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 
Abstract—In this work, a Multi-Level Artificial Bee Colony 

(called MLABC) for optimizing numerical test functions is presented. 
In MLABC, two species are used. The first species employs n 
colonies where each of them optimizes the complete solution vector. 
The cooperation between these colonies is carried out by exchanging 
information through a leader co lony, which contain s a set of elite 
bees. The second species uses a cooperative approach in which  the 
complete solution vector is divided to k sub-vectors, and each of 
these sub-vectors is optimized by a colony. The cooperation between 
these colonies is carried out by compiling sub-vectors into the 
complete solution vector. Finally, the cooperation between two 
species is obtained by exchanging information. The propo sed 
algorithm is tested on a set of well-known test functions. The results 
show that MLABC algorithm provides eff iciency and robustness to 
solve numerical functions.  
 

Keywords—Artificial bee co lony, cooperative artificial bee 
colony, multilevel cooperation. 

I. INTRODUCTION 

HERE are many population based optimization techniques 
available for unconstrained numerical optimization. The 

algorithms which are inspired from intelligent behaviors of 
honey bees are among the newest optimization techniques 
which have been developed and appli ed on diff erent 
engineering fields. In recent years, different types of bee 
algorithms have been presented in literature [1]-[3]. These 
algorithms are based on soc ial-psychological principles and 
provide insights into social behaviors. Social influence and 
social learning are two major components of a social organism 
that enable i ndividuals to maintain consistency. These 
components are based on i nteraction between individuals. 
Social influence encourages an in dividual to move toward 
another individual in a solution space. Social learning makes 
an individual to tune its behavior by observing the behavior of 
the other individuals.  

Social influence and learning guarantee the success of  a 
swarm in solving highly complex optimization problems. 
However, using onl y one population in these algorithms has 
disadvantage such as stagnation, premature convergence, low 
convergence speed, side effect, etc. To mitigate these 
disadvantages and improve the performance of the population 

 
Vahid Zeighami is with Department of Mathematics and Industrial 

Engineering, Ecole Polytechnique, de Montreal, Montreal, Quebec, Canada 
(e-mail: vahid.zeighami@polymtl.ca). 

Mohsen Ghsemi is with E-Lea rning College, Shiraz University, Shiraz, 
Iran, (e-mail: ghsemy39@gmail.com). 

Reza Akbari is with Department of Computer Engineering and Information 
Technology, Shiraz University of Technology, Shiraz, Iran(e-mail: 
akbari@sutech.ac.ir). 

based algorithms, one can use other forms of social behaviors 
such as cooperation and competition. Cooperative individuals 
provide benefit to each other in the same species. Cooperation 
encourages individuals working together in order to obtain 
social improvement in their performance. In recent years, 
many cooperative optimization approaches have been 
proposed. The idea of using cooperation in population based 
algorithms was first introduced in GA by Potter and De Jong 
[4] for optimizing numerical functions by partitioning the 
solution vector into the two or more smaller vectors. After 
that, Van den Berg a nd Engelbrecht applied the Potter  
technique on standard PSO and propose d three models of 
cooperative PSO, called CPSO-S, CPSO-Sk, and CPSO-Hk [5], 
[6]. In CPSO-Sk method, the solution vector is divided to the k 
sub-vectors, and k swarms were u sed to optimize these sub-
vectors concurrently. The CPSO-S method is a type of CPSO-
Sk in which the complete D-dimensional solution vector is 
partitioned to the D one-dimensional vectors and finally 
CPSO-Hk combines standard PSO and CPSO-Sk. Similar to 
these cooperative variants of PSO, recently this idea has been 
applied on ABC al gorithm and different cooperative ABC 
such as CABC [7], [8], CABC_S [9], and CABC_H [9] have 
been proposed.  

