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Unsteady Natural Convection Heat and Mass Transfer
of Non-Newtonian Casson Fluid along a Vertical
Wavy Surface

A. Mahdy, Sameh E. Ahmed

Abstract—Detailed numerical calculations are illustrated in our
investigation for unsteady natural convection heat and mass transfer
of non-Newtonian Casson fluid along a vertical wavy surface. The
surface of the plate is kept at a constant temperature and uniform
concentration. To transform the complex wavy surface to a flat plate,
a simple coordinate transformation is employed. The resulting partial
differential equations are solved using the fully implicit finite
difference method with SUR procedure. Flow and heat transfer
characteristics are investigated for a wide range of values of the
Casson parameter, the dimensionless time parameter, the buoyancy
ratio and the amplitude-wavelength parameter. It is found that, the
variations of the Casson parameter have significant effects on the
fluid motion, heat and mass transfer. Also, the maximum and
minimum values of the local Nusselt and Sherwood numbers increase
by increase either the Casson parameter or the buoyancy ratio.

Keywords—Casson fluid, wavy surface, mass transfer, transient
analysis.

1. INTRODUCTION

ATURAL convection phenomena that generated by the

simultaneous action of buoyancy forces obtaining from
thermal and mass diffusion became very significant in nature
and in a wide range of manufacturing applications in other
words physics of the earth, oceanography, desiccation
operation, chemical engineering and solidification of binary
alloy. Several contributions that focused on combined heat and
mass transfer in free convection boundary-layer flow along
heated plates with unlike geometries is illustrated in the
monograph by Gebhart el al. [1]. In addition, many researches
have been carried out to include various physical aspects of
the problem of combined heat and mass transfer from an
irregular surface because irregular surfaces are often present in
many applications and it is often encountered in heat devices
to enhance heat transfer [2]-[5].

On the other hand, different types of fluids of considerable
interest in different branches of science, engineering, and
technology for instance molten plastics, polymers, and slurries
depict a non-Newtonian fluid behavior. In the past decades,
plentiful attempts of applying boundary layer theory to non-
Newtonian fluids have done. The theory makes great
simplifications in the governing equations of motion and
energy; as a consequence, the equations are much easier to
solve. For various non-Newtonian fluid models, an enormous
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amount of work has been done. Their full discussion is beyond
the scope of this paper. Therefore, some examples will be
quoted briefly. Due to ever growing engineering applications,
major attention focused on the non-Newtonian fluids
boundary-layer flows. In order to obtain a thorough familiarity
of non-Newtonian fluids and their variety of applications, it is
requisite to examine their flow behaviors. Indeed, the non-
Newtonian fluids mechanics exhibit a special challenge to
mathematicians, physicists and engineers. The non-linearity
can express itself in a variety of procedures in numerous
fields, like bio-engineering, drilling operations and food
processing. Furthermore, for obtaining a thorough cognition of
non-Newtonian fluids and its different applications, it is
needful to addresses their flow behaviors. Due to their
application in manufacture and technology, a number of
problems in fluid mechanics have enjoyed the awareness that
has been accorded to the flow which comprises non-
Newtonian fluids. As known, Navier—Stokes theorem is
disadvantageous for such non-Newtonian fluids because of the
complexity of these fluids, and more than one constitutive
equation is need to exhibit all fluids properties. Number of
non-Newtonian fluid types have been investigated. In the
literature, the vast majority of non-Newtonian fluid types are
treated with simple types like the power-law and grade two or
three [6]-[10]. These simple fluid types have flaw that render
to results not having accordance with fluid flows in the reality.

