
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1794

Abstract—Total weighted tardiness is a measure of customer

satisfaction. Minimizing it represents satisfying the general
requirement of on-time delivery. In this research, we consider an ant
colony optimization (ACO) algorithm to solve the problem of
scheduling unrelated parallel machines to minimize total weighted
tardiness. The problem is NP-hard in the strong sense. Computational
results show that the proposed ACO algorithm is giving promising
results compared to other existing algorithms.

Keywords—ant colony optimization, total weighted tardiness,
unrelated parallel machines.

I. INTRODUCTION
ARALLEL machine scheduling problems have been
studied by many researchers ([6]–[7]–[25]) in recent years.

Parallel machine scheduling problems are important because
most real world manufacturing workgroups have more than one
machine. Parallel machine algorithms can be reduced for the
single machine problems and also many job shop algorithms,
such as shifting bottleneck heuristics, also called parallel
machine algorithms. Though there is extensive literature on
parallel machine scheduling problems, most of it is limited to
situations in which the processing times or speed rates are the
same across all machines. When machines are not identical to
one another and cannot be completely correlated by simple rate
adjustments, they are said to be unrelated parallel machines.
Based on the complex hierarchy of deterministic scheduling
([7]–[25]) among the traditional classification of parallel
machine environments, unrelated parallel machines are some of
the most difficult problems to solve.

This research considers the problem of scheduling unrelated
parallel machines to minimize total weighted tardiness (TWT).
TWT is defined as jjTw∑ , where ,0)(= jjj dCmaxT − , jw

is the weight of job j and jd is the due date of job j. TWT is a

measure of customer satisfaction. Minimizing it represents
satisfying the general requirement of on-time delivery.

Y. K. Lin is with the Department of Industrial Engineering and Systems

Management, Feng Chia University, Taichung, Taiwan (e-mail:
yklin@mail.fcu.edu.tw).

H. T. Hsieh was with the Department of Industrial Engineering and Systems
Management, Feng Chia University, Taichung, Taiwan (e-mail:
m9803065@mail.fcu.edu.tw).

F. Y. Hsieh is with the Department of Industrial Engineering and Systems
Management, Feng Chia University, Taichung, Taiwan (e-mail:
m9902937@mail.fcu.edu.tw).

Following the three-field notation of [12], we refer to this

problem as jjTwR ∑|| . The problem is NP-hard in the strong
sense, since its special case with m = 1 is already NP-hard in the
strong sense ([15]). Research related to scheduling parallel
machines to minimize total weighted tardiness is limited. Based
on shortest processing time (SPT) and earliest due date (EDD)
principles, [22] proposed a heuristic (PSK) to minimize the
mean tardiness for the single-machine sequencing problem (

jT||1). [14] proposed a heuristic (KPM) for the jT||P
problem, based on extending the PSK heuristic from the
single-machine tardiness problem to a parallel-machine setting.
[1] presented a modified due date (MDD) algorithm for the

jjTw||P problem. [8] developed a heuristic algorithm based
on tabu search to solve the problem of simultaneously selecting
and scheduling parallel machines to minimize the sum of
machine holding cost and job tardiness cost. [27] solved the

jT||P problem using a branch-and-bound algorithm, and [5]

proposed several efficient heuristic algorithms for the jT||P
problem. According to [23], most unrelated parallel machine
scheduling problems are NP-hard. [23] presented a survey of
algorithms for single- and multi-objective unrelated parallel
machine deterministic scheduling problems but indicated that
unrelated parallel machine problems remain relatively
unstudied. In particular, the study noted that there are a few
solution approaches to minimize due-date-related criteria. [17]
solved the ∑ jjTw||R problem using a branch-and-bound
algorithm that can solve a problem size up to 4 machines and 18
jobs. The Apparent Tardiness Cost (ATC) rule proposed by
[29], originally designed for the ∑ jjTw||1 problem, can be

used to solve the ∑ jjTw||R problem heuristically. [18]

modified the ATC rule so that it can solve the ∑ jjTw||R

problem. They proposed a heuristic, ATC-I, for the ∑ jjTw||R
problem. Computational results show that the study’s proposed
ATC-I outperformed other existing heuristics (MDD, KPM,
and ATC).