Apart from sub-dividing the sol ution vector, d ifferent 
approaches for cooperative PSO such as MCPSO, CONPSO 
were presented in [10]-[12], where the solution vector is not 
partitioned, but multiple cooperative populations were 
employed. Usually, in these methods, cooperation is obtained 
through exchanging information about the g lobal best 
individuals [13]. The idea of using multiple populations in bee 
algorithms was u sed by Akbari and Ziarati to design 
Cooperative bee algorithms [14]. 

In current work, a multi-level artificial bee colony algorithm 
based on cooperative behaviors in multiple levels of ABC is 
introduced. The proposed MLABC method can be seen as a 
multi-level optimization approach which optimize the 
numerical functions based on the social behaviors in three 
levels [15], [16].  

The paper is organized as follows. Section II introduces the 
basic concepts of ABC algorithm. Description of the proposed 
MLABC algorithm is presented in Section III. Section IV 
reports experimental result o f the proposed approach in 
comparison with the other variants of ABC. Finally, Section V 
concludes this work. 

II. BASIC CONCEPTS OF ARTIFICIAL BEE COLONY 
The ABC algorithm was introduced by Karaboga and 

Basturk in [1]. There are three types of bees in ABC. A bee 
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waiting on the dance area fo r making decision to cho ose a 
food source is called onlooker; the bee goi ng to the food 
source visited by herself just before is named as e mployed 
bee, and the bee who fly spontaneously is called scout. ABC 
employs these bees in three phases. At the initialization phase, 
ABC generates a randomly distributed initial population of SN 
solutions, where SN denotes the size of the e mployed or 
onlooker bees. Each solution presents a D-dimensional vector
 Dixi ,...,2,1 , where D is the nu mber of parameters to be 

optimized. 
The second phase has three steps. At the first step, the 

employers come into the hive and share the nectar information 
of the food sources with the onlookers waiting on the dance 
area. After sharing their information with onlookers, every 
employed bee goes to the food source area visited by her at the 
previous iteration since that food source exists in her memory, 
and then chooses a new food source by means of visual 
information in the neighborhood of the one in her memory and 
evaluates its nectar amount. 

At the second step, considering the information shared by 
employers in the dance area, an artificial onlooker bee chooses 
a food source based on the probability value associated with 
that food source, pi, calculated by the following expression: 

 

 


SN
n n

i
i

fit

fit
p

1

                                        (1) 

 
where ifit  is the fitness value of the solution i which is 
proportional to the nect ar amount of the food source in the 
position i and SN is the number of food sources which is equal 
to the number of employed bees or o nlooker bees. An 
onlooker prefers a f ood source area depending on the nectar 
information distributed by the employed bees on the dance 
area. The probability of a food source selection increases as its 
nectar amount increases. 

After an onlooker arrives at a promising area, she chooses a 
new food source in th e neighborhood of the one in  the 
memory depending on visual information as in the case o f 
employed bees. The new food position is selected based on: 

 
 kjijijijij xxxv                                       (2) 

 
where  SNk ,...,2,1  and  Dj ,...,2,1  are randomly chosen 
indexes. Although k is determined randomly, it has to  be 
different from i. ij  is a random number in range of [-1, 1].  

At the third step, the nectar amount of the food sources are 
evaluated; the scout bees are det ermined and they are sent 
onto the possible new food sources. For this purpose, the 
positions are evaluated, and if a food source cannot be 
improved after a p redetermined number of iterations (called 
limit), then the corresponding food source is abandoned. The 
limit parameter is determined manually. The abandoned food 
source is replaced with the new one founded by the scouts. A 
scout produces a new position randomly and r eplaces the 
abandoned food source if the new food source has better 

nectar. Assume that the abandoned source is  and 
 Dj ,...,2,1 , then the scout discovers a new food source to be 

replaced with ix . This operation can be defined as:  
 

 jjjj
i xxrandxx minmaxmin ]1,0[                              (3) 

 
After each ca ndidate source position ijv  is produced and 

evaluated by t he artificial bee, its performance is compared 
with that of its old o ne. If the new food source has equ al or 
better nectar than the old source, it is replaced with the old one 
in the memory. Otherwise, the old one is retain ed in the 
memory. In other w ords, a greedy selection mechanism is 
employed as the selection operation between the old and the 
candidate one. The af orementioned processes are repeated 
through a pre determined number of iterations or until a 
termination criterion is satisfied. 