Another type of non-Newtonian fluid is knowen as Casson
fluid. In the literature, the type of non-Newtonian Casson fluid
type is sometimes stated to fit rheological data better than
general viscoplastic paradigm for several materials [11], [12].
For instance of non-Newtonian Casson fluid involves jelly,
tomato sauce, honey, soup and concentrated fruit juices, etc. In
addition, human blood can be deald as Casson fluid. Because
of the existance of some substances like, protein, fibrinogen
and globulin in aqueous base plasma, human red blood cells
can form a chainlike structure, known as aggregates or
rouleaux. If the rouleaux behave like a plastic solid, then there
exists a yield stress that can be specified with the constant
yield stress in Casson’s fluid [13]-[15]. Punctually the non-
linear Casson’s constitutive equation has been used to
characterize the flow profiles of suspensions of pigments in
lithographic varnishes used for preparation of printing inks
[16] and silicon suspensions [17]. The relation of shear stress—
shear rate that obtained by Casson satisfactorily characterizes
the properties of a number of over a number of shear rates
polymers [18]. Non-Newtonian Casson fluid can be known as
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a shear thinning liquid which is presumed to have an infinite
viscosity when rate of shear vanishes, a yield stress below
which no flow happens, and a zero viscosity at an infinite rate
of shear [19]. The flow of non-Newtonian Casson fluid
between two rotating cylinders analyzed by Eldabe and Salwa
[20], and Boyd et al. [21] investigated the Casson fluid flow
for the steady and oscillatory blood flow. The authors in this
contribution investigated the flow of boundary layer due to
stretching surface with mass transfer. We venture further in
the regime of unsteady two-dimensional boundary layer flows
of a non-Newtonian fluid over a vertical wavy plate. The type
of Casson fluid is utilized to characterize the behavior of non-
Newtonian fluid.

II. MATHEMATICAL FORMULATION

A two-dimensional unsteady laminar boundary layer flow
of non-Newtonian fluids past semi-infinite symmetric body
with a sinusoidal wavy plate having constant wall temperature
has calculated numerically. Fig. 1 depicted the schematic
diagram of the physical model of the problem, where the axis
of symmetry is aligned with the oncoming uniform stream. In
our case, it’s choosen that the sinusoidal wavy plate is

characterized by y = &(z) where &(&) is an arbitrary
geometry function and described by § = asin(2r# / L), where

& is the non-dimensional amplitude of the wavy surface and
L is the characteristic wavelength of the wavy surface. The
surface of the plate is kept at a constant temperature 7, and

uniform concentration c, In addition, the fluid oncoming to
the surface has a constant temperature 7 and concentration
.- All fluid properties are constant except the density in the

buoyancy force term. The model of Casson fluid is utilized to
illustrate the non-Newtonian fluid behavior. On the other
hand, the rheological equation of state for an isotropic and
incompressible flow of a Casson fluid can be written as:

7 =7+ 7

or, as seen from Nakamura and Sawada [22]:

Py 1/n
— e..
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Fig. 1 Problem schematic and coordinate system

where p is the dynamic viscosity, pp refers to plastic
dynamic viscosity of the non-Newtonian fluid, P, indicates

the fluid yield stress, m represents the multipication of the
component of rate of deformation with itself, that is,

T;; = €;e;> and e, symbolizes the (3, j) th component of the

deformation rate. An anonymous referee has suggested to
consider the value of n = 1. However, in many applications
this value is n > 1. So, if a shear stress less than the yield
stress is employed to the fluid, it behaves like a solid, whilst if
a shear stress becomes greater than employed yield stress, it
begins moving. Utilizing the balance laws of constitutive
equation of mass, linear momentum energy and concentarion
and with the help of Boussinesq’s approximation the equations
governing this flow can be re-written in the usual form as:
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where, (u,0) symbolize the velocity components in ()
directions, respectively, v is the kinematic viscosity, 7,¢ are
the temperature and concentration of the fluid inside the
boundary layer, P represents the pressure, 7y is the Casson

parameter. (3,3 refer to the thermal and concentration

expansion coefficients, o* is the thermal diffusivity, g is the
gravity, D indicates the mass diffusivity. Moreover, the
appropriate boundary conditions for the governing equations
are:

= 3, u = 0;

V=0, T=T,; C=C, (6a)

oo, @ —=0; v =>0; T =T _; C—C_ (6b)

<

<
{

The initial step is to transform the irregular wavy surface
into a flat surface by use of Prandtl's trans- position theorem,
Yao [23]. In fact, the essence of that theory is that the flow is
supplanted by the quantity of the perpendicular displacement
of an asymmetrical solid plate, and the perpendicular
component of the speed is regulated according to an
inclination of the plate. The style of the boundary-layer
equations doesn’t change under the transformation, and the
surface conditions can be considered on a transformed fiat
surface. This lets the boundary conditions to be readily
incorporated into any numerical method. Anyway, to
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transform  the governing equations, the following
dimensionless quantities are introduced:
fzi;g-:g_é(}rl/“; t:y—iGrl/z,F: Li ;
L L ? vGr'/?
NPT
F:L(vféu); B*T T, b= c-0, )
vGri/t T, — T, c,-C,
5 2 5 5 _ dd 4 T, — T )
Pt _p - _d ,_g ar = 98T, — T )0
pViGr dx dx L 2

