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Abstract—A concern that researchers usually face in different 

applications of Artificial Neural Network (ANN) is determination of 
the size of effective domain in time series. In this paper, trial and 
error method was used on groundwater depth time series to determine 
the size of effective domain in the series in an observation well in 
Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 
100, and 120 preceding day were examined and the 80 days was 
considered as effective length of the domain. Data sets in different 
domains were fed to a Feed Forward Back Propagation ANN with 
one hidden layer and the groundwater depths were forecasted. Root 
Mean Square Error (RMSE) and the correlation factor (R2) of 
estimated and observed groundwater depths for all domains were 
determined. In general, groundwater depth forecast improved, as 
evidenced by lower RMSEs and higher R2s, when the domain length 
increased from 20 to 120. However, 80 days was selected as the 
effective domain because the improvement was less than 1% beyond 
that. Forecasted ground water depths utilizing measured daily data 
(set #1) and data averaged over the effective domain (set #2) were 
compared. It was postulated that more accurate nature of measured 
daily data was the reason for a better forecast with lower RMSE 
(0.1027 m compared to 0.255 m) in set #1. However, the size of input 
data in this set was 80 times the size of input data in set #2; a factor 
that may increase the computational effort unpredictably. It was 
concluded that 80 daily data may be successfully utilized to lower the 
size of input data sets considerably, while maintaining the effective 
information in the data set.  
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I.  INTRODUCTION 
ROUNDWATER is one of the major sources of supply 
for different purpose such as industrial and agricultural 

purposes. In some areas groundwater is the only dependable 
source of supply, while in some other regions it is chosen 
because of its availability [1]. Groundwater models provide a 
scientific and predictive tool for determining appropriate 
solutions of water problem. It may helps the administrators 
plan groundwater utilization more effectively [1, 2]. To date, a 
wide variety of models have been developed and applied for 
groundwater forecasting [3]. These models can be categorized 
into empirical time series models and physical descriptive 
models. The major disadvantage of empirical approach is that 
they are not sufficient for forecasting when the dynamical 
behavior of the hydrological system changes with time [3]. 
Similarly, physics based model requires enormous data to  
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simulate water table fluctuations [4]. In a water table aquifer, 
relationships between affecting parameters on groundwater 
level are likely nonlinear rather than linear [3, 4]. In recent 
years, artificial neural networks (ANNs) have been used for 
forecasting purposes in many areas of science and engineering 
especially when the relationship of affecting parameters are in 
a nonlinear form. This makes ANN an attractive tool for 
modeling water table fluctuations. A few applications of ANN 
approach in aquifer system modeling have been recently 
reported in the literature [5, 6, 7, 8]. 

A concern that researchers usually face in different 
applications of ANNs is determination of the size of effective 
domain in time series. The main approach to address this 
concern has been trial and error [8].  

In this paper, artificial neural network was applied to 
forecast groundwater depth. Trial and error was used on 
groundwater depth time series to determine the size of 
effective domain in the series. The effective domain was then 
utilized in an ANN to optimize its performance in forecasting 
groundwater depth in an observation well in Union County, 
New Jersey, U.S. In order to determine the effectiveness of 
this combination, different domains of the series were fed as 
inputs to the ANN and the results were compared.  

II.  ARTIFICIAL NEURAL NETWORKS 
Neural Networks have gone through two major 

development periods; the early 60’s, and the mid 80’s. They 
were a key development in the field of machine learning. 
Artificial Neural Networks were inspired by biological 
findings relating to the behavior of the brain as a network of 
units called neurons [9]. 

The fundamental building block in an Artificial Neural 
Network is the mathematical model of a neuron as shown in 
Fig. 1. The three basic components of an artificial neuron are: 

1. The synapses or connecting links that provide weights, wj, 
to the input values, xj for j = 1,..., m; 

The weights in neural nets are also often designed to 
minimize the error in a training data set 
2. An adder that sums the weighted input values to compute 
the input to the activation function:  

∑
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, 
where w0 is called the bias is a numerical value associated 
with the neuron 
3. An activation function g that maps v to g(v) the output 
value of the neuron. This function is a monotone function. 
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A.  Network Architecture 
While there are numerous different ANN architectures that 

have been studied by researchers, the most successful 
applications have been multilayer feedforward networks. Fig. 
2 is a diagram for this architecture [9]. 

