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Abstract—This paper analyses the unsteady, two-dimensional 

stagnation point flow of an incompressible viscous fluid over a flat 
sheet when the flow is started impulsively from rest and at the same 
time, the sheet is suddenly stretched in its own plane with a velocity 
proportional to the distance from the stagnation point. The partial 
differential equations governing the laminar boundary layer forced 
convection flow are non-dimensionalised using semi-similar 
transformations and then solved numerically using an implicit finite-
difference scheme known as the Keller-box method. Results 
pertaining to the flow and heat transfer characteristics are computed 
for all dimensionless time, uniformly valid in the whole spatial region 
without any numerical difficulties. Analytical solutions are also 
obtained for both small and large times, respectively representing the 
initial unsteady and final steady state flow and heat transfer. 
Numerical results indicate that the velocity ratio parameter is found 
to have a significant effect on skin friction and heat transfer rate at 
the surface. Furthermore, it is exposed that there is a smooth 
transition from the initial unsteady state flow (small time solution) to 
the final steady state (large time solution). 

 
Keywords—Forced flow, Keller-box method, Stagnation point, 

Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio 
parameter. 

I. INTRODUCTION 

HE study of laminar flow and heat transfer due to a 
stretching surface has gained considerable interest 

because of its extensive applications in the field of engineering 
and technology. This type flows has been initiated by Sakiadis 
who, in his pioneering work [1], developed the flow field due 
to a flat surface which is moving with a constant velocity in a 
quiescent fluid. Due to the higher viscosity of the fluid near 
the sheet one can assume that the fluid is affected by the sheet 
but not vice versa. Thus the dynamic problem can be idealized 
to the case of a fluid disturbed by a tangentially moving 
boundary. The two-dimensional steady-state flow due to 
stretching of a sheet where the surface velocity is proportional 
to the distance from the orifice has been obtained by Crane [2] 
and, the same was experimentally confirmed by Vleggaar [3]. 
The steady-state solutions for the associated two-dimensional 
flows, belonging to an important class of exact solutions of the 
Navier-Stokes equations, were undertaken by Wang [4], Brady 
and Acrivos [5] and, Banks [6]. On the other hand, Pop and 
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Na [7] and Nazar et al. [8] have studied the time-dependent 
boundary layer flow due to an impulsively stretching surface 
while; Wang et al. [9] have considered the problem of 
unsteady two-dimensional boundary layer flow due to a 
suddenly stretched plane surface in a viscous fluid. Awang 
Kechil and Hashim [10] presented series solutions for 
unsteady boundary-layer flows due to impulsively stretched 
plate.  

Stagnation-point flow of an incompressible viscous fluid 
over a stretching flat sheet has important practical applications 
in engineering and manufacturing processes such as 
continuous casting, glass fibre production, metal extrusion, 
hot-rolling paper and wire drawing. Motivated by this, the 
present paper being different from the above-mentioned 
investigations, considers the problem of the two-dimensional 
laminar boundary layer flow of a viscous and incompressible 
fluid in the region of the stagnation point on a stretching sheet. 
The unsteadiness in the flow field is caused by impulsively 
creating motion in the free stream and at the same time sudden 
stretching the surface. The governing equations are 
transformed using semi-similar coordinates originated by 
Williams and Rhyne [11]. The boundary layer structure of the 
present problem is found to depend on the parameter λ which 
defines the ratio of the velocity of the stretching surface to that 
of the frictionless potential flow in the neighborhood of the 
stagnation point [10] and numerical solutions of the 
transformed boundary layer equation for a wide range of 
values of the parameter λ have been computed using Keller-
box method [12], [13], for the whole transient regime. The 
steady-state counterpart/s of the problem under consideration 
have been studied by Chaim [14] and, Mahapatra and Gupta 
[15]. Particular cases of the present results are compared with 
those of [10] and [15] and the agreement is very good. 

II. PROBLEM FORMULATION AND BASIC EQUATIONS 
Let us consider the unsteady, laminar incompressible flow 

of a viscous fluid near the stagnation point of a flat sheet 
coinciding with the plane 0=y , the flow being confined to

0>y . Prior to the time t = 0, the surface is at rest in an 
unbounded quiescent fluid with uniform temperature T∞. At 
time 0>t , the surface is suddenly stretched with the local 
tangential velocity bxuw =  ( b  is a positive constant) keeping 
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the origin fixed, as shown schematically in Fig. 1, where x is 
the coordinate measured along the stretching surface from the 
stagnation point O. 