III. MULTI-LEVEL ARTIFICIAL BEE COLONY 
In some bee algorithms such as MP-ABC [8] and CABC_S 

[9], the colonies have the same structure and evolve in the 
same way. It is possib le to embed the colonies in such 
algorithms in a larger community to create a spec ies. This 
approach encourages us to develop a  new optimization 
method, called MLABC, containing two species where the 
first and second species concurrently evolve under different 
approaches. In MLABC, coo peration carried out in t hree 
levels. From biological perspective, the selection of a level in 
which the cooperation is carried out between individuals has 
important role in success of individuals in a population. This 
idea which is called multilevel selection (MLS), proposed by 
Sober and Wilson [17] as a perspective to the cooperation 
concept. Multi-level selection approach suggests that 
cooperation occurs in more than one level [18]: for example, it 
may occur in an atomic and molecular level in cells, at the 
level of cells within an individual, and then again at level of 
individuals within a population, at the level of population 
within a species, and finally at the level of species. This 
approach encourages individuals to cooperate to a void 
behaviors which favor themselves short-term, but destroy the 
community long term. 

 
TABLE I 

LEVELS OF COOPERATION AND CORRESPONDING BEHAVIORS 

Level Cooperative Behavior 
Within colony Selection 

Between colonies sharing information, dividing works 
Between species Exchanging information 

 
According to the aforementioned levels of cooperation, the 

evolving process of an individual in MLABC depends on a set 
of operations which are p erformed at th ree levels: within 
colonies, between col onies (or within spec ies), and between 
species. Hence, MLABC is a multi-level cooperative approach 
that uses two species each of which containing a different type 
of cooperative approach. In a multilevel cooperative approach, 
each level may provide different behaviors for the individuals 

ix
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for contributing in problem solving. The possible behaviors at 
each level are presented in Table I. 

The optimization process starts by applying flying patterns 
within each of the colonies. The results of the flying patterns 
are processed and the selected results are passed to the second 
level of cooperation. The cooperation in this level is obtained 
through selection and the types of actions which are performed 
by different types of bees. The selection is a behavior used by 
onlooker and employed bees. The onlooke r bees select their 
interesting employed bee and follow them to find new food 
sources. Also, this behavior is used by employed bees to select 
the elite food sources. The type o f individual has i mportant 
role in co operation. One well accepted theory for why 
cooperative behaviors occur between individuals with 
different types is the theory of kin selection. This theory 
suggests that individuals act co operatively in order to help 
others which are genetically similar.  

At the second level, cooperation is carr ied out between 
different colonies of one species. In the first species, the 
cooperation between colonies is carried out using the approach 
proposed by MC-CABC module, while the colonies in the 
second species cooperate through the approach proposed by S-
CABC module. The first species shar es information through 
the leader colony in order to establish cooperation between its 
colonies. In the s econd species, the work is divided to the 
smaller part, and each colony responsible to accomplish a part 
of the work. The colonies share the information to complete 
the work.  

At the third level, cooperation is carried out by exchanging 
the elite bees between species. In the first species, cooperative 
colonies result a set of fittest bees which are maintained in the 
leader colony. Also, the cooperative colonies in the second 
species result a set o f fittest solutions which are formed by 
concatenating the partial solutions provid ed by each of  that 
colonies. These solutions are maintained in Celite. The MLABC 
algorithm uses the information provided by these speci es to 
carry out cooperation between them. The co operation in the 
level of species is carried out through two exchange channels 
S2M and M2S. In M LABC algorithm, two species 
concurrently optimize an objective function. After predefined 
number of iterations ( exiter ), the information is exchanged 
using  21,M2SEx SpSp  and  12 ,S2MEx SpSp  functions. The 

 21,M2SEx SpSp  function chooses randomly k1 bees from the 
leader colony 1SpClead   and overwrites k1 randomly selected 
bees from the colonies of species Sp2. The solut ion vector in 
Sp2 is split by the split factor sf2, and each of the colonies of 
the Sp2 optimizes one component of the solution vector. 
Hence, the  21,M2SEx SpSp  function should split the 
position vector of a chosen bee by the spilt factor sf2.  

