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Abstract—Unsteady boundary layer flow of an incompressible 

micropolar fluid over a stretching sheet when the sheet is stretched in 
its own plane is studied in this paper. The stretching velocity is 
assumed to vary linearly with the distance along the sheet. Two equal 
and opposite forces are impulsively applied along the x-axis so that the 
sheet is stretched, keeping the origin fixed in a micropolar fluid. The 
transformed unsteady boundary layer equations are solved 
numerically using the Keller-box method for the whole transient from 
the initial state to final steady-state flow. Numerical results are 
obtained for the velocity and microrotation distributions as well as the 
skin friction coefficient for various values of the material parameter K. 
It is found that there is a smooth transition from the small-time 
solution to the large-time solution. 

 
Keywords—Boundary layer, micropolar fluid, stretching surface, 

unsteady flow. 

I. INTRODUCTION 
HE fluid dynamics over a stretching surface is important in 
many practical applications such as extrusion of plastic 

sheets, paper production, glass blowing, metal spinning and 
drawing plastic films, to name just a few. The quality of the 
final product depends on the rate of heat transfer at the 
stretching surface. Since the pioneering study by Crane [1] who 
presented an exact analytical solution for the steady 
two-dimensional stretching of a surface in a quiescent fluid, 
many authors have considered various aspects of this problem 
and obtained similarity solutions. Many authors presented 
some mathematical results, and a good amount of references 
can be found in the papers by Magyari and Keller [2, 3], Liao 
and Pop [4], and Nazar et al. [5]. The studies carried out in 
these papers deal only with steady-state flow, but the flow and 
thermal fields may be unsteady due to either impulsive 
stretching of the surface or external stream and sudden change 
in the surface temperature. Kumari et al. [6] studied the 
unsteady free convection flow over a continuous moving 
vertical surface in an ambient fluid, and Ishak et al. [7] 
investigated theoretically the unsteady mixed convection 
boundary layer flow and heat transfer due to a stretching 
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vertical surface in a quiescent viscous and incompressible fluid. 
Further, Pop and Na [8] and Wang et al. [9] deal with the 
unsteady boundary layer flow due to impulsive starting from 
rest of a stretching sheet in a viscous fluid. 

On the other hand, it is well known that the theory of 
micropolar fluids has generated a lot of interest and many flow 
problems have been studied. The theory of micropolar fluids, 
which display the effects of local rotary inertia and couple 
stresses, can explain the flow behavior in which the classical 
Newtonian fluids theory is inadequate. Since introduced by 
Eringen [10,11], several researchers have considered various 
stretching problems in micropolar fluids including the present 
authors (see Ishak et al. [12,13]). Motivated by the 
above-mentioned investigations and applications, in this 
present paper, we investigate the behavior of the boundary 
layer flow of an incompressible micropolar fluid over a 
stretching sheet when the sheet is stretched in its own plane. 
The stretching velocity is assumed to vary linearly with the 
distance along the sheet. The transformed governing parabolic 
partial differential equations in two variables are solved 
numerically using the Keller-box method for some values of 
the physically governing parameters. 

II. PROBLEM FORMULATION AND BASIC EQUATIONS 
  Consider the flow of an incompressible micropolar fluid in 

the region 0y >  driven by a plane surface located at 0y =  
with a fixed end at 0x = . It is assumed that the surface is 
stretched in the x-direction such that the x-component of the 
velocity varies linearly along it, i.e. ( )wu x cx= , where c  is an 
arbitrary constant and 0c > . The simplified two-dimensional 
equations governing the flow in the boundary layer of a steady, 
laminar and incompressible micropolar fluid are 
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subject to the initial and boundary conditions 
 

0t ≤ :  0u v N= = = , for any x , y , 
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0t > :  0v = , ( )wu u x cx= = , 
u

N n
y

∂
= −

∂
,  at 0y = ,     (4) 

0u →  , 0N → ,  as y → ∞ , 
 
where u  and v  are the velocity components along the x- and 
y-axes, respectively, t  is time, N  is the microrotation or 
angular velocity whose direction of rotation is in the x y−  
plane, μ  is dynamic viscosity, ρ  is density, j  is microinertia 
per unit mass, γ  is spin gradient viscosity and κ  is vortex 
viscosity. Further, n is a constant and 0 1n≤ ≤ . The case 

0n = , which indicates 0N =  at the wall represents 
concentrated particle flows in which the microelements close to 
the wall surface are unable to rotate. This case is also known as 
the strong concentration of microelements. The case 1/2n=  
indicates the vanishing of anti-symmetric part of the stress 
tensor and denotes weak concentration of microelements. The 
case 1n =  is used for the modeling of turbulent boundary layer 
flows. We shall consider here both cases of 0n =  and 1/2n= . 