 

 
Fig. 1 Physical model and coordinate system 

 
It is also assumed that for 0>t , the velocity distribution in 

the potential flow (free stream velocity), given by ax
e

u =  ( a
is a positive constant), starts impulsively in motion from rest. 
The impulsive change in the surface velocity gives rise to 
unsteadiness in the flow field. The stretching surface is 
maintained at constant temperature Tw and is assumed to be 
greater than ambient temperature T∞. . The fluid is assumed to 
have constant physical properties and viscous dissipation 
effects are neglected. Under the aforesaid assumptions, the 
boundary-layer equations based on conservation of mass, 
momentum and energy governing the unsteady, two-
dimensional stagnation point forced convection flow are: 
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subject to the initial and boundary conditions: 
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Here u and v  are velocity components along x and y - 

directions, respectively; T is the temperature; ν  and α denote, 
respectively, kinematic viscosity and thermal diffusivity and 
subscripts e, w, and ∞ denote the conditions at the edge of the 

boundary-layer, on the wall and in the free stream, 
respectively. 

To solve (1)-(3) for 0≥t , it is convenient to choose a new 
time scale ξ  so that the region of time integration may 
become finite. Accordingly, introducing the following 
transformations [11] 
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to (1)-(3), we find that (1) is identically satisfied and (2) and 
(3) reduce, respectively, to the system of non linear partial 
differential equations: 
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which must be solved over the range of ξ  ( )10 ≤≤ ξ , subject 
to the boundary conditions 
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Here ba /=λ  is a positive constant denoting velocity ratio 

parameter; η  and ξ  are the transformed dimensionless 

independent variables; *t is the dimensionless time; ψ  is the 
stream function; f is the dimensionless stream function; f ′  
is the dimensionless velocity; G is dimensionless temperature 
and Pr is the Prandtl number. The prime (‘) denotes derivatives 
with respect toη. 

The quantities of engineering interest are the skin friction 
coefficient (which indicates physically the surface shear 
stress) and heat transfer coefficient in the form of Nusselt 
number, which are defined as  
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and  
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where 

w
τ  is the wall shear stress and ( )ν2Re bxx =  is the 

local Reynolds number. 

III. ANALYTICAL SOLUTION 
Analytical (exact) solution of the problem under 

consideration can be obtained, by dividing the unsteady 
phenomena into ensuing two cases: 

1. Initial unsteady state flow ( 0=ξ ):    

When 0=ξ , which corresponds to 0* =t , (6) and (7) 
reduce to the set of ordinary differential equations viz.,  
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and corresponding boundary conditions (8) become 
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Equations (11) and (12) with boundary conditions (13) 

admit closed form (exact) solutions and they are given by: 
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is the complementary error function. 

Hence 
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2. Final steady state flow ( 1=ξ ):- 

When 1=ξ , which corresponds to +∞→*t , (6) and (7) 
reduce to the set of ordinary differential equations viz. 
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and boundary conditions (8) become 
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when .0=λ   

The exact solution of the system (17) and (18) with 
boundary conditions (19) is given by 
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when Pr = 1.0. 

IV. NUMERICAL METHOD 
The system of nonlinear partial differential equations (6) 

and (7) subject to boundary conditions (8) is solved 
numerically using an implicit finite-difference scheme known 
as Keller-box method, as described in [12], [13]. This method 
is unconditionally stable and has second order convergence 
property. To conserve the space, details of the entire solution 
procedure of Keller-box method used in the present study are 
not presented here. 

Numerical computations were carried out for different 
values velocity ratio parameter λ . The step size Δη in η-
direction and the position of the edge of the boundary layer η∞ 
have been adjusted to maintain the necessary accuracy. The 
values of Δη between 0.001 and 0.1 were used so that 
numerical solutions obtained are independent of Δη chosen, at 
least to four decimal places. However, a uniform grid Δη=0.01 
was found to be satisfactory for a convergence criterion of 10-5 
which gives accuracy to four decimal places. The boundary 
layer thickness η∞ between 6 and 10 was chosen where the 
infinity boundary-conditions are achieved.  

V. RESULTS AND DISCUSSION 
In order to validate the accuracy of the numerical method 

used, the computed values of ),0( ξf ′′  for the range 
10 ≤≤ ξ  obtained in this study taking Pr =1.0 have been 

compared in Table I, with those of Awang Kechil and Hashim 
[10], and with those Mahapatra and Gupta [15], in Table II. 
The comparisons revealed good agreement and therefore the 
code that was developed can be used with high confidence to 
study the problem discussed in this paper. 
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TABLE I 
COMPARISON OF (0, )f ξ′′  WITH THOSE OF AWANG KECHIL AND HASHIM 

[10] WHEN PR =1.0 AND 0.0=λ (INITIAL UNSTEADY FLOW) 
ξ Present Results Awang Kechil and Hashim [8] 