A reverse process in exchanging information from Sp2 to 
Sp1 species is done by  12 ,S2MEx SpSp  function. Unlike Sp2, 
each of the colonies in Sp1 works on the complete solution 
vectors. Hence, we n eed to compile the partial solutions 
produced by the colonies of Sp2 in complete solution vectors. 
The process starts by constructing complete solution vectors 

from partial solutions. As described previously, by considering 
two best experienced employed bees from each of the colonies 

2SpSi   we can const ruct 22sf  candidate position vectors. 
These complete solution vec tors constitute the elite colonies 
(Selite). After that, the k2 best solution vectors will be selected 
from Selite. The  12 ,S2MEx SpSp  function overwrites k2 
randomly selected bees in the colonies of the species Sp1 at the 
exchange time.  
____________________________________________________ 
Initialize Sp1, and Sp2 
Do 
     Execute one iteration of S-CABC 
     Execute one iteration of MC-CABC 
     If (iter mode iterex = 0) Then 
         Update Selite in Sp2 
         Do  21,M2SEx SpSp  
         Do  12,S2MEx SpSp  
Until termination condition is met 
____________________________________________________ 

Fig. 1 Pseudo code of the MLABC algorithm 
 
Fig. 1 presents the MLABC in pseudo code. The algorithm 

starts by initializing the species. At initial step, the number of 
colonies in each speci es is def ined and the colonies are 
initiated as the ways described in sub-sections A and B. Also, 
the new parameters k1, k2, and iterex are defined. After that, at 
each cycle of the algorithm, the position vectors in Sp1 are 
updated by executing one iteration of MLABC, as well as the 
position vectors in Sp2 are updated by executing an iteration of 
S-CABC. The information is exchanged after iterex iterations. 
At the exchange time, the algorithm first updates the elite 
colony in Sp2 by the co mplete solution vectors which are 
formed by co ncatenating two elite bees from each swarm. 
Second, the information is exchanged through 

 21,M2SEx SpSp  and  12 ,S2MEx SpSp  channels. 
The multilevel cooperative variant of the ABC algorithm 

has the ability to solve any problem that ABC algorithm can 
solve it. However, its performances are affected by different 
factors. Beyond the factors described in Sectio n I, there are 
other factors that affect the performance of the proposed 
multilevel cooperative optimization approach. The ty pe of 
exchanged or shared information as well as the amount of that 
information have i mportant role on performance of the 
algorithms. Using a large amount of information, the number 
of replaced individuals is i ncreased. This may influence the 
position update mechanism in the algorithm. 

Another factor that affects the performance of the multilevel 
cooperative optimization algorithm is the time points at which 
the information are exch anged or shared. In MLABC  
algorithm, this time point is controlled by iterex. The small 
value for iterex increases the replacement of the individuals 
throughout iterations. This decreases the diversity of algorithm 
and the premature convergence may occur. At the other hand, 
the large iterex decreases the beneficial effects of employing 
multiple species. Hence, the proper exchange time should be 
used. 
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A. Multi Colony Cooperative ABC (MC-CABC) Module 

The MC-CABC module is used by the first species. The 
MC-CABC employs n  colonies similar to the work presented 
in [15]. The colonies contain the same number of bees. The 
complete solution space is u sed by each of the colonies, and 
the colonies concurrently optimize the problem. MC-CABC 
algorithm evaluates fitness of each bee i in a  colony j 
independently without considering other bees. The 
cooperation approach is based on sharing information between 
colonies. The MC-CABC shares information between colonies 
through a community of fittest bees.  