  We introduce the new variables  
 

( ) ( )1/ 2 1/ 2 ,c xfψ ν ξ ξ η= , ( ) ( )1/ 2 1/ 2/ ,N c cxgν ξ ξ η−= ,   

( )1/ 2 1/ 2/c yη ν ξ −= , 1 e τξ −= − , ctτ = ,          (5) 
 
where ψ  is the stream function defined in the usual way as 

/u yψ= ∂ ∂ and /v xψ= −∂ ∂ , and identically satisfy (1). 
Substituting variables (5) into (2) and (3) gives 
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where /K κ μ=  is the material parameter. Here γ  and j  are 

assumed to be given by ( ) ( )/ 2 1 / 2j K jγ μ κ μ= + = +  and 
/j cν= , respectively. The boundary conditions (4) become 

 
( ), 0 0f ξ = , ( ), 0 1f ξ′ = , ( ) ( ), 0 , 0g nfξ ξ′′= − ,  

( ), 0f ξ′ ∞ = , ( ), 0g ξ ∞ = .               (8) 
 
The physical quantity of interest in this problem is the skin 

friction coefficient fC , which is defined as 
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where wτ  is the skin friction, given by 
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Using variables (5) in (9) and (10), we obtain 
 

( )[ ] ( )1/ 2 1/ 2Re 1 1 , 0f xC n K fξ ξ− ′′= + − .        (11) 

 
Further, we can obtain some particular cases of this problem. 

A.  Early Unsteady Flow  
For early unsteady flow 0 1τ< << , we have 0ξ ≈ , so (6) 

and (7) reduce in the leading order approximation to 
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and the boundary conditions (8) become 
 

( )0 0f = , ( )0 1f ′ = , ( ) ( )0 0g nf ′′= − ,  

( ) 0f ′ ∞ = , ( ) 0g ∞ = .               (14) 

B.  Final Steady-State Flow  
For this case, 1ξ =  and (6) and (7) take the following forms: 
 

( ) 21 0K f ff f Kg′′′ ′′ ′ ′+ + − + =             (15) 

( ) ( )1 2 0
2

K
g fg f g K g f+ ′′ ′ ′ ′′+ − − + =          (16) 

subject to the boundary conditions (14). 

III. RESULTS AND DISCUSSION 
The transformed equations (6) and (7), satisfying the 

boundary conditions (8) were solved numerically using the 
Keller box-method as described in the book by Cebeci and 
Bradshaw [14] for several values of the material parameter K . 
Numerical results for the skin friction coefficient, the velocity 
distributions and the microrotation distributions are illustrated 
in Fig. 1, Figs. 2-5 and Figs. 6-9, respectively, whereas the 
values of the skin friction coefficient for the final steady-state 
flow are tabulated in Table I.  

TABLE I 

VALUES OF THE SKIN FRICTION COEFFICIENT 
1/ 2Ref xC  FOR VARIOUS 

VALUES OF K AND n WHEN 1ξ =   
\K n  0 ½  

0 -1.0000 -1.0000 
1 -1.3679 -1.2247 
2 -1.6213 -1.4142 
4 -2.0042 -1.7321 

 
 Table I presents the values of the skin friction coefficient 

1/ 2Ref xC  when 1ξ =  (final steady-state flow) for various 
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values of K  and n . It can be seen that the values are negatives 
for all values of K  and n  considered in this study. The values 
of 1/ 2Ref xC  are negatives and increase as n  increases which 

means that the absolute values of 1/ 2Ref xC  decrease with n . 

This is not surprising since 0n =  represents strong 
concentration and 1/ 2n =  represents weak concentration of 
microelements. Also, it can be observed that 1/ 2Ref xC  

decreases with K  for both cases of 0n =  and 1/ 2n = . 
  

