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and it is accumulated as an intracellular carbod emergy

Abstract—Poly--hydroxybutyrate (PHB) is one of the moststorage granules. Many of its chemical and phygoaperties

famous biopolymers that has various applicationgrioduction of

biodegradable carriers. The most important strategyenhancing
efficiency in production process and reducing theepof PHB, is the
accurate expression of kinetic model of productemfdion and
parameters that are effective on it, such as Dy \@eight (DCW)

and substrate consumption. Considering the highalubifles of

artificial neural networks in modeling and simutetiof non-linear
systems such as biological and chemical industhias mainly are
multivariable systems, kinetic modeling of micrdbgoduction of

PHB that is a complex and non-linear biologicalgaess, the three
layers perceptron neural network model was usedhis study.

Artificial neural network educates itself and fintee hidden laws
behind the data with mapping based on experimeiatal, of dry cell
weight, substrate concentration as input and PHEceatration as
output. For training the network, a series of eipental data for
PHB production fromHydrogenophaga Pseudoflavhy glucose
carbon source was used. After training the netwavwky other

experimental data sets that have not intervenedhén network
education, including dry cell concentration and sirdie

concentration were applied as inputs to the netwarkd PHB
concentration was predicted by the network. Consparbf predicted
data by network and experimental data, indicatddgha precision
predicted for both fructose and whey carbon sourgks® in present
study for better understanding of the ability ofura network in

modeling of biological processes, microbial produttkinetic of

PHB by Leudeking-Piret experimental equation wadehed. The
Observed result indicated an accurate prediction RIfiB

concentration by artificial neural network highdéran Leudeking-
Piret model.

Keywords—Kinetic Modeling, PolyB-Hydroxybutyrate (PHB),
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I. INTRODUCTION

make it superior to polymers such as polyethylemel a
polypropylene [1], but it has high production colthas a
wide variety of applications in biodegradable @i
production for medicines and insecticides, surgjgas and
sutures, food packaging films, nano-composites
disposable cosmetic products and also it possesisgtar
physical and structural properties with petrochenicased
synthetic polymers such as polyethylene (PE)
polypropylene (PP), but it has two main advantagespared
with synthetic plastics: one, biodegradability ahd other , it
is produced from renewable resource [11]. Effontshie last
two decades were concentrated on identifying biacter
producing these polymers; their metabolic pathways
consideration and production of these compounds fittese
bacteria were identified as well as the kind oftbaa and
various conditions of culture media which are thaim
determinant factors in amount and type of polynidi.[

One significant feature in microbial productionRiflA’s is
production by use of renewable carbon sources. €tional
plastics made from petroleum have very low degiadagates
but PHA's produced by renewable resources suchugars
and vegetable oils that is irrelevant to atmosph@®
consumption as carbon source. Also, various wasttenals
are capable for using as carbon sources in pramuatif
PHA'’s such as whey, molas, glucose, and fructosiléble
carbon source of microorganisms is one of the niadtors
that will determine the type of PHA'’s product [8],

Commercial production of Pol§-hydroxybutyrate is
developing, but price of this polymer is high ant i
production efficiency is too low in comparison with

and

and

OLY B-hydroxybutyrate (PHB) is a polyester belonging tgetrochemical based plastics. These two factorsnapertant

polyhydroxyalkanoics acids family that is synthesiby a
wide variety of different microorganism under ssresndition
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weak points in the pathway development of Hdly-
hydroxybutyrate compared with synthetic polymershsas
polyethylene and polypropylene. Widespread prodactnd
use of biopolymers depends on reducing productiod a
process costs [10].

Enhancing the efficiency of PHB production process
involves precise expression of production kinetiodel and
its effective parameters, including dry cell weigbtoduct
concentration and substrate consumption. The maitiesth
model can able of analyzing data and creating aegy to
resolve fermentation and product formation isswes] also
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being informative about fermentation process knetiould
have the potential to increase production efficyezc, 3 , 5].
In this study the kinetic of microbial productiofi Boly-3-
hydroxybutyrate has been modeled by three layersept&on
neural network and
Leudeking-Piret experimental model.