Given a D-dimensional optimization problem, each of the 
n  colonies concurrently optimizes all the D parameters in the 
solution space S. In an ideal way, a bee in one colony needs to 
cooperate with all the bees in other colonies in order to extend 
its capabilities. Such a way establishes exhaustive cooperation 
which needs high computational effort and increases the 
complexity of the a lgorithm. So, we need alternative 
approaches for cooperation between colonies. As a one way to 
achieve this goal, we introduce a further colony leadC , called 
leader colony, which contains a set   of the fittest bees from 
all the colonies. The l eader colony acts as community for 
sharing information between colonies. This co mmunity 
consists of the best bee from each of the colonies.  
_______________________________________________ 
Module MC-CABC (n, Max_Iter, limit, h) 
For j=1 to n 
   Initialize the population Popj of solutions hix ij ,...,2,1,,   

   Evaluate population Popj 
End For 
For iter=1 to Max_Iter 
   For j=1 to n 
     Step 1) Produce new solutions vj,i for the employed bees using (3) and  
                  evaluate them 
           Apply the greedy selection process for the employed bees 
     Step 2) Calculate the probability values Pj,i for the solutions xj,i by (2) 
           Produce the new solutions vj,i for the onlookers from the  
           solutions xj,i selected depending on Pj,i and evaluate them 
           Apply the greedy selection process for the onlookers 
     Step 3) Determine the abandoned solution for the scout, if exists, and  
                  replace it with a new randomly produced solution xj,i by (4) 
           Memorize the best solution achieved so far 
   End For 
    Step1) Select best solutions bj from all the populations Popj, nj 1  

    Step2) For j=1 to n 
           Produce new solutions vj,i for the employed bees using (5) and   
           evaluate them 
           Apply the greedy selection process for the employed bees 
         End For 
End For 
Return best solution 
____________________________________________________ 

Fig. 2 Pseudo code of the MC-CABC algorithm  
 
Fig. 2 p resents the MC-CABC algorithm in pseudo code. 

ABC method is extended to encompass cooperation operators. 
The position of bee i in colony j is represented by ݔԦ௝,௜ that its 
fitness is evaluated independently. The onlooker and scout 
bees use only local information available in their own colony, 

and their flying patterns are the same as the patterns in ABC 
algorithm.  

Unlike onlooker and scout bees, the employed bees in MC-
CABC use a n extended ver sion of their flying patterns 
proposed in ABC in order to model information sharing 
between colonies. At each cycle of the algorithm, the 

 ,Clead j  returns the best bee from colony jC  and updates 

j-th position vector in the leader colony by the positions of this 
bee. The position of the j bee in the leader colony is updated if 
the best bee in colony j has better fitness.  

Considering the leader colony, an e mployed bee uses the 
shared information to adjust its movement trajectory in the 
next time. The bee evaluates the provided information by the 
leader colony leadC . The flying trajectory of an employed bee 
i of the colony j is controlled using:  

 
Ԧ௝,௜ݒ ൌ Ԧ௝,௜ݔ ൅ ∑ Ԧ௝,௜ݔሬሬԦ௝,௜൫׎ െ Ԧ߯௝,௜൯

௡
௠ୀଵ                        (4) 

 
where Ԧ߯௝,௜ is th e position vector of the lea der bee which is 
selected by the employed bee i in the colony j and ׎ሬሬԦ௝,௜ controls 
the importance of the shared information. 
_______________________________________________ 
Module S-ABC(Max_Iter, limit, SN, D,k) 

 kDD 1 ,  kDDD  12  

Initialize 1k  population of solutions SNixi ,...,2,1,   with 1D  dim 
Initialize 1 population of solutions SNixi ,...,2,1,   with 2D  dim  

     For each population jP ,  kj ,...,2,1  

           For each bee ji Pb   

                  Construct the context vector using  jiCV ,  
           End For 
           Evaluate the population j 
     End For 