ACO is a constructive meta-heuristic that has been used to
solve scheduling problems in recent years. [2] used an ACO
algorithm to solve the single machine total tardiness problem
(∑ jT||1). [4] proposed an ACO algorithm that incorporates
local search for the single machine total weighted tardiness
problem (∑ jjTw||1).

Y. K. Lin, H. T. Hsieh, F. Y. Hsieh

Unrelated Parallel Machines Scheduling
Problem Using an Ant Colony Optimization

Approach

P

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1795

[19] proposed an ACO algorithm that uses global pheromone
information instead of using only local pheromone information
for the ∑ jjTw||1 problem. Similarly, [30] presented an ACO

algorithm for the ∑ jjTw||1 problem that can effectively
improve the robustness of various simple constructive
heuristics. Moreover, [13] proposed a fast ACO algorithm for
the ∑ jjTw||1 problem. [16] used an ACO algorithm for
scheduling single machine tardiness problems with
sequence-dependent setups (∑ jjij Tw|s|1). [26] used an ACO
algorithm to minimize makespan for identical parallel
machines with sequence-dependent setup problems (

maxij C|s|P). [31] and [20] both studied scheduling unrelated
parallel machines to minimize total weighted tardiness using an
ACO algorithm (∑ jjTw||R). [28] suggested an ACO
algorithm to solve scheduling identical parallel machines to
minimize total weighted tardiness (∑ jjTw||P). [21] used an
ACO algorithm for scheduling jobs with incompatible families
on parallel batch machines (∑ jjTw|leincompatibbatch,-p|P
). [3] studied parallel machine scheduling problems with
sequence-dependent setup times to minimize makespan (

maxjk C|s|P) using an ACO, a simulated annealing (SA), and a
variable neighborhood search (VNS) hybrid algorithm.

In this research, we present an ACO algorithm for the
∑ jjTw||R problem.

II. APPLICATION OF ACO ALGORITHM
ACO ([9]–[10]–[11]) is a meta-heuristic for solving hard

combinatorial optimization problems. It is inspired by the
pheromone trail laying and following behavior of real ants,
which uses pheromones as a communication medium. In a
double bridge experiment conducted on ants, the result showed
that after an initial transitory phase in which some oscillations
can appear, eventually most of the ants choose the shortest path.
The ACO algorithm imitates this optimization capability of
selecting the shortest path from the ant colony system. The
ACO algorithm is based on indirect communication within a
colony of simple agents, called (artificial) ants, mediated by
(artificial) pheromone trails.

The (artificial) ants in the ACO algorithm implement a
randomized construction heuristic that probabilistically selects
the solution components of the problem based on the
pheromone trail and possibly available heuristic information,
which is based on the input data of the problem to be solved.
The (artificial) pheromone trails in the ACO algorithm serve as
distributed, numerical information for the ants to
probabilistically construct solutions to the problem being
solved and to reflect their search experience. In this research,
we apply the ACO algorithm to solve the problem of
scheduling unrelated parallel machines to minimize total
weighted tardiness. The following notation is used to define the
problems.

m The number of machines
n The number of jobs
U The set of unscheduled jobs

 pij The processing time of job j on machine i

 wj The weight of job j

 d j The due date of job j

 ti Makespan of the scheduled jobs on machine i

(t)τij Pheromone trail intensity of assigning job j on machine i in
iteration t

ijη The heuristic desirability of assigning job j on machine i

α Relative influence of pheromone information

β Relative influence of heuristic information

localρ Local pheromone evaporation rate (1ρ0 local <<)

globalρ Global pheromone evaporation rate (1ρ0 global <<)

m0q The user-specified number such that 1q0 m0 ≤≤

j0q The user-specified number such that 1q0 j0 ≤≤

ANTS

The number of ants in each ant colony

ITER Total number of iterations to be run

The ACO algorithm
Step 1: Initialization. Set ACO parameters α , β , localρ , globalρ ,

m0q , j0q , ITER, ANTS. Initialize, ∞=*TWT , iter=1,

ants=1, n}{1,..., U = , m1,2,...,i ,0ti == .
Step 2: Machine selection. Let mq be the random number

generated from the uniform distribution [0,1] and m0q be
the user-specified number such that 1q0 m0 ≤≤ . Select the
machine *i from the following equation,