Substituting (7) into (1)-(5) and ignoring the small order
terms in Gr (i.e. let Gr — o), we get the following ordinary
governing differential equations:

du  9v _ ()
oT 85
AR A TG [N
£ w2s" + &' 0+ No) = 512_ (1+6'2)£G7‘1/4 (10)
oy

2
20, 798 590 _ 1, 52200 (an
ot o oy Pr oy

2
99,722,528 _ Ly, 5122 (12)
ot T Jdy Sc ay?

—1

Parameters 5. _,p', N=jc, —C_)/ 8T, —T,) Pr=va

refer to Schmidt number, Buoyancy ratio parameter and
Prandtl number. Anyway, it is obviously that when the
parameter N has a nil value, the mass diffusion body force
disappears and the problem reduces to pure heat convection;
whereas as N tends to infinity, the thermal diffusion
disappears. It is worth noting that the ¢’ and §” indicate the
first and second differentiations of & with respect to . For
the problem under consideration the pressure gradient
8P | 0T is zero. Therefore, eliminating P / 8y in (9) and
(10) resulting the following equation:

8| g0, 5oL _ (14 5'2)[1 +—}

3_u +
ot oT 8y

ay? 1+¢5'2

(9 + N¢ — -25'5") (13)

TABLE I
COMPARISON RESULTS OF LOCAL NUSSELT NUMBER AND LOCAL SKIN-
FRICTION FOR NEWTONIAN FLUID (4 — 00 )

Local Nusselt number Local skin friction

Pullepu et al. [25] Present Pullepu et al. [25]  Present
0.001 0.0294 .0745331 1.4149 1.4019290
0.01 0.0797 1018383 1.3356 1.3268480
0.1 0.2115 2571416 1.0911 1.0282990
1 0.5125 6113362 0.7668 6480222

Applying the following transformation in order to remove
the singularity at the leading edge [24]:

X=Fm Y=—re U="Y—;, V=

(47)'/? (4z)'*w (14

Therefore, (8) and (11) up-to (13) in the parabolic
coordinates (X,Y’) become:

2w +4x2U _y2U OV _ (15)
o0X Y 0Y

‘76—”+4XU3U W - YU)‘?Z [z+%]vzz(1+5'z)‘1+ ]g:ﬂ 1+6,1(9+N¢)
(16)
2
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2
%+4XU%+(V—YU)B—¢:i(1+5’2)8—¢ (18)
at ox oY Sc oY?

With the corresponding boundary conditions:

Y=0 U=V=0

U — 0

0=1
0 — 0

=1 (19a)

Y — oo, b —0 (19b)

The computations of the local skin-friction coefficient,
Nusselt number and Sherwood number are of practical
interest. The local heat and mass transfer rates are large when
the normal velocity is approaching the surface; they are small
when the convective stream moves away from the surface.
The heat and mass transfer mechanism along a wavy surface is
different from that along a flat surface, and is modified by the
fluid motion normal to the surface. The local Nusselt number
and Sherwood number are defined respectively as:

. 1/4
Nu =2 (G522 (20)
k 4X 9Y Jy—o
~ 1/4
sh = B _ _[ﬂ] fito” [%] 1)
D 4X Y )y_,
In addition, the shearing stress on the wavy surface is:
ry =124 22) @)
oy 0%y,

Since the local skin-friction coefficient C o is defined by:

2

C =—2 (23)
pU?

where U(=vGr'Y/? /L) is a characteristic velocity.

