of Newcastle, Newcastle-upon-Tyne, UK. (phone
+44 191 222 7242; e-mail mark.willis@ncl.ac.uk).

operating ensemble (team) of classifiers. Here, the members of
the ensemble are evolved together as a team in order to solve
the classification task.

This paper is structured as follows. Section II provides a
brief overview of the multigene GP algorithm. Next, in section
III, the methodology adopted for the development of
classification rules using the multigene algorithm is described.
In section IV, the results obtained for the classification of a
public domain data set, the Wisconsin breast cancer data, are
presented. Finally, in section V, a concluding discussion is
given. The following material assumes a basic familiarity with
GP. If this is not the case then an excellent, free to download
introduction and review of the literature is provided by [11].

II. MULTIGENE GP
Typically, GP evolves a population of individual trees, each

of which encodes a single mathematical equation or rule that
predicts a (N × 1) vector y of real numbers using a
corresponding (N × M) matrix of inputs X where N is the
number of observations of the response variable and M is the
number of input (predictor) variables. That is, the ith column
of X comprises the N input values for the ith input variable.

Fig. 1 An example of a multigene “team” of models.

In contrast, in multigene GP a single population member

consists of a number of trees. For instance, Fig. 1 shows a
multigene individual with four trees. The mathematical
models that each tree represents are:

Gregor A. Morrison, Dominic P. Searson and Mark J. Willis

Using Genetic Programming to Evolve a Team
of Data Classifiers

G

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1836

: max cos

: 0.5

tanh

: 2 min , tanh

: 4 cos

In practice, the user specifies the maximum number of

genes Gmax a model is allowed to have and the maximum tree
depth Dmax any gene may have and therefore can exert control
over the maximum complexity of the evolved models.

In particular, we have found that enforcing stringent gene
number and tree depth restrictions (e.g. maximum number of 6
genes and tree depth of 5) allows the evolution of relatively
compact individuals that may be used for the development of
classification rules, even when there are a large number of
input variables in the dataset.

The initial population is constructed by creating individuals
that contain randomly generated GP trees with between 1 and
Gmax genes. During a GP run, genes are acquired and deleted
using a tree crossover operator called two point high level
crossover. This allows the exchange of genes between
individuals and it is used in addition to the “standard” GP
recombination operators.

If the ith gene in an individual is labelled Gi then a two
point high level crossover is performed as in the following
example. Here, the first parent individual contains the genes
(G1 G2 G3) and the second contains the genes (G4 G5 G6 G7)
where Gmax = 5. Two randomly selected crossover points are
created for each individual. The genes enclosed by the
crossover points are denoted by < … >.

(G1 < G2 > G3) (G4 < G5 G6 G7 >)

The genes enclosed by the crossover points are then

exchanged resulting in the two new individuals below.

(G1 G5 G6 G7 G3) (G4 G2)

Two point high level crossover allows the acquisition of

new genes for both individuals but also allows genes to be
removed. If an exchange of genes results in an individual
containing more genes than Gmax then genes are randomly
selected and deleted until the individual contains Gmax genes.

The standard GP subtree crossover is referred to as low
level crossover. In this case, a gene is selected randomly from
each parent individual, standard subtree crossover is
performed and the resulting trees replace the parent trees in
the otherwise unaltered individual in the next generation.

III. DATA CLASSIFICATION USING THE MULTIGENE ALGORITHM
When presented with real valued inputs, each gene will

output a real number that theoretically lies within the range -

∞ to ∞. In order to predict which class an object lies in, this
output needs to be processed so that the output of a tree
indicates a discrete class number (e.g. class 0, class 1etc.). To
achieve this, the outputs are first ‘squashed’ to lie within a
pre-determined range which is defined according to the total
number of classes. The function used to do this is shown
below.

1
1

1 exp

Where NC is the number of output classes and go is the

output of a particular gene. Therefore, for a four class
problem, each gene output will lie in the range 0 – 3. Each
numeric value is then rounded to the nearest integer, in this
example, 0, 1, 2 or 3 enabling each gene to predict either class
‘0’, ‘1’, ‘2’ or ‘3’. Similarly for a two class problem, the
output of a gene will now be squashed within the range 0 – 1.
Subsequent rounding of these numbers to the nearest integer
will produce a prediction that an object is in either class ‘0’ or
class ‘1’.