For iter=1 to Max_Iter 
  For each population jP ,  kj ,...,2,1  

    Step 1) Produce new solutions ti for the employed bees by using (2)  
                Construct the context vector using  jtCV i ,  and evaluate  
                them 
                Apply the greedy selection process for the employed bees 

     Step 2) Calculate the probability values Pi for the solutions xi by (1) 
                  Produce the new solutions ti for the onlookers from the  
                  solutions xi selected depending on Pi  
                  Construct the context vector using  jtCV i ,  and evaluate  
                  them 
                 Apply the greedy selection process for the onlookers 

    Step 3) Determine the abandoned solution, if exists, and replace it  
                 with a new randomly produced solution xi by (3) 
                 Construct the context vector using  jtCV i ,  and evaluate it 
  End For 
  Memorize the best solution achieved so far 
End For 
Return best solution 
____________________________________________________ 

Fig. 3 Pseudo code of the CABC algorithm 

B. Split Cooperative ABC (S-CABC) Module 

The S-CABC is another cooperative version of ABC which 
is used in the second species. S-CABC is similar to the other 
cooperative variants of ABC presented in [7]-[9]. S-CABC 
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mainly focuses on p artitioning the search space. In t his 
module, the solution vector is partitioned to the k components. 
After that, a set of k population are employed to cooperatively 
optimize these components. The pseudo code of the S-CABC 
module is presented in Fig. 3. 

In this approach, each population only has local information 
about the solution. The global information is achieved by 
compiling the local information for constructing the complete 
solution vectors. The complete solution is constituted by 
concatenating partial solutions from different populations and 
the fitness function is ca lculated based on the complete 
solutions. Similar to CPSO-Sk [6], a context vector is used to 
establish cooperation between populations. In this way, a 
context vector is con structed by taking the global best 
individual from each population and assembling them in to the 
complete solution vector. The fitness of an individual i in 
population j is calculated by fixing the other k-1 components 
of the context vector to their corr esponding global best 
individuals in populations, and replacing the j-th component 
by individual i. Although this approach ignores valuable 
information that may obtained through concatenation of non-
global best individuals from each of the k populations, the 
computational complexity forces the al gorithm to avoid 
considering the possible combination of partial solutions. For 
implementation, we used function  jiCV ,  which returns a 
context vector whose components are filled with the global 
best solutions from all the populations except the j-th 
component which is filled by i-th solution vector of the j-th 
population. 

IV. EXPERIMENTS 
To test the performance of MLABC in comparison with the 

other variants of ABC, five well known benchmark functions 
are used her e. These benchmarks are widely used in 
evaluating performance of population based methods. The first 
two functions are u nimodal and others are multimodal. A 
unimodal function has only one optimum. A fu nction called 
multimodal if it has two or more local optima. 

The performance of the new method is compared with the 
performance of the ABC, S-CABC, and MC-CABC. All 
experiments were run for 30 dimensional test functions. The 
number of evaluations was chosen at 5000 00. For all the test 
functions, the population size is set to 200, and a total of 30 
runs for each experi mental setting are conducted. The 
following sentences describe t he specific parameter settings 
for each of the aforementioned algorithms. In ABC algorithm, 
the trial factor is set at 100. The solution vector for S-CABC 
algorithm is split into five parts. All the other parameters have 
equal settings with the parameters of the ABC. In MC-CABC 
five colony (n=5) concurrently optimize the test f unctions. 
Each colony optimizes the complete solution vector. Two 
species in the MLABC method exchange information at every 
5 iterations ( 5exiter ). The Sp1 employing MC-CABC with 
n=5, while the Sp2 employing S-CABC with k=6. The 
exchange parameters k1 and k2 are respectively set at 2 and 5. 
So, after five iterations, one of the bees in each of the colonies 

of Sp1 is replaced by the selected elite bees. Also, two 
randomly selected bees in the swarms of Sp2 are replaced by 
the elite bees from Clead. 