Substituting (22) into (23) in terms of the non-dimensional
quantities, we obtain:

B 1)(4ax )" 12 QU 24
Cf$_2[1+;][E] 1-o672% 24

Y ly-o

III. NUMERICAL METHOD AND VALIDATION

The numerical procedure used to solve the governing
equations (15)-(18) with the boundary conditions (19) is based
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on the fully implicit finite difference method. The central
difference approaches are used to approximate both of the first
and second derivatives. To illustrate the details of this method
let us take the heat equation treatment (17) as an example. The
finite difference form for this equation can be written as
follows:

O — O _ 1 i — 2007 + 60N m
= —4XU
AT Pr (AY)z i
9m+1 _ pm+l1 m+1 _ gm+1
1+1,k -1,k k1 Lk—1
X — (V[ = U[3Y, )= (25)
2AX ’ ’ 2°AY

This can be re-arranged as:

AOTT = AW + AOLTL + A0 + AT + A0 (20)

—2X. U} 2X. U
where 4| = L; A = ik, = ik
AT AX AX
- 1 Vi —UiY @7
3 - ’

Pr(aY)? 20Y
el VEURY L2

Pr(AY)? 20AY AT Pr(aY)

The successive under-relaxation (SUR) form for (26) can be
written as follows:

AT = AGT + AOITL + AT+ AT HAGRT + AL — oo,
(28)

In (25)-(28), 1,k denote the location and m refers to the

time step. The value of successive under-relaxation parameter
€ is considered to be equal 0.1. The grid size (60x40) is found
to be suitable, here and the time step A7 = 107 is considered
for all calculations. This procedure was found to be suitable
and gave results close to those obtained by Pullepu et al. [25].
As we can see from Table I, the present method compares
very well with Pullepu et al. [25].

IV. RESULTS AND DISCUSSION
The obtained numerical results are discussed in this section.
This physical phenomenon is investigated for a wide range of
the controlling parameter.
The ranges of these parameters are: the Casson parameter
(v =1,5,10,00) the  dimensionless time  parameter

(7 =0.05, 0.1, 0.5, 1.0 steady state), the buoyancy ratio
(N =0,2,4) and the amplitude-wavelength parameter
(a = 0.05,0.1,0.2 ) In all the obtained results, the air mixture

with various mass species is considered. Fig. 2 displays the
contours of the horizontal velocity components, isotherms and
isoconcentration for different values of the Casson parameter

Y at Pr=10.7,S¢c=13, N =2 and a=01 In fact the

present wavy surface can be described by the nodes of the
wavy surface which are at X = 0.5, 1.0, 1.5, 2.0 etc. and

X =0.75,1.75,2.75 and so on are the troughs, and
X = 0.25,1.25,2.25 are the crests. It is observed that, for the

low values of ~ the velocity component is represented by eight

circular cells formed at troughs and crests in the region
0<Y <10 and 0 < X < 4.0 while there are blanks appears

at the nodes of the wavy surface. In the remaining parts of the
surface, the velocity changes periodically during the X -axis.
On the other hand, the temperature and concentration profiles
change periodically inside the whole flow domain.

Fig. 2 Contours of U (left), @ (middle) and ¢ (right) at
Pr = 0.7, Sc = 1.3, N = 2, a = 0.1With 4 = 1,5,10, 00 (From top
to bottom)

An increase in the Casson parameter ~ causes a reduction

in the fluid motion. This is evident from the small stretch of
cells formed in the regiono <y <1.0 ando< X < 4.0.

Distributions of temperature and concentration have no
noticeable change during changing the values ofy. The

steady profiles of local skin-friction coefficient, local Nusselt
number and Sherwood number for different values of ~ at

X = 2.0, Pr = 0.7, Sc = 1.3 N = 2and a=0.1 are depicted in

Fig. 3. It is clear that, the increase in ~ leads to a decrease in

the skin friction coefficient. In addition, the reduction in
distributions of temperature and concentration, previously
referred because of the increased in ~ resulting in an increase
in temperature and concentration gradients, leading to
enhancement the heat and mass transfer rates.
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Fig. 3 Steady profiles of a) local skin-friction coefficient b) local
Nusselt number ¢) Sherwood number for different values of ~ at