The predictions obtained from each gene are then
interpreted to produce an overall prediction of the output class
when presented with the input data for an object. To do this, a
voting strategy is adopted; accepting the majority vote
determined using the mode (highest occurrence) of the classes
predicted by the individual genes. For example, given a six
gene model predicting binary classes, if the individual gene
outputs are: {0,1,0,0,1,0} the mode, and hence the final
prediction is class ‘0’. If there is a draw – which can happen if
a particular population member has an even number of genes -
the prediction is assigned to the lowest class number.

In order to evolve accurate classification rules, a suitable
fitness function is required. There are many situations where
data has unequal class representation and commonly it is the
smaller class that is of interest. For example, in the chemical
and allied industries the interest is normally in those variables
that fail a quality test. In this situation fitness functions based
upon measures of sensitivity and specificity are required.
Consider binary classification where an outcome is either class
‘0’ or class ‘1’. The sensitivity rule is the proportion of true
cases which it correctly predicts as being class ‘0’. Specificity
refers to the portion of class ‘1’ cases which it correctly
predicts as being class ‘1’. The fitness function used is a
weighted combination of these two measures. For binary
classification problems, this Sensitivity Fitness Function
(SFF) is given by

, 0
, 0

1
, 1
, 1

where nc(i,k) is the number of cases in class k correctly

predicted by the ith solution to be in class k; na(i,k) is the
number of records which are actually in class k and w is a
weight in the range [0, 1].

Normally equal weights are used. That is, the average of the
sensitivity and specificity values is taken. Thus the fitness

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1837

function takes into account the proportion of correct
classifications in each class, so that the fitness for a rule that
misclassifies all the cases in one of the classes is at most 0.5.
In some situations, the weighting may need to be adjusted
depending upon the cost associated for misclassifying cases
from each class or to deal with an unbalanced dataset. The
fitness function may be easily generalised to cover multi-way
classifications.

In order to promote the evolution of compact models a
solution length penalty was also included within the fitness
function

, 0
, 0

1
, 1
, 1

where p is an additional weighting and N is the number of

nodes in a given population member.

IV. THE WISCONSIN BREAST CANCER DATASET
The data set used is the Wisconsin diagnostic breast cancer1

dataset which consists of 569 occurrences of 30 tumour related
measurements from women with either a benign or malignant
tumour. The dataset is partitioned, with approximately 60%
having a benign tumour and the remainder malignant. The
classification objective is to develop a model to predict
whether a tumour is malignant or benign using as few of the
input dimensions as possible. For the purposes of
classification, those with malignant tumour have been given
class ‘1’ and benign, class ‘0’. The input data consists of ten
real-valued features obtained from a suspicious tumour;
radius, texture, perimeter, area, smoothness, compactness,
concavity, concave points, symmetry and fractal dimension.
For each record the mean, standard error and worst error is
provided (giving 30 dimensions in total).

A. GP run settings
All of the runs were performed using our free GPTIPS

([9],[10]) software for MATLAB. A custom fitness function
was written for the purposes of binary classification, using the
SFF described above.

In all the experimental runs the following GPTIPS settings
were used: Population size = 200, Number of generations =
150, Tournament size = 6 (with lexicographic selection
pressure), Dmax = 5, Gmax = 6, function node set = {plus,
minus, times, tanh, sin, square, cos, max, min, if-then-else,
exp}. Terminal set = {the input values x1 – x30, random
ephemeral constants in the range [-10 10]}.

The following (default) recombination operator event
probabilities were used: Crossover events = 0.80, mutation
events = 0.1, direct reproduction = 0.1. The following sub-
event probabilities were used: high level crossover = 0.2, low
level crossover = 0.8, subtree mutation = 0.9, replace input
terminal with another random terminal = 0.05, Gaussian
perturbation of randomly selected constant = 0.05 (with

1

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

standard deviation of Gaussian = 0.1). These settings were
based on experience with the predictive modelling of other
data sets of similar size, and so they may not be optimal.

To attempt to the prevent overfitting, 25% of the data were
randomly selected for use as a holdout validation dataset.
Holdout validation was performed as follows: at the end of
each generation, the “best” individual (as evaluated on the
training data) is then evaluated on the holdout validation set.
The individual that performs best on the holdout set (over the
course of the run) is stored and may be accessed after the run.
To test the accuracy of the final models a further 25% of the
data was used as an additional (unseen) testing data set.

A weighting of 0.9 was given to the malignant class in the
breast cancer dataset to promote classification models / rules
that misclassify cases that are malignant cancer and not
benign; the safer misclassification. The length penalty p was
set to 0.001.

B. Results
Due to the stochastic nature of GP, multiple runs (20) of the

algorithm were performed. Table 1 shows the classification
accuracy obtained.

TABLE I

CLASSIFICATION ACCURACY (WISCONSIN BREAST CANCER DATA)
Data Set Best (%) Mean (%) Std. (%)
Training 96.8 90.3 3.8
Validation 94.9 88.4 3.7
Testing 94.8 90.3 2.8

For each GP run, good classification accuracies were

obtained. The best classifier found, on the hold out validation
data had a 94.9% classification accuracy with 88.4% of the
misclassified cases were being classified as malignant - the
more serious diagnosis. The mean prediction accuracy over
the twenty runs was 88.4% on the validation data with a
standard deviation of 3.7%. Similar performance was observed
on the unseen testing data, with 94.8% classification accuracy.
The mean number of nodes obtained within the classifiers was
37.3. The best classifier found had three genes and 29 nodes
and is shown below

sin cos

9.615 0.6370

 0.6370

9.615 sin 3.929

This classifier has 3 genes and uses 6 of the input variables

- x8 concave points, x12 the texture (standard error), x21 the
radius (worst error), x28 concave points (worst error), x29 the
symmetry (worst error) and x30 the fractal dimension (worst
error). The authors of [12] used this data set to compare 56
different classification algorithms available within Weka
3.5.52 (a suite of classification algorithms). Using the full

2 http://www.cs.waikato.ac.nz/ml/weka/

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1838

attribute set (all tumour dimensions) and 10 fold cross
validation [12] examined the percentage of correctly classified
instances. The best performing classifier correctly classified
97.9% of the data (reported over the entire data set). Two
additional tests were performed using a reduced set of
attributes. The first test used all records associated with mean
area, mean perimeter and mean radius (giving nine inputs in
total) as suggested by [13]. Here, the best performing classifier
correctly classified 90.5% of the data. The second test used
each of the 3 input records associated with mean texture, the
worst area and the worst smoothness as suggested by [14]. In
this case, the best classifier (a multilayer perceptron) correctly
classified 97.2% of the data. Hence it can be seen that the
evolved multigene model can achieve classifier performance
of the order of the current state of the art classification
algorithms. Moreover, the final model comprises a relatively
compact team of mathematical models, which uses only six
input dimensions.

V. CONCLUSIONS
In this article we have used GP to evolve multigene (team

based) classifiers and demonstrated the approach with an
application to a binary classification problem. It was shown
that the evolved model was compact and offered similar high
performance to published results using the same data. We
emphasise that the multigene (team based) classifier
methodology is not necessarily better or worse than other
methods, but that it is a complementary alternative to existing
approaches.

REFERENCES
[1] Koza JR. Genetic programming: on the programming of computers by

means of natural selection. The MIT Press, USA, 1992.
[2] Jabeen, H. And Baig, A.R. Review of classification using Genetic

Programming, Int. J. of Eng. Sci. And Tech., Vol 2 (2), 94 – 103., 2010.
[3] Bojarczuk, Lopes, H.S. and Freitas, A.A. An innovative application of a

constrained-syntax genetic programming system to the problem of
predicting survival of patients, Lecture notes in computer science, Vol.
2610, Springer-Verlag., 2003.

[4] Eggermont, J. Data Mining using Genetic Programming: Classification
and Symbolic Regression. Leiden University, PhD Thesis., 2005.

[5] Taskonas, A. A comparison of classification accuracy of four genetic
programming-evolved intelligent structures, Information Sciences, pp.
691-724., 2006.

[6] Ruta, D. and Gabrys, B. Classifier selection for majority voting,
Information fusion 6, 63-81., 2005.

[7] Rogova, G. Combining results of several neural network classifiers,
Neural Networks, 7 (5), pp 777-781., 1994.

[8] Hinchliffe MP, Willis MJ, Hiden H, Tham MT, McKay B & Barton,
GW. Modelling chemical process systems using a multi-gene genetic
programming algorithm. In Genetic Programming: Proceedings of the
First Annual Conference (late breaking papers), 56-65. The MIT Press,
USA, 1996.

[9] Searson, D. GPTIPS: Genetic Programming & Symbolic Regression for
MATLAB, http://sites.google.com/site/gptips4matlab/, 2009.

[10] Searson, D.P., Leahy, D.E. and Willis, M.J. GPTIPS: An open source
genetic programming toolbox for multigene symbolic regression.
Lecture Notes in Engineering and Computer Science: Proceedings of
the international multiconference of engineers and computer scientists
IMECS 2010, 17-19 March, 2010, Hong Kong.