⎩
⎨
⎧ ≤

= ≤≤

 otherwise I,
qq if ,t min

i m0mi* mi1 where I is a probability

distribution with
1/t

1/tP m

1p
p

i
i

∑
=

=

, m1,2,...,i = .

Step 3: Job selection. Let jq be the random number
generated from the uniform distribution [0,1] and j0q
be the user-specified number such that 1q0 j0 ≤≤ .
Select the job *j from the following equation,

⎪⎩

⎪
⎨
⎧ ≤∈⋅

=
 otherwise ,J

qq if Uj },η(t)max{τ arg
j j0j

β
j*i

α
j*i*

 where

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1796

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
−

*i

*ij*ijj

j*i

j
j*i pK

),tpmax(d w
exp

p
w

=η
0

 (1)

, and J is a probability distribution with

⎪
⎪
⎩

⎪
⎪
⎨

⎧
∈

∑ ⋅

⋅

=
∈

 otherwise ,

Uj if ,
η(t)τ

η(t)τ

P
Ul

β
l*i

α
l*i

β
j*i

α
j*i

j*i

0

.

Step 4: Machine re-selection. For job *j , find machine **i

such that *j**i
p =min { }mi0,1dpt|p *j*iji*ij

≤≤≤−+ .

If **i cannot be found from the above equation, conclude
that there is no job that can be assigned without being
tardy, then calculate **i from arg=i **

)dp(tmin *j*ijimi1 −+≤≤
.

Step 5: Assign job *j on machine **i . Set *j\UU = and
******* jiii ptt += . Update local pheromone for the

selected machine **i and job *j as

0local*j**ilocal*j**i
τρ(t))τρ(1(t)τ +−= where

)TWT/(ANTSτ I-ATC⋅=10 , I-ATCTWT is the ATC-I
([18]) objective value.

Step 6: Repeat Steps 2-5 until all jobs are scheduled.
Step 7: Apply local search procedure to improve the given

schedule.
Step 8: Find current TWT for the current solution. If

TWTTWT < , then TWTTWT = . Update ants=ants+1.
If ANTSants ≤ , set n}{1,..., U = and m1,2,...,i ,0ti ==
and go to Step 2. If ANTSants > , go to Step 9.

Step 9: Update the global pheromone of the best solution
found in the current iteration as

(t)Δτρ(t))τρ(11)(tτ ijglobalijglobalij +−=+ , where
*

ij 1/TWT(t)Δτ = and *TWT is the best TWT value up
to the current iteration. Set iter=iter+1. If ITERiter ≤ ,
then set ants=1, n}{1,..., U = and m1,2,...,i ,0ti ==
and go to Step2. If iter> ITER, go to Step 10.

Step 10: Terminate the ACO algorithm.

In Step 2, when m0m qq ≤ , an ant selects the first available

machine *i that leads to the smallest makespan among the
parallel machines (i.e,. imi1*i

tmin=t ≤≤). When m0m qq > ,

then an ant randomly selects machine I from the probability
distribution formed by the probabilities Pi .

In Step 3, once machine *i is selected, the next decision of
an ant is to select the job. Job selection considers both the
heuristic information (

j*i
η) and pheromone trails ((t)τ

j*i
).

(t)τ
j*i

 is the pheromone trail associated with the assignment of

job j to machine *i . The parameter t is used for the current
iteration of the ACO algorithm.

j*i
η is the heuristic desirability

of assigning job j to the selected machine *i .
j*i

η is a

modification of ATC index defined by Eq.(1). More precisely,
we add jw into the exponential term of the original ATC index.
K is a scaling parameter that can be determined empirically, and

/np=p
j*i

n
1=j*i

∑ is the average job processing time of machine

*i . Hence, if K is very small, Eq. (1) reduces to the weighted
minimal slack rule, (i.e., ,0)tpmax(d w *ij*ijj −−), when

there are no overdue jobs and otherwise to the weighted
shortest processing time (WSPT) first rule for the overdue jobs.

