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Abstract—Total weighted tardiness is a measure of customer 

satisfaction. Minimizing it represents satisfying the general 
requirement of on-time delivery. In this research, we consider an ant 
colony optimization (ACO) algorithm to solve the problem of 
scheduling unrelated parallel machines to minimize total weighted 
tardiness. The problem is NP-hard in the strong sense. Computational 
results show that the proposed ACO algorithm is giving promising 
results compared to other existing algorithms. 
 

Keywords—ant colony optimization, total weighted tardiness, 
unrelated parallel machines. 

I. INTRODUCTION 
ARALLEL machine scheduling problems have been 
studied by many researchers ([6]–[7]–[25]) in recent years. 

Parallel machine scheduling problems are important because 
most real world manufacturing workgroups have more than one 
machine. Parallel machine algorithms can be reduced for the 
single machine problems and also many job shop algorithms, 
such as shifting bottleneck heuristics, also called parallel 
machine algorithms. Though there is extensive literature on 
parallel machine scheduling problems, most of it is limited to 
situations in which the processing times or speed rates are the 
same across all machines. When machines are not identical to 
one another and cannot be completely correlated by simple rate 
adjustments, they are said to be unrelated parallel machines. 
Based on the complex hierarchy of deterministic scheduling 
([7]–[25]) among the traditional classification of parallel 
machine environments, unrelated parallel machines are some of 
the most difficult problems to solve.  

This research considers the problem of scheduling unrelated 
parallel machines to minimize total weighted tardiness (TWT). 
TWT is defined as jjTw∑ , where ,0)(= jjj dCmaxT − , jw  

is the weight of job j and jd  is the due date of job j. TWT is a 

measure of customer satisfaction. Minimizing it represents 
satisfying the general requirement of on-time delivery.  
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Following the three-field notation of [12], we refer to this 

problem as jjTwR ∑|| . The problem is NP-hard in the strong 
sense, since its special case with m = 1 is already NP-hard in the 
strong sense ([15]). Research related to scheduling parallel 
machines to minimize total weighted tardiness