 
Fig. 1 Variation with ξ  of the skin friction coefficient for various K  

 
Fig. 1 represents the variation of the skin friction coefficient 

1/ 2Ref xC  with ξ . It is noticed that for any fixed n , the values 

of 1/ 2Ref xC  decrease as K  increases. It is also found that 

smaller n  produces smaller 1/ 2Ref xC . The final steady-state 

solution ( )1ξ =  obtained by solving (15) and (16) are also 
included in Fig. 1. We notice that there is a very good 
agreement between the results when we solved the full 
unsteady boundary layer equations and the final steady-state 
equations. It is noticed that due to the impulsive motion, the 
skin friction coefficient has large magnitude (absolute value) 
for small time ( 0τ ≈  or 0ξ ≈ ) after the start of the motion, 
and it decreases monotonically and reaches the steady-state 
values at 1ξ =  ( )τ → ∞ . There is, therefore, a smooth 
transition from the small-time solution to the large-time 
solution. 

Figs. 2 and 3 show the resulting dimensionless velocity 
profiles for various values of K  with 0n =  and 1/ 2n = . Fig. 
2 represents the velocity profiles of initial flow ( )0ξ =  and 

early unsteady flow ( )0 1ξ< << , while Fig. 3 shows the 

velocity profiles of final steady-state flow ( )1ξ = . 

 
Fig. 2 Velocity distribution of initial flow ( )0ξ =  and early unsteady 

flow ( )0 1ξ< <<  for various K  with 0n =  and 1 / 2n =  
 

Both figures show that the velocity boundary layer thickness 
increases with increasing values of K , for both cases of 0n =  
and 1/ 2n = . For a particular value of K , the velocity 
decreases monotonically with η , and becomes zero at the 
outside of the boundary layer. This property satisfies the 
boundary condition ( ) 0f ′ ∞ = . Therefore, these figures 
support the validity of the present results. In Fig. 2, the initial 
state ( )0ξ =  is described by the thick lines on the axes. This 
rectangular profile is quasi; the “mother” of all the later 
unsteady profiles. 
 

 
Fig. 3 Velocity distribution of final steady-state flow ( )1ξ =  for 

various K  
 

Figs. 4 and 5 represent the velocity profiles of fully 
developed unsteady flow and final steady-state flow for the 
cases 0n =  and 1/ 2n = , respectively. These figures show 
that the velocity profiles corresponding to increasing of ξ  

( )0 1ξ< <  approach the steady profile corresponding to 
1ξ = . It can be seen that there is a smooth transition from 

small time solution ( )0ξ ≈  to large time solution ( )1ξ = . 
Again, it is observed that the velocity decreases monotonically 
with η , and becomes zero far away from the surface, which 
satisfies the boundary conditions (8). 
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Fig. 4 Velocity distribution of fully developed unsteady flow for 

various K  when 0n =  
 

 
Fig. 5 Velocity distribution of fully developed unsteady flow for 

various K  when 1 / 2n =  
 

 
Fig. 6 Microrotation distribution of early unsteady flow ( )0 1ξ< <<  

for various K  with 0n =  and 1 / 2n =  
 

The microrotation distributions are shown in Figs. 6-9. Fig. 6 
shows the microrotation distribution of early unsteady flow 
( )0 1ξ< <<  for various values of the material parameter K  
with 0n =  and 1/ 2n = . 

 
Fig. 7  Microrotation distribution of final steady-state flow ( )1ξ =  

for various K  
 

When 0n =  i.e. the no-spin condition case, for early 
unsteady flow (Fig. 6), it is found that the value of ( )g η  
remains constant, namely zero for all values of the material 
parameter K , whereas for final steady-state flow, the 
microrotation shows a parabolic distribution as shown in Fig. 7. 
When 1/ 2n = , it is observed from both Figs. 6 and 7 that the 
microrotation continuously decreases with η  and becomes 
zero far away from the plate, which satisfies boundary 
conditions (14). As expected, the microrotation effect is more 
dominant near the wall. Also, the microrotation decreases as 
K  increases in the vicinity of the plate but the reverse happens 
as one moves away from it. It is clear from these figures that the 
microrotation effects are more pronounced for 1/ 2n =  in 
comparison to those of 0n = . 

 
Fig. 8 Microrotation distribution of fully developed unsteady flow for 

0n =  and 1K =  
 

Figs. 8 and 9 represent the microrotation distribution of fully 
developed unsteady flow when 1K = , for 0n =  and 

1/ 2n = , respectively. From these figures, it is observed that 
the microrotation profile for 0n =  is different as compared to 

1/ 2n = . Corresponding to 0n = , it has a parabolic 
distribution whereas for 1/ 2n = , it is continuously 
decreasing. It is evident from these figures that, there is a 
smooth transition from small time solution ( )0ξ ≈  to large 

time solution ( )1ξ = . 
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Fig. 9  Microrotation distribution of fully developed unsteady flow for 

1 / 2n =  and 1K =  
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