Parameters α and β determine the relative influence of the
pheromone trails and the heuristic information. When j0j qq ≤ ,

an ant selects the job *j that maximizes the value of

}η(t){τ β
j*i

α
j*i

⋅ . When j0j qq > , then an ant randomly selects

job J from the probability distribution formed by the
probabilities

j*i
P .

In Step 4, the ACO algorithm applies a greedy rule to find the
fastest machine, **i , from among the machines to which job

*j can be assigned without being tardy. If job *j would be
tardy on all machines, the ACO algorithm would choose the
machine that would lead to the minimum total tardiness.

In Step 5, the ACO algorithm applies local pheromone
updating. The intention of the pheromone update is to make
solution components belonging to good solutions more
desirable for ants operating in the following iterations.

In Step 7, the ACO algorithm uses local searches to further
improve the schedule obtained so far. [3] introduced three local
searches for the maxjk C|S|P problem: (1) LS1. Job swaps on
one machine: randomly choose a machine i, and then randomly
choose two jobs, j1 and j2 from machine i. Swap jobs j1 and j2.
(2) LS2. Job swaps on different machines: randomly choose
two machines i1 and i2, and then randomly choose two jobs, j1
from machine i1 and j2 from machine i2. Swap jobs j1 and j2. (3)
LS3. Job insertion: randomly choose one job j1 and one
machine i2, where j1 does not belong to i2. Randomly choose a
valid position r in i2. Transfer job j1 to i2 at position r. In our
ACO algorithm, we always try to use LS1 first. If after LS1, no
improvement is made, then another local search is used (l is
incremented), and every time a new solution is found, the first
local search is used (l=1).

In Step 9, global pheromone updating is applied. Global
pheromone updating is intended to provide a greater amount of
pheromone to the schedule with the best performance.
Therefore, only the ant that found the best schedule up to the
current iteration is permitted to deposit pheromone.

III. COMPUTATIONAL RESULTS
In this section, we present several computational results on

the performance of the proposed ACO algorithm. The ACO

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1797

algorithm was implemented in C++ and run on a computer with
2.5 GHz Pentium(R) Dual-Core CPU and 2G RAM. Processing
times were generated from the uniform distribution [1,100].
The value of jw for each j was chosen randomly from the
uniform distribution [1,10]. Due dates were generated from the
uniform distribution [R/2)TP(1R/2),TP(1 +−−−], where

2
ij

n
1=j

m
1=i /mp=P ∑∑ , T is the average tardiness factor, and R is

the relative range of due dates, as was done in [24]. We study
cases with tight due dates since it is more challenging. Hence,
due dates factor T was set to 0.8, and R was set to 0.4 and 0.8.
We also used 4 machines with 20 jobs (4m20n) to represent
small problem instances and used 10 machines with 100 jobs (
10m100n) to represent large problem instances. For each
combination of due date tightness and problem instance size, 20
problem instances were randomly generated. According to our
extensive computational experimentation, ACO
algorithm-related parameters were set to α =1, β =3, localρ
=0.01, globalρ =0.01, m0q =0.9, j0q =0.9, ANTS =20, and
ITER=250.

A. Comparison of algorithms
[28] proposed an ACO algorithm (named ACO-SV) for the

∑ jjTw||P problem. Lin et al. (2011) proposed a genetic

algorithm (GA) for the ∑ jjTw||R problem. We compare the
proposed ACO algorithm with these two existing algorithms.
The two algorithms ACO-SV and GA have been
re-implemented in our work. For the small problem instances,
we compare the average relative percentage deviations from the
optimal solution obtained from the branch-and-bound
algorithm proposed by [17] to the number of instances solved to
optimal solution. For the large problem instances we compare
the average relative percentage deviations from our proposed
ACO algorithm and the number of instances solved to best
heuristic solution. For each problem instance, K value for AU
index in the ACO-SV algorithm and Eq. (1) in our proposed
ACO algorithm was set to 0.6. Table 1 gives computational
results for small problem instances, which show that the ACO
algorithm outperformed the ACO-SV algorithm and the GA in
terms of total weighted tardiness and number of instances
solved to optimal solution.