Il. ARTIFICIAL NEURAL NETWORKS

Nowadays, artificial neural networks have showrirthigh
abilities in many applications. These networks hdeen
created based on biological model of animals’ brainfact,
the artificial neural networks are the data processystems
of the information that possess particular impletaton
feature similar to animal neural networks, and h&esn
existed from generalization of their mathematicadels [10].

These networks are model-free intelligent dynargatesns
based on experimental data that by processing ke lthve

2415-6620
No:1, 2012

The outputs of first layer, form the input vectdr second
layer, and so the output vectors of the second lmake the
inputs of third layer, and the outputs of the tHagler are the
desired answer of the network [10 , 12].

results have been compared withAmong all the important properties of neural netkgorthe

learning property is very important. Neural netwsrks
learning systems are able to learn from their pagterience
and environment and improve their behavior durireghe
learning stage. Improvement in learning during tiree
should be measured based on the criterion; imprewéraf
criterion’s models is the target of learning systémarning
law by recursive equations, are generally expresasd
differential equations. This recursive equationg aalled
learning laws. Learning law is a process which Wwesignatrix
and bias vectors of neural network are set. Theddil@arning
laws is to train the neural network to perform a&dfic act,
and in other words, artificial neural network dgyitraining

transmitted hidden laws behind the data to the o®tw il be more aware about environment, conditiond aim of

structure. Artificial neural network based on nuic&rdata or
example calculation, learn general rules and tryntmel the
neuro-synaptic structure of human brain [10].

Artificial neural networks have two basic propesti®ne,
mapping based on experimental data (ability anempmt of
generalizability) and other, parallel structurakili

These are suitable and applicable
simulation of systems, especially in non-lineateys such as
chemical and biochemical industries that are maltiable
systems with many state variables. In other worcadaptive
systems, particularly when the process under siadyery
complex, artificial neural networks provide appiape
solutions [12].

in modeling and

its act after each iteration of learning algoritfi8].

The learning in multi-layer perceptron neural netwis
done by minimizing mean squares errors of outpuafplying
backpropagation learning algorithm and by use ahenical
iteration methods.

IV. NEURAL NETWORKPROPERTIES

In this study, a three layers perceptron neuralvoet was
applied for microbial production modeling of pdly-
hydroxybutyrate byHydrogenophaga PseudoflavDSMZ
1034), with two neurons in input layer for DCW centration
and substrate concentration, two neurons in hiddger and
one neuron in output layer for PHB concentratiomn&al

Neuron: the smallest unit of information processing thaviews of this network is shown in Fig. 1.

forms the basis of neural network functions.

Transfer Function:Transfer functionf can be linear or
non-linear. A transfer function is selected basedsolving a
specific problem (an issue that is supposed todbeed by
neural network).

Network Training:Adjusting the communication weights of

neurons per received various examples with the gbahe
network output to converge towards the desiredwdutp

lll.  MULTI-LAYERS PERCEPTRON(MLP) NEURAL NETWORK

Perceptron neural networks,
perceptron, is one of the most practical neuralvaets. This
network is capable of selecting the appropriate memof
layers and neurons, which are not often too ladging the
non-linear mapping with arbitrary precision. Thésvhat in
many engineering issues is proposed as the maitiagolfor
data modeling. The neurons in a level, form a laytareover,
each layer possess weight that indicates the efiédivo
neurons on each other. These networks are fed-fdrwh
means that each neuron in each layer is conneoctetl the
neurons in preceding layers. These networks areviknas
interconnected. The mentioned network, actually basn
created by joining three single layer perceptramse input
layer, middle layer (hidden layer) and the thiraigput layer.