A. Experimental Results 

Table II presents three measures (mean, standard deviation, 
and average number of evaluations before convergence) for 
four algorithms on the five test functions. Also Fig. 4 shows 
the evolution of the four variants of ABC over the five test 
functions. For Rosenbrock test function, the success criterion 
is set at 100 and for the others is set at  0.01. After the final 
evaluation, if the minimum value was reached by the 
algorithm was not below the success c riteria, the run was 
considered unsuccessful.  

According to the results reported in Table II  and 
convergence behavior in Fig. 4, it can  be seen that, the b est 
result on the Sphere function is obtained by MLABC a nd it 
has the fastest convergence speed. The Rosenbrock function is 
a hard problem to solve. Table II shows the MC-CABC has 
the best p erformance. However, the MLABC has the fastest 
convergence speed. The Rast rigrin function is a h ighly 
multimodal with f requent local optima. An algorithm with 
poor balance between exploration and ex ploitation simply 
trapped in local optima in early iterations. Table II presents 
evaluation results for the Rastrigrin function. The best result is 
obtained by the MC-CABC and MLABC al gorithms. Also, 
from Table II, it is apparent that the MLABC has fast speed in 
converging to the success criteria. 

As can be see n from Table II, MC-CABC and MLABC 
algorithms outperform other algorithms in optimizing 
Griewank function. MLABC is the fastest algorithm in 
converging to the success criteria. The best result on the 
Ackley is o btained by MLABC and it has t he fastest 
convergence speed. 

 
TABLE II 

EVALUATION RESULTS FOR THE FIVE TEST FUNCTIONS 
Func. Method Mean(Stdv.) #evaluations
Sph. ABC 3.21E-016 (5.02E-017) 5.34E+004 

MC-CABC 2.01E-031 (2.67E-030) 3.04E+004 
S-CABC 1.15E-016 (1.16E-017) 2.26E+004 
MLABC 4.71E-045 (7.73E-046) 9.00E+003 

Ros. ABC 6.42E-001 (7.03E-001) 8.42E+004 
MC-CABC 4.13E-005 (4.98E-005) 2.28E+004 

S-CABC 1.41E+001 (2.26E+001) 1.72E+004 
MLABC 4.24E-003 (9.97E-003) 7.00E+003 

Ras. ABC 7.70E-016 (1.85E-015) 2.34E+005 
MC-CABC 0.00E+000 (0.00E+000) 1.37E+005 

S-CABC 8.48E-018 (1.65E-018) 4.34E+004 
MLABC 0.00E+000 (0.00E+000) 3.48E+004 

Grie. ABC 3.03E-016 (6.99E-017) 4.54E+004 
MC-CABC 0.00E+000 (0.00E+000) 8.28E+004 

S-CABC 1.04E-016 (1.28E-017) 1.64E+004 
MLABC 0.00E+000 (0.00E+000) 1448.29 

Ack. ABC 4.45E-014 (3.60E-015) 1.20E+005 
MC-CABC 1.20E-013 (3.44E-014) 1.21E+005 

S-CABC 1.76E-014 (3.53E-015) 3.04E+004 
MLABC 4.45E-015 (3.27E-015) 1.68E+004 
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In general, the results showed that cooperation in more than 
one level has positive effect on th e performance of the 
standard ABC and competitive performance can be ob tained 
by employing this type of optimization manner. 

 

 

(a) Sphere 
 

 
(b) Rosenbrock 

 

 

(c) Rastrigrin 
 

 

(d) Griewank 

 

(e) Ackley 

Fig. 4 Evolution of average fitness for the five test functions. 

V. CONCLUSIONS 
The optimization algorithms which are inspired from 

intelligent behavior of honey bees are among the most recently 
introduced population based algorithms. In this paper, we have 
described a multi-level ABC algorithm which incorporates 
two different types of cooperative approach to improve its 
performance. The MLABC  was formed in a multi-level 
approach in which the cooperation is carried out in more than 
one level. The results showed that, optimizing under this way 
is efficient and better performance could be obtained. 
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