TABLE I

THE PERFORMANCE OF THE ACO ALGORITHM (4M20N)
 T=0.8, R=0.4 T=0.8, R=0.8

Instances Opt. ACO ACO-SV GA Opt. ACO ACO-SV GA
1 1118 1118 1287 1118 1336 1336 1530 1342
2 590 590 725 591 1398 1398 1547 1408
3 568 568 724 632 925 925 1203 968
4 1045 1045 1123 1060 690 690 824 770
5 2689 2689 2853 2751 2801 2801 2828 2801
6 927 927 999 987 258 258 356 258
7 1557 1557 1776 1665 855 855 1282 858
8 863 863 928 880 357 357 387 357
9 1188 1188 1243 1188 373 373 493 373
10 693 693 938 738 593 596 641 645
11 459 459 656 538 1428 1428 1675 1435
12 796 796 955 849 788 788 984 911
13 489 492 643 642 1437 1437 1645 1437
14 1468 1468 1706 1497 1679 1679 1786 1679
15 127 127 272 140 1023 1023 1332 1055
16 1528 1528 1593 1582 539 539 677 545
17 1375 1375 1730 1495 391 391 485 391
18 947 947 1118 970 479 479 595 511
19 433 433 596 451 1840 1842 2168 1879
20 624 624 754 650 457 457 522 457

Average 974.20 974.35 1130.95 1021.20 982.35 982.60 1148.00 1004.00
(Algo.-opt.)/opt. - 0.0002 0.1609 0.0482 - 0.0003 0.1686 0.0220

Num. of opt. found - 19 0 2 - 18 0 8

When the due dates were very tight (0.4=R0.8,=T), the
ACO algorithm deviated 0.02% from the optimal solution, the
ACO-SV algorithm deviated 16.09% from the optimal solution,
and the GA deviated 3.51% from the optimal solution.
Moreover, out of 20 problem instances, the ACO algorithm
solved 19 problem instances to optimal solution, the ACO-SV
solved 0 problem instances to optimal solution, and the GA
solved 2 problem instances to optimal solution. When the due
dates were tight (0.8=R0.8,=T), the ACO algorithm deviated
0.03% from the optimal solution, the ACO-SV algorithm
deviated 16.86% from the optimal solution, and the GA

deviated 2.2% from the optimal solution. Moreover, out of 20
problem instances, the ACO algorithm solved 18 problem
instances to optimal solution, the ACO-SV solved 0 problem
instances to optimal solution, and the GA solved 8 problem
instances to optimal solution.

For large problem instances, we compared the average
relative percentage deviations from our proposed ACO
algorithm and the number of instances solved to best heuristic
solution. The results from this experimentation are given in
Table 2; they show that the proposed ACO algorithm
outperformed other existing algorithms.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1798

TABLE II
THE PERFORMANCE OF THE ACO ALGORITHM (10M100N)

 T=0.8, R=0.4 T=0.8, R=0.8
Instances ACO ACO-SV GA ACO ACO-SV GA

1 49 501 84 2673 3322 2743
2 521 899 581 3040 3296 3180
3 264 1338 388 2833 3586 2980
4 414 936 698 1406 1667 1415
5 392 1581 592 2652 3232 2851
6 281 537 285 2315 2807 2509
7 116 641 191 2994 3314 3214
8 159 654 173 1674 2109 1753
9 486 933 523 1810 2021 1899
10 682 1077 708 3578 4079 3808
11 455 1177 477 1534 2049 1620
12 327 971 409 1865 2208 2093
13 471 1405 866 3118 3404 3205
14 114 443 271 3739 4291 3681
15 266 824 349 1960 2206 2015
16 243 1043 396 2183 3183 2434
17 469 785 574 2849 3659 2916
18 686 1639 811 1857 2475 1955
19 127 411 153 2725 3210 2639
20 384 936 392 4358 5114 4726