 

 
 

Fig. 1 Schematics for a mathematical model of a neuron 
 

 
 

Fig. 2 Diagram of a Feed Forward Back propagation 
 
 

 
 

  
 

B.  Feed Forward Back Propagation (FFBP) Neural 
Network 

Present study employed a standard back propagation 
algorithm for training, and the number of hidden neurons is 
optimized by a trial and error procedure. In these networks, 
there is an input layer consisting of nodes that simply accept 
the input values and successive layers of nodes that are 
neurons as depicted in Fig. 1. The outputs of neurons in a 
layer are inputs to neurons in the next layer. The last layer is 
called the output layer. Layers between the input and output 
layers are known as hidden layers [9]. 
 

C.  Evaluation Criteria 
Root Mean Square Error (RMSE) criterion is used by 

researchers in order to evaluate the effectiveness of each 
network in its ability to make precise predictions [9]. It is 
calculated by: 

( )
N
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N
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−
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Where iy  is the observed data, iŷ  is the calculated data, and 
N is the number of observations. Qualitatively speaking, 
RMSE reflects the discrepancy between the observed and 
calculated values. The lower the RMSE, the more accurate the 
prediction. 
 

III.  STUDY AREA 
Union County Well is located in New Jersey, US in the 

hydrologic unit 02030104with 40 ْ41 َ06  َ َ north latitude and 74 ْ
14 َ19 َ َ east longitude. The Well depth is equal to 290 feet and 
ground surface elevation is 69.00 feet above sea depth. The 
well is completed in "Early Mesozoic basin aquifers" 
(N300ERLMZC) national aquifer (Fig. 3). The daily data are 
recorded for a period of 65 years (from 1943 to 2008) except 
for an 8 year gap( 1975 to 1983) [10]. In this paper ANN 
(FeedForward Backpropagation) was used to forecast ground 
water depths in Union County Well. 

 

 
Fig. 3 Location of Union County well in New Jersey, US 

IV.  MODEL STRUCTURE 
A.  Selection of Input Vector 
As a first step in design of network architecture, the input 

parameters which affect the outputs should be determined 
[11]. Generally, experience knowledge is used to specify the 
initial set of candidate inputs [12, 13].  

In this paper, daily depth to ground water was used as the 
input. Two sets of data, measured daily data (set #1) and data 
averaged over the effective domain (set #2) were used to 
forecast ground water depths.  
 

B.  Hidden Neurons Optimization 
A number of empirical relationships between the number of 

training samples and the number of connection weights have 
been suggested in the literature [9]. Nevertheless, the network 
geometry is highly dependent on the problem and properties of 
available data. The optimum ANN architecture which can 
effectively capture the relationship between the input and 
output data is usually determined by trial and error. The trial 
and error procedure started with one hidden layer initially, and 
the number of hidden layers was increased up to 3 with a step 
size of 1 in each trial. The training was stopped when there 
was no significant improvement in the efficiency, and the 
model was then tested for its general properties.  

 
C.  Internal Parameters of the Model 
A sigmoid function was used as the activation function in 

both hidden and output layers. As the sigmoid transfer 

Output layer 
Input layer  Hidden layers 

Well #11 is Union 
County 
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function has been used in the model, the input-output data 
have been scaled appropriately to fall within the function 
limits. A standard back propagation algorithm has been 
employed to estimate the network parameters [9]. The learning 
rate was held constant throughout training in the standard 
steepest descent (back propagation) process. 

V.  RESULTS 
Monitored daily ground water depths in Union County Well 

from Mar 1985 to Mar 2007 are shown on Fig. 4 as a time 
series. The fluctuating nature of the data reflects a fractal 
character which has an average, minimum, maximum, and 
standard deviation of 6.79 m, 3.45 m, 10.75 m, and 0.956 m, 
respectively. Trial and error method was applied to the data set 
considering different domains of 20, 40, 60, 80, 100, and 120 
preceding.  