DCW
Concentration

PHB
Concentration

Substrate
Concentration

e e
Input Luye[ Hidden I,ayer Oulput Laycr

Fig. 1 The three layers perceptron neural networlpfoduction
modeling of PHB

specially multi-layer Number of hidden layer neurons was determined by
experimental method and with regards to minimum mmea

squares error (MSE) for prediction of PHB concerdraby
neural network as compared with experimental diig. 2
shows the relationship between number of neurodSVBE.
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TABLE |
0.022 THE RESULTSOF PHB CONCENTRATIONPREDICTED BY NEURAL NETWORK
0.020 -| == mse —— BY FRUCTOSECARBON SOURCE
] —— Mean Squares Error Sum Squares Error )
0.018
(MSE) (SSE) Regression
o 0.016 + ———
2 o014 0.0012 0.0105 0.99849
5o
3 0.012
3 o104 TABLE Il
@ THE RESULTS OFPHB CONCENTRATION PREDICTED BY NEURAL NETWORK BY
b 0.008 1 WHEY CARBON SOURCE
0.006
Mean Squares Error Sum Squares Error )
0.004 - (MSE) (SSE) Regression
0.002 4 ’—‘ 8.14x 10° 7.33x 10* 0.99998
0.000 T T T T T T T
2 3 4 5 6 7 8

Number of Neurons In the present study for better understanding afirale
Fig. 2 Determination of number of hidden layer'siroms networks abilities in modeling and simulation oblogical
process, the kinetic of microbial production of yp}
This network is feed-forward and for training thetwork  hydroxybutyrate (PHB) byHydrogenophaga Pseudoflava
back-propagation  Levenberg-Marquardt — algorithm — wagacteria and by using fructose and whey carboncssytthe
applied. Also the used sigmoid transfer functionrfeurons is | eudeking-Piret model (Eq. 2) is used for kinetialysis of

expressed as follows: PHB production and the obtained results were coetbaith
1 neural network predictions.
T rer @ &P _ d
. 1+e “C=a e fx @
In this study was used MATLAB (V.2010a 7.10) softeva dt dt

to design the neural network and related calculaticand Whereo andp are the associated and non associated growth
Sigmaplot (11.0) software for data analyzing ancphr factor respectivelyx andp show the concentration of dry cell

drawing. weight (DCW) and produced polymer (PHB) concentratias
well.
The combined Logistic and Malthus equations wasl uee
In th_e present _study, for Potyhydroxybu_tyrate (PHB) show the microbial growth kinetics. The Logisticiatjon was
production modeling was used an experimental dafa Sused for showing the exponential growth phase kisethile

including ‘_’W cell weight concen_tratlon. (DCW), strase Malthus kinetics was used to express the deathepkiastics
concentration and PHB concentration which was prediby (Egs. 3 and 4)

Hydrogenophaga Pseudoflavabacteria and glucose

V. MODELING AND DISCUSSION

consumption as carbon source, under certain |admgrat dx_ Hm (1—i)x 3
conditions. This data set as training data wasiegpb a three dt Xm

layers perceptron neural network with propertie@xzressed ax _ X (4)
in the previous section. At the end of trainingystatwo other dt

experimental data sets (Figs. 3 and 5) that did mte  Integration equation 5 and 6, will yield equatiéand 6.

intervene in the network educating, includon DCWd an X(t) = Xo eXP(Umt)

substrate concentration that was produced by Xg t< tm (5)

Hydrogenophaga Pseudoflatacteria and fructose and whey - (7)(1_ expln1))]

carbon sources, were used separately as inputedpiai the " X

network and predicted the values for PHB conceoimarom |n(x—) = ut >t (6)
0

the network’s output. Then the predicted values FhiB
concentration by neural network was compared with Where X,,X and 4 are the initial DCW or biomass
experimental values and also the relevant diagtzens been concentration, maximum biomass concentration and

drawn. From Figs. 4 and 6 we can clearly see théB P maximum specific growth rate of the microorganism,
concentration values with high accuracy has beedigted by respectively. Also, .f is the required time (seed age) for
neural network. The predicted values for PHB cotredion  jaximum produced PHB concentration by the microoisya.

by fructose carbon source possess mean squares ermxccording to Eq. (5), in order to estimate the eabf the
MSE=0.0012 and regression R=0.99849 in comparisibh w

experimental values (Table 1). Hm, @ plot ofin
Neural network prediction by whey carbon sourcespes

highest accuracy and lowest deviation compared to

experimental data with MSE=8.¥40° and R=0.99998

(Table ).

against t will yield a straight line

X = X
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that the value of its the slope correspondsqand the
intercept equals thn(ﬁ -1 .
Xo

X
Xm — X
The resulting graph obtained from kinetic modelafgcell
growth by combination of Logistic and Malthus madelre
shown in Figs. 7 and 8.
Substituting Eq. (3) and (5) into Eq. (2) and im&ng, will
yield Eq. (8).