Average 345.30 936.55 446.05 2558.15 3061.60 2681.80
(Algo.-ACO)/ACO - 1.7123 0.2918 - 0.1968 0.0483
Num. best heuristic 20 0 0 18 0 2

When the due dates were very tight (0.4=R0.8,=T), the

ACO-SV algorithm deviated 171.23% from the ACO algorithm
and the GA deviated 29.18% from the ACO algorithm.
Moreover, the ACO found 20 best solutions (minimum TWT)
out of 20 problem instances, both the ACO-SV algorithm and
the GA found 0 best solutions out of 20 problem instances.
When the due dates were tight (0.8=R0.8,=T), the ACO-SV
algorithm deviated 19.68% from the ACO algorithm and the
GA deviated 4.83% from the ACO algorithm. Moreover, the
ACO found 18 best solutions (minimum TWT) out of 20
problem instances, the ACO-SV algorithm found 0 best
solutions out of 20 problem instances, and the GA found 2 best
solutions out of 20 problem instances.

IV. CONCLUSIONS
This research proposed an ACO algorithm for the problem of

scheduling unrelated parallel machines to minimize total
weighted tardiness. Computational results showed that the
proposed ACO algorithm outperformed other existing
algorithms (ACO-SV and GA) in terms of total weighted
tardiness and the number of instances solved to best heuristic
solution.

REFERENCES
[1] B. Alidaee, D. Rosa, “Scheduling parallel machines to minimize total

weighted and unweighted tardiness,” Comput Oper Res , vol. 24, pp.
775-788, August 1997.

[2] A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss, “An ant colony
optimization approach for the single machine total tardiness problem, ”
Evolutionary Computation, CEC 99. Proceedings of the 1999 Congress
on Evolutionary Computation. IEEE Press.

[3] J. Behnamian, M. Zandieh, and S. F. Ghomi, “ Parallel-machine
scheduling problems with sequence-dependent setup times using an ACO,
SA and VNS hybrid algorithm,” Expert Syst Appl, vol. 36, pp. 9637-9644,
August 2009.

[4] M. D. Besten, T. Stützle, and D. Dorigo, “Ant colony optimization for the
total weighted tardiness problem,” Lecture Notes in Computer Science, pp.
611-620, 2000.

[5] D. Biskup, J. Herrmann, and J. N. D. Gupta, “Scheduling identical parallel
machines to minimize total tardiness,” Int J Prod Econ, vol. 115, pp.
134-142, September 2008.

[6] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and WeglarzJ, Scheduling
computer and manufacturing process, Berlin, New York: Springer Verlag,
1996.

[7] P. Brucker, Scheduling Algorithm (4th ed.). Berlin: Springer Verlag,
2004.

[8] D. Cao, M. Chen, and G. Wan, “Parallel machine selection and job
scheduling to minimize machine cost and job tardiness,” Comput Oper
Res, vol. 32, pp. 1995-2012, 2005.

[9] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for
distributed discrete optimization,” Artificial Life, vol. 5, pp. 137–172,
Spring 1999.

[10] M. Dorig and T. Stützle, Ant colony optimization. MIT Press, Cambridge,
MA, 2004.

[11] M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent
advances,” Int Ser Oper Res Manage Sci, vol. 146, pp. 227-263, 2010.

[12] R. Graham, E. Lawler, J. Lenstra, and K. A. Rinnooy, “Optimization and
approximation in deterministric sequencing and scheduling: A survey,”
Ann Discrete Math, vol. 5, pp. 287-326, 1979.

[13] O. Holthaus and C. Rajendran, “ A fast ant-colony algorithm for
single-machine scheduling to minimize the sum of weighted tardiness of
jobs,” Journal of the Operational Research Society, vol. 56, pp. 947-953,
August 2005.

[14] C. Koulamas, “Decomposition and hybrid simulated annealing heuristics
for the parallel-machine total tardiness problem, ” Naval Research
Logistics, vol. 44, pp. 109-125, February 1997.

[15] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Bricker, “Complexity of
machine scheduling problems,” Ann Discrete Math, vol. 1, pp. 343-362,
1977.

[16] C. J. Liao and H. C. Juan, “An ant colony optimization for single-machine

tardiness scheduling with sequence-dependent setups,” Computers and
Operations Research, vol. 34, pp. 1899-1909, August 2007.

[17] C. F. Liaw, Y. K. Lin, C. Y. Cheng, and M. C. Chen, “Scheduling

unrelated parallel machines to minimize total weighted tardiness, ”
Comput Oper Res, vol. 30, pp. 1777-1789, January 2003.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:8, 2012

1799

[18] Y. K. Lin, M. E. Pfund, and J. W. Fowler, “Heuristics for minimizing
regular performance measures in unrelated parallel machine scheduling
problems,” Comput Oper Res, vol. 38, pp. 901-916, June 2011.

[19] D. Merkle and M. Middendorf, “Ant colony optimization with global

pheromone evaluation for scheduling a single machine, ” Applied
Intelligence, vol. 18, pp. 105-111, 2003.

[20] L. Mönch, “Heuristics to minimize total weighted tardiness of jobs on

unrelated parallel machines,” Proceedings of the 4th IEEE Conference on
Automation Science and Engineering, 2008, pp. 572-577.

[21] L. Mönch and C. Almeder, “Ant colony optimization approaches for

scheduling jobs with incompatible families on parallel batch machines,”
Dublin, Ireland, Multidisciplinary International Conference on
Scheduling, Theory and Applications, 2009, pp. 105-114.

[22] S. S. Panwalkar, M. L. Smith, and C. P. Koulamas, “A heuristic for the

single machine tardiness problem,” Eur J Oper Res, vol. 70, pp.304-310,
November 1993.

[23] M. Pfund, J. W. Fowler, and J. N. D. Gupta, “A survey of algorithm for
single and multi-objective unrelated parallel-machine deterministic
scheduling problems, ” Journal of the Chinese Institute of Industrial
Engineers vol. 21, pp. 230-241, 2004.

[24] C. N. Potts and L. N. Van Wassenhove, “A decomposition algorithm for

the single machine total tardiness problem,” Operations Research Letters,
vol. 1, pp. 177-181, 1982.

[25] M. Pinedo, Scheduling Theory, Algorithms, and Systems, 3rd ed., Prentice
Hall, 2008.

[26] S. S. Sankar, S. Ponnambalam, V. Rathinavel, and M. Visveshvaren, “
Scheduling in parallel machine shop: an ant colony optimization
approach,” Industrial Technology, 2005, pp. 276-280. Hong Kong: IEEE.

[27] S. O. Shim and Y. D. Kim, “Scheduling on parallel identical machines to

minimize total tardiness, ” Eur J Oper Res, vol. 177, pp. 135-146,
February 2007.

[28] N. R. Srinivasa Raghavan and M. Venkataramana, “Parallel processor
scheduling for minimizing total weighted tardiness using ant colony
optimization,” Int J Adv Manuf Tech, vol. 41, pp. 986–996, May 2009.

[29] A. P. J. Vepsalainen and T. E. Morton, “Priority rules and lead time

estimation for job shop scheduling with weighted tardiness costs, ”
Manage Sci, vol. 33, pp. 1035-1047, August 1987.

[30] K. C. Ying and C. J. Liao, “An ant colony system approach for scheduling

problems, ” Production Planning and Control: The Management of
Operations, vol.14, pp. 68-75, November 2003.

[31] H. Zhou, Z. Li, and X. Wu, “Scheduling unrelated parallel machine to

minimize total weighted tardiness using ant colony optimization, ”
Proceedings of the IEEE International Conference on Automation and
Logistics, 2007, pp. 132-136