X=2Pr=07 Sc=13,N=2, a=0.1

Fig. 4 shows the contours of y,gand ¢ for different

values of the dimensionless time parameter at pr = 0.7,

Sc=13,N=2~v=01 and «a=01. As expected, at
beginning of the simulation (7=0.05), a little natural
convection is obtained and the fluid motion is limited to the

regiong <Y < 0.8 and 0 < X < 4.0. Also, the contours of

temperature and concentration are confined in the region
0<Y <05 and 0< X <4.0. As the time procedure, the

natural convection increases and the contours of U start to
occupy the flow domain. It is worth noting, here, that the
steady state corresponds the value 7 =1.97. The isotherms
and isoconcentration distributions take the same behaviors of
U as r increases. Fig. 5 displays the profiles of local skin-
friction coefficient, local Nusselt number and the Sherwood

number for different values of ~ at pr = 0.7, Sc = 1.3, N = 2,

~=o01and a=01. It is noted that, the local skin friction

increases monotonically as ~ increases until take fixed values
at the steady. However, the local Nusselt number and
Sherwood number decrease clearly as - increases. In this
study, the buoyancy ratio parameter N is found to has
significant effects on the fluid motion, heat and mass transfer.
These effects are shown in Figs. 6 and 7. The referenced case
for these figures is pr = 0.7, Sc = 1.3, v = 1,and a =0.1.

u.
T 3% 4 b B+ | 18 I 2% 3 53 4

LY O B ]

Fig. 4 Contours of U (left), @ (middle) and ¢ (right) at
Pr=0.7,Sc =13 N =2 v=a = 0.1 with + =0.1,0.5,1.0
1.97 steady state) (From top to bottom)

An increase in the value of buoyancy ratio parameter N
leads to increase both of the velocity distribution and local
skin friction coefficient. On the other hand, the buoyancy ratio
has not any clear effect on the isotherms and isoconcentration
contours. But, the clear effects on the heat and mass
characteristics appear in the behaviors of local Nusselt and
Sherwood numbers. Fig. 7 shows that, there is considerable
support in the rates of heat and mass transfer rates by increase
the buoyancy ratio. There are interesting behaviors shown in
Figs.8 and 9. These figures display the effects of the
amplitude-wavelength parameter on the streamlines, isotherms
and isoconcentration contours when Pr=0.7, Sc = 1.3,

v = 0.5, N = 2. Again, the fluid flow represented by eight
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circular cells formed inside the region 0 <Yy < o0.8and
0 < X < 4.0, for the low values of « . Increasing in & causes

an increase in the extension of these cells until take an egg-
shape at o« = 0.2.
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Fig. 5 Profiles of (a) local skin-friction coefficient (b) local Nusselt
number (¢) Sherwood number for different values of 7 at

Pr=078c=13 N=2,vy=a=01

At the region 2.5 <Y < 3.0and 0 < X < 4.0, the fluid flow

takes a wave-like behavior which its amplitude increases as o
increases. Regarding the isotherms and isoconcentration, these
lines take the wave shape through the whole domain. The
increase in amplitude-wavelength parameter « results in an
increase in the amplitude of this shape. Fig. 9 displays the
steady profiles of local skin-friction coefficient for different

values of v atpr = 0.7, Sc =13, Y=L N =2 anda=0.1.

It observed that, the skin-friction coefficient has a minimum
value on the nodes (e.g.,Xx = 0.5, 1.0,1.5 2.0, etc.). An

increase in the parameter o leads to decrease the minimum
values of the local skin friction coefficient. However, the
maximum values of the local skin friction are the same for all
values of ¢ .

Fig. 6 Contours of U (left), @ (middle) and ¢ (right) at
Pr=07Sc=13N=2~v=1a=01with N =0,2,4

(From top to bottom)

V.CONCLUSIONS

The problem of unsteady natural convection heat and mass
transfer of non-Newtonian Casson fluid along a vertical wavy
surface was studied in this paper. The governing equations
were transformed to a dimensionless form using a suitable
transformation. The singularity at the leading edge was
removed by introducing the new independent and dependent
variables as functions in X and old variables. The resulting
system was solved numerically using the fully implicit finite
difference method. From this investigation, we can have
concluded that, the increase in the Casson parameter leads to
decrease the velocity and increases the maximum and
minimum values of the local Nusselt number and the local
Sherwood number. The behavior of the local skin friction
increases slightly as the bouncy ratio parameter increases. The
increase in the amplitude-wavelength parameter leads to
decrease the minimum values of the local skin friction
coefficient. However, the maximum values of the local skin
friction are the same for all values of the amplitude-
wavelength parameter.
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Fig. 8 Contours of U (left), @ (middle) and ¢ (right) at
Pr = 0.7, Sc = 1.3, N = 2, v = 0.5, a = 0.1 Witha = 0.05,0.1,0.2
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