0.0 -0.564374 -0.5643740 
0.1 -0.6106120 -0.6150550 
0.3 -0.7115610 -0.7115696 
0.5 -0.8004117 -0.8018198 
0.7 -0.8873160 -0.8856581 
0.8 -0.9200550 -0.9252701 
0.9 -0.9623398 -0.9633761 
1.0 -1.0000000 -1.0000000 

 
TABLE II 

COMPARISON OF (0, )f ξ′′  FOR DIFFERENT VALUES OF λ  WHEN PR =1.0 

AND 0.1=ξ (FINAL STEADY STATE FLOW) WITH THOSE OF MAHAPATRA 

AND GUPTA [15] 
 ξ = 1.0 

λ  Present Results Mahapatra and Gupta [15] 

0.05 -0.9876 ----- 
0.10 -0.9694 -0.9694 
0.20 -0.9181 -0.9181 
0.50 -0.6673 -0.6673 
2.00 2.0176 2.0175 
3.00 4.7296 4.7293 
5.00 11.7537 ----- 

 

Fig. 2 displays the effect of the velocity ratio parameter λ
on the skin friction ])([ 2/1Re LfC  and heat transfer 

])([ 2/1Re −
LNu  coefficients in the entire regime of

)0.10( ≤≤ ξξ , taking Pr = 0.7 (air). It is observed that both 
2/1)(Re LfC and 2/1)(Re −

LNu  increase with the increase of 

λ  due to enhanced velocity and temperature gradient near the 
stretching surface and the effect of λ  seems to be more 
significant as ξ increases. In fact, the percentage increase in 

2/1)(Re LfC when λ  increases from 0.2=λ  to 0.3=λ  is 

259.22% while, it is about 972.30% for the increase of λ  
from 0.3=λ to 0.5=λ [See Fig. 2 (a)]. Similarly, in case of 

2/1)(Re −
LNu  the percentage increase is about 10.68% when 

λ increases from 0.2=λ  to 0.3=λ and it is 31.17% for the 
increase of λ  from 0.3=λ to 0.5=λ [See Fig. 2 (b)]. 
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Fig. 2 Effect of the velocity ratio parameter λ  on (a) skin friction 
and (b) heat transfer coefficients 

 

Also, it is observed that 2/1)(Re LfC  and 2/1)(Re −
LNu  

both strongly depending on ξ, [See (6) and (7)] are found to 
decrease rapidly in a small time interval ( )3.00 << ξ  after 
the start of the impulsive motion and reach the steady state 
near 7.0≅ξ . Furthermore, the steady state solutions at 

0.1=ξ  for different values of λ , substantiate the fact that 
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the transition from the initial unsteady state flow ( )0.0=ξ  to 

the final steady state flow ( )0.1=ξ  takes place smoothly and, 
without any singularity.    

The corresponding velocity [ ),( ηξf ′ ] and temperature [
),( ηξG ] profiles at 5.0=ξ , depicted in Fig. 3 for 0>λ , 

reveal that the flow has a boundary layer structure satisfying 
the boundary conditions, asymptotically. It is evident in these 
figures that momentum and thermal boundary layer 
thicknesses decrease with the increase in λ  and, momentum 
boundary layer is relatively thicker than the thermal boundary 
layer. This is due to the fact that for a fixed value of b , 
corresponding to the stretching of the surface, increase in a  in 
relation to b [such that ( ) 1>= baλ ] implies increase in 
straining motion near the stagnation region resulting in 
increased acceleration of the external stream, which leads to 
the thinning of the boundary layer thickness, with the increase 
in λ . Further, when 1<λ , the flow field has an inverted 
boundary layer structure. It is a consequence from the fact that 
when 1<λ , the stretching velocity bx  of the surface exceeds 
velocity ax  of the external free stream.  

IV. CONCLUSIONS 
Unsteady boundary-layer flow of a viscous fluid in the 

stagnation region on a stretching flat sheet has been analyzed 
in the present study, where the unsteadiness is caused by the 
impulsively motion of the free steam velocity and by the 
suddenly stretched flat surface. The boundary layer structure 
of the present problem is found to depend on the parameter 
which delineates the ratio of the velocity of the stretching 
surface to that of the frictionless potential flow in the 
neighborhood of the stagnation point. Numerical results are 
obtained for all dimensionless time, uniformly valid in the 
whole spatial region without any numerical difficulties using 
Keller-box method. The variations of skin friction and heat 
transfer coefficients with the velocity ratio parameter are 
obtained and discussed. Analytical solutions are also obtained 
for both small and large times, respectively representing the 
initial unsteady and final steady state flow and heat transfer. A 
considerable advantage was found with the use of a 
transformed finite time scale in solving the governing partial 
differential equations, and it has been established that there is 
a smooth transition from the small time solution to the large 
time solution.  
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