In

X
= t=In(Em -1 7
Y2 n(XO ) )

(8)
EXP(lnt) )
[1- ()@~ exp(t))]
Xm

P(t) = R +ax

+p25mIn 1—(ﬁ)(1—expcum-t»}
Hm Xm

Eq. (8) can be rewritten as Eq. (9)
P(t) = R +aAt) + BB(t) ©)

The value of% is equal to zero andk =X, in the
stationary phase. Using Egs. (2) and (9), one téaira

dP
m (st.phasg (10)

Xm

TABLE IV
THE LEUDEKING-PIRET MODEL PARAMETERS FOR PHBPRODUCTIONBY USE
OF WHEY CARBON SOURCE

Parameter Logistic Model Malthus Model
Hm 0.125 -0.015
a 0.155 51.746
B 0.0002769 0.0002769
VI. CONCLUSION
We believe that use of artificial neural networks i

modeling and simulation of biological and chemipedcesses
that mainly are complex with multi-parametric amdfar, not
presented a certain experimental and kinetic méafethose
processes can be very effective and instrumemtahi$ study,
were observed that by using a three layers pemepteural
network can be predict the Pdiyhydroxybutyrate (PHB)
concentration with high precision and mean squaesr
MSE=0.0012 for fructose carbon source and MSE=81@°
for whey carbon source.

The use of artificial neural networks technique da
predict the results and outputs of process witth lpgecision
before it is implemented as practical, as well.cAlthis can
saving the process cost and runtime. And a geoeitidok of
the process investigated before implementatiorrdsearcher

The value of x,, can be obtained from the experimentafo make decision and judgment. In the present stlimhetic

growth kinetic data and the value of paramet&ras obtained
from the slope of the linear plot ofP(t) - R, — /B against
Alt) .

Eqg. (8) and (11) show the kinetic model of PHB prctibn
in the exponential growth phase and death phaspectively.

P(t) = Py +ax, exp(ut) +,8X—;exp(u.t) (11)

=Ry +aA(t) + BB(1)

The Leudeking-Piret model parameters obtained &e a

given in tables 3 and 4. The resulting graph oleigifrom
kinetic modeling of PHB production by Leudekingdir
model are shown in Figs. 9 and 10, as well.

TABLE Il
THE LEUDEKING-PIRET MODEL PARAMETERS FORPHB PRODUCTION BY USE
OF FRUCTOSE CARBON SOURCE

Parameter Logistic Model Malthus Model
Hm 0.082 -0.012133
a 0.075 6.958
0.00045 0.00045

modeling of PHB production was modeled by Leudeknigt
model and obtained results compared with artificiaural
network, as well. Observed that the neural netwbds
provided appropriate approach for
concentration, so that the prediction accuracy ifical
neural network is higher than Leudeking-Piret model

TABLE V
LIST OFSYMBOLSAND UNITS

Symbol Quantity Unit
DCW Dry Cell Weight (g
P Product (g
PHA Polyhydroxyalkanoate g
PHB Poly-B-hydroxybutyrate g
t Time (h)
X Cell Concentration g
Xo Initial Cell Concentration g
Xm Maximum Cell Concentration CID)
a Growth Associated Factor (ggh
yii Non- growth Associated Factor (g g*h?)
Y7, Specific Growth Rate, (h?
. Maximum Specific Growth Rate (hh

prediction of PHB
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Fig. 3 Experimental data for microbial productidrP®iB by use of fructose carbon source [10]
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Fig. 4 The prediction of PHB concentration by &ii#fl neural network and use of fructose carborrs®u
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Fig. 5 Experimental data for microbial productidrPéiB by use of whey carbon source [10]
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Fig. 6 The prediction of PHB concentration by dci#fl neural network and use of whey carbon source
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Fig. 8 The kinetic modeling of cell growth by udeney carbon source
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Fig. 9 The kinetic modeling of PHB production byudeking-Piret model and use of fructose carboncsur
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Fig. 10 The kinetic modeling of PHB production bgudeking-Piret model and use of whey carbon source
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