Data sets in different domains were fed to ANN and 
groundwater depth was forecasted. Figs. 5, 6, and 7 depict 
estimated versus observed groundwater depths for a 22 year 
period considering the domains of 20, 80, and 120 preceding 
days, respectively. Root Mean Square Error (RMSE) and the 
correlation factor (R2) of estimated and observed groundwater 
depths for all domains are also presented in Table I. In 
general, when the domain length increased from 20 to 120, 
groundwater depth forecast was improved as evidenced by 
lower RMSEs (0.563509 compared to 0.098972 m) and higher 
R2s (0.69023 compared to 0.99273). How ever, the 
improvement was less than 1% beyond the domain length of 
80 days. 

Considering Table I, the data in the 80-day domain was 
selected as the effective data which required a reasonable 
computational effort and yielded an acceptable R2 (0.99218) 
and RMSE (0.102719 m. The calculated effective domain (80 
days) confirms well with the effective domain of a few months 
reported by other researchers on groundwater depth time 
series. 

Statistical parameters of training and testing the network 
with the two data sets considering different numbers of hidden 
layers are shown in Table II. As shown, errors are bound to 
acceptable values (less than 0.037) and typically smaller in 
lower numbers of hidden layers for both data sets. No over 
flowing was observed in either sets of data and it was 
concluded that data with one hidden layer was sufficient for 
accuracy of the network. 

Comparison of the estimated data (based on data averaged 
over the effective domain; set #2) and observed data is shown 
in Fig. 6. Similar comparison for the estimated data (based on 
daily data in the effective domain; set #1) and the observed 
data was shown in Fig. 8. Comparing Figs. 6 and 8, it was 
postulated that more accurate nature of data set #1 (shown in 
Fig. 6) was the reason for a better prediction with lower 
RMSE (0.1027 m compared to 0.255 m). However, the size of 
input data in set #1 was 80 times the size of input data in set 
#2; a factor that may increase the computational effort 
unpredictably. Hence, it was concluded that data set #2 may 
be successfully utilized to lower the size of input data sets 
considerably, while yielding acceptable RMSE (0.255 m in 
our case) as well.  
 

VI.  CONCLUSION 
ANN was utilized to forecast ground water depths in two 

different sets of data. Trial and error method was applied to 
the sets considering different domains of 20, 40, 60, 80, 100, 
and 120 preceding days and 80 days was selected as an 
effective domain considering lower RMSE and higher R2 of 
predicted time series in ANN. This method decreased the 
computational effort and, at the same time, yielded acceptable 
R2 and RMSE. The number of hidden layers was optimized by 
trial and error to one hidden layer for both data sets. It was 
postulated that more accurate nature of measured daily data 
was the reason for a better forecast with lower RMSE (0.1027 
m compared to 0.255 m) in set #1. However, the size of input 
data in this set was 80 times the size of input data in set #2; a 
factor that may increase the computational effort 
unpredictably.  
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Fig. 4 Observed ground water depth in Union County Well 
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Fig. 5 Comparison of the estimated data (based on daily data in the 

20-day domain) and observed data 
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Fig. 6 Comparison of the estimated data (based on daily data in the 

effective domain; set #1) and observed data 
 

 
Fig. 7 Comparison of the estimated data (based on daily data in the 

120-day domain) and observed data 

 
Fig. 8 Comparison of the estimated data (based on data averaged over 

the effective domain; set #2) and observed data  
 

TABLE I 
ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION FACTOR (R2) FOR 

DIFFERENT DOMAIN LENGTHS 
Domain Length 

(days) R2 RMSE (m) 

20 0.69023 0.563509 
40 0.85301 0.284730 
60 0.89763 0.163450 
80 0.99218 0.102719 

100 0.99225 0.099437 
120 0.99273 0.098972 

 
TABLE II 

STATISTICAL PARAMETERS FOR TRAINING AND TESTING DATA SETS 
No. of Hidden 

Layers Ave (m) Max (m) Pd (%) Ave (m) Max (m) Pd (%)

1 0.026 0.13 91.4 0.035 0.16 88.46

2 0.03 0.14 89.14 0.037 0.15 87.5

3 0.09 0.33 43.67 0.11 0.32 35.58

1 0.037 0.16 85.52 0.046 0.16 79.81

2 0.037 0.15 85.7 0.046 0.15 77.88

3 0.095 0.33 42.08 0.11 0.34 35.58

Error in Training Data Error in Testing Data

Set #1

Data Sets

Pd: percent of data with less than 0.05 m error

Set #2
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