International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:3, 2019

Using € Value in Describe Regular Languages by
Using Finite Automata, Operation on Languages
and the Changing Algorithm Implementation

Abdulmajid Mukhtar Afat

Abstract—This paper aims at introducing nondeterministic finite
automata with & value which is used to perform some operations on
languages. a program is created to implement the algorithm that
converts nondeterministic finite automata with & value (e-NFA) to
deterministic finite automata (DFA).The program is written in c++
programming language. The program inputs are FA 5-tuples from text
file and then classifies it into either DFA/NFA or & -NFA. For DFA,
the program will get the string w and decide whether it is accepted or
rejected. The tracking path for an accepted string is saved by the
program. In case of NFA or e-NFA automation, the program changes
the automation to DFA to enable tracking and to decide if the string w
exists in the regular language or not.

Keywords—Finite automata, DFA, NFA, &-NFA, Eclose,
operations on languages.

I. INTRODUCTION

Aregular language is a language that can be presented by FA
(DFA/ NFA). Some automation may needs to move in €
value. ¢ value is also crucial to implement operations on
languages. Such operations combine a group of languages into
one language. For these reasons there is more addition blue
print of NFA which (e-NFA). so we can imagine the result will
be complicated and more useful.

Therefore, it is very important to invest more time reviwing
automata theories and formal languages operations to desgin
complicated or composet language that help to build and
develop many kinds of software or applcations.

II. EPSILON VALUE

Epsilon value (¢) mean the empty string, where some times
the automation need to move between states in €.

A finite automata has a set of states, and it is "control " moves
from state to state in response to external inputs [1].

A finite automata has two classification DFA and NFA.

E-NFA it is another extension of FA, the new "feature" is that
we allow a transition on g, the empty string. In effect, an NFA
allowed to make transition spontaneously, without receiving an
input symbol [1], [2].

There are two uses of € value:
- Design e-NFA.

To design FA to the decimal numbers, it is so hard to design
DFA directly, and it is impossible to design NFA without ¢

Abdulmajid Afat is with the Faculty of Information Technology, Misurata
University, Misurata, Libya (phone: 00218924958946; e-mail:
majid.afat@it.misuratau.edu.ly).

value, because we need € to the start stat, where any decimal
number maybe stat with +/- or start with no sign(start with ¢
value). As the transition diagram:

0.1....9 0.1.....9

@9.{- J\/q—l\f @) (/'qﬂ) 3 @
YV Y = \3 NS,

. 0.1...9,~
O’IR /

9

Start

3

Fig. 1 An &-NFA accepting decimal numbers L(A) [1] L(A)={w: w is
decimal number}

converting regular REGEX
expression) to DFA.
Making some operation on languages.
There are some concept of languages:
e Alphabet: finite set of symbols
e Examples: {0,1} — {on,off}-{a-z}.
e String (w): text string from an alphabet.
e Examples: 010101, science.
e Language: set of strings or words chosen from some
alphabet.
e Asetis a well-defined collection of objects [4].

A regular language over has an explicit formula. A regular
expression for the language is a slightly more user friendly
formula and it is recognized by FA [5].

Operations on languages:

If L and M are languages then:

Union :

LUM={w:w€Lorw€ }

Concatenation:

L.M={w:w=xyandw € Landw € }

Power:

L'={g}, L'=L, L¥'=L.Lk

Kleen closure:

L'=U% L

L'=L°UL'UL?U L’...

The end result of all previous operations is new language, so
the operation provide help to produce a new and a complicated
languages. Therefore the problem can be divided to small

expression (Regular

153

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:3, 2019

pieces and the dealing with each piece (design language for
each piece) as the following:
The union operation.
L(A)={w:w contain01 or contain on 11, w in{0,1}"}
Problem dividing into to pieces:
1. L(A)={w:w contain on 01, W in{0,1}"}

0,10 0.1
start ,@ 0 ,@ 1

Fig. 2 An NFA for L(A) ={x0ly: x,y in {0,1}"}

2. L(A)={w:w containon 11, win{0,1}"}

0,10 0,1
1 1
S.Lm:t,@ -

Fig. 3 An NFA for L(A) ={x11y: x,y in {0,1}"}

©
O

Using ¢ value to composed the pieces:

start

Fig. 4 An e-NFA for L(A) ={w: win {0,1}" And w contain on 01 Or
11}

The Concatenation operation:

L(A)={w:w contain01 and contain on 11, w in{0,1}"}

After dividing the language to pieces, connect the pieces by
¢ value as the following:

0,1
’ 0,1

Fig. 5 An &-NFA for L(A) ={w: win {0,1}" And w contain on 01
And 11}

III. REGULAR EXPRESSIONS

Regular expressions are another type of language-defining
notation [1].

The regular languages are those languages that can be
constructed from the “big three” set operations viz., (a) Union
(b) Concatenation (c) Kleene star [3].

By using regular expression the accepted strings expressed to
one expression, where it is consider as declarative way to
describe a language. Sometimes regular expressions can do
what automata do not and vice versa. The regular expression
are used as input to some systems such that:

Search command.

Lexical analyzer generator.

The languages operation can be implemented to the regular
expression.

Inductive definition of regular expression:

Basis:

e is aregex and O is a regex. L(e)={¢}, and L(Q)= 0.

Ifain) then a is a regex. L(a)={a}.

Induction:

If E is a regex's, then (E) is a regex. L((E))=L(E).

If E and F are regex's, then E+F is a regex. L(E+F)=L(E) U
L(F).

IfE and F are regex's, then E.F is a regex. L(E.F)=L(E) . L(F).

IfE is a regex's, then E* is a regex. L(E*)= (L(E))*.

Every byte or letter in regular expression can be considered
as one regex.

Examples: regular expression to the following languages.

e L(A)={w:w contain01, w in{0,1}"}

(0+D)*01(0+1)*

e L(A)={win{0,1}": 0 and 1 are alternate in w}

(O1)™+ (10)"+1(01)"+0(10)"

Or, equivalently

(e+1) (01)" (e+0)

e L(A)={w:wisadecimal numbers}

(e+++-)(0123456789)"(".") (0123456789)"

Equivalence of FA's and regex's:

For each DFA's, NFA's, e-NFA's and regex's are equivalent.
where every language can be presented by one of them.

To change regex to DFA. First set changing the regex to e-
NFA, and then changing the resulted e-NFA to DFA.

From regex's to e-NFA:

Starting by simple regex and getting the automata for e, @
and a.

o) 55 ol-boeo)

Fig. 6 The automata for &, @ and a

Induction: Automata for R+S, RS and R".

154

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:3, 2019

TABLE II
R § @ DFA TRANSITION DIAGRAM

+,- . 0,...,9

‘ qo.q1 qi q2 q1,q4

(- qi (%] q2 q1,q4

. a @ q2 (%] (%] q3,qs

q1,94 (%) q2,93,95 q1,94

*q3,qs 9] 9] 3,95

Fig. 7 The automata for €, @ and a *q2, Q3,95 (%] (%] q3,95

Finally by connected diagrams by ¢ value. The resulted DFA D corresponding to E
diagram is e-NFA.

Example: L(A)={w:w end by 01, w in{0,1}"} oL

0.1...
(0+1)01 @3 ‘ﬁ_}_D\‘_-‘(@ 0.1...5@""' qﬁD
.

I T | 0.1..9
L A
. \/___ =
Start {g-}) - {g..q95})
N2 0.1..... t}\.:?‘ >
01,9

Fig. 8 Equivalence e-NFA to the regex (0+1)"01

Fig. 9 DFA accepting decimal numbers [1] L(A)={w: w is decimal
IV. CHANGING E-NFA T0 DFA number}

To change &-NFA to DFA we have to define the ECLOSE
first.

ECLOSE to the state P: it is set content on all states can be
reachable by sequence of ¢ starting with state q.

Input file path and name

Basis: +
p 0 ECLOSE(p) — .
Induction: pen the text file

Copy FA 5tuples(language L) to arrays

q 0 ECLOSE(p) and r € §(q,e)— re ECLOSE(p)

as an example in fig.1 ECLOSE(qo) ={q0,q1} o
the detail of construction algorithm: ¢
QDZ{S N S d) QE and S = ECLOSE(S)} yes

do= ECLOSE(QO) Change to DFA

Fo={S:SeQpandS 1 Fec# @}

Op(S,a) = U ECLOSE(P) : Pe §(t,a) for some te S}
Note: for Qp the accessible state only will be included, where / Read w string /
the first accessible stat is o= ECLOSE(Qo).
The transition diagram in Example in fig 1 is.

no yes
| IfwinL |
TABLE I
E-DFA TRANSITION DIAGRAM / No wnotin L / Save the path
€ +,- . 0,...,9 +
@ & € 9 0 Yeswin L
qi 0 0 Q qi,q4
q2 (%) (%) %] qs |
qs qs 9] 9] s
q4 (%] (%) Qs (%) @
*qs (0] %) Q (%)

. . . Fig. 10 Program flowchart
After implement the construction algorithm the new

transition table:

155

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:3, 2019

V.DESIGN

In design phase, the starting point is reading 5-tuples of FA
from text file. Thus the program will classify the FA
(DFA/NFA or e-NFA) According to quintuples.

e Program inputs:

0 FA quintuples.

= Qs finite set of states.

= Y is finite set of alphabets (input symbols).
= (o is start state.

= 9 is transition function 6(q,a)=p.

= F subset of Q.

o

The string w.

Changing FA to DFA if NFA or e-NFA

Program outputs:

Deciding if w accepted or rejected.

Saving the tracking path.

Printing the new quintuples if entered FA was NFA or &-
NFA.

O OO e

VI. TESTING

The program has been tested the automation in Fig. 1:

Fig. 11 Program result

VII. PROGRAM FUNCTIONS

1. Copyquaitupletoarrays() reading text file consist of FA
tuples and save them to matrices.

isitNFA() testing the FA(NFA/DFA or e-NFA).
NFAtoDFA() convert the NFA to DFA.
ENFAtoDFA() convert the e-NFA to DFA.
FinalStates() specify the new final state.
Eclose() finding single state e-close.
EcloseState()finding composite state e-close
Delrep() delete repeting from string.

Tracking() return 1 if woard in language/ 0 if not.
0 Other simple function like copy, print arrays.

SeeNaL s BN

VIII.NFA 10 DFA SOURCE CODE

source code for e-NFA to DFA algorithm in c++ language:

void ENFAtoDFA(stt seg[50],stt Q[50],stt fs[50],stt tt([SO0][50],char
qO0[],int &Ql,int &segl,int &fsl,int &ttc)

{

1
stt newQ[50], newtt[50][50],a[50];
int newQl,n;

int 1,j,w,fl,tr;

char buf[20],prclose[50];

Eclose(prclose,Q[0].s,tt,Q,Ql);
strepy(newQ[0].s,prclose);
strepy(q0,prelose);

newQI=1;

int newttR=0;

split (newQ[0].s,a,n);
for(i=0;i<n;i++)

{

for(w=0;w<n;w++)

if (stremp(a[i].s,Q[w].s)==0) tr=w;
for(w=0;w<segl;w-++)
if(stremp(tt[tr][w].s," ")!=0)

strcat(newtt[newttR][w].s,tt[tr][w].s);
if (i<n-1)strcat(newtt[newttR][w].s,",");
else newtt [newttR] [w].s[2*n+(n—1)]*‘\0';

i

}
for(w=0;w<segl;w++)
if (newtt[newttR][w].s strlen(newtt[newttR][w .8)-1]=="
newtt[newttR][w].s[strlen(newtt[newttR][w].s)-1] ‘\0'
for(w=0;w<segl;w++)
if (stremp(newtt[newttR][w].s,"")==0)
strepy(newtt[newttR][w].s," ");
for(w=0;w<segl;w++)

156

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:13, No:3, 2019

{

EcloseState(prclose,newtt[newttR][w].s,tt,Q,Ql);
strepy(newtt[newttR][w].s,prclose);

newttR=1;

int r,c,pp;
newtt[0][0].s[2]="0";
for(r=0;r<newttR;r++)
for(c=0;c<segl;c++)

f1=0;
for(int m=0;m<newQl;m++)
if (stremp(newtt[r][c].s,newQ[m].s)==0) f1=1;
if (f1==0)&&stremp(newtt[r][c].s," ")!=0&&c!=0)
{
strepy(newQ[newQl].s,newtt[r][c].s);
split (newQ[newQl].s,a,n);
for(i=0;i<n;i++)
{
for(w=0;w<QLw++)
if (stremp(a[i].s,Q[w].s)==0) tr=w;
for(w=0;w<segl;w-++)
if(stremp(tt[tr][w].s," ")!=0)
{

strcat(newtt[newttR][w].s,tt[tr][W].s);
if (i<n-1)strcat(newtt[newttR][w].s,",");
else strcat(newtt[newttR][w].s,"\0");
§
§
for(w=0;w<segl,w++)
if (newtt[newttR][w].s[strlen(newtt[newttR][w].s)-1]=="")
newtt[newttR][w].s[strlen(newtt[newttR][w].s)-1]="0";
for(w=0;w<seglw++)
if (stremp(newtt[newttR][w].s,"")==0)
strepy(newtt[newttR][w].s," ");

for(w=0;w<segl;w++)

{

if(stremp(newtt[newttR][w].s," ")!=0)

EcloseState(prclose,newtt[newttR][w].s,tt,Q,Ql);
strepy(newtt[newttR][w].s,prclose);

}
newttR+=1;
newQl+=1;

}
}

for(i=0;i<newttR;i++)

for(j=0;j<seglij++)
newtt[i][j]=newtt[i][j+1];

newttR=newttR-1;

for(j=0:j<segl;j++)

seg[jl=seg[j+1];

segl=segl-1;

FinalStates(newQ, newQl, fs,fsl);

CopyArray(Q,QlLnewQ,newQl);

for(i=0;i<newQL;i++)

for(int j=0;j<segl;j++)

te[i][jl=newtt[i][j];

Ql=newQl;

}

(1]
(2]
3]
(4]
(3]

REFERENCES

Jhone E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to
automata theory, languages and computation. By Addison- Wesley 2nd
Edition, 2001.

Tarek Majid. Theory of Cmputation. Amman- Jordan 1* Edition2005.

S. P. Eugene Xavier. Theory of Automata, Formal Languages and
Computation. By New Age International (P) Ltd, 2005.

K. 1. P. Mishra, N. Chandrasekaran. Theory of Computer Science
Automata, languages and Computation. third Edition, 2008.

John C. Martin. Introduction to languages, and the theory of computation.
By McGraw-Hill 4™, 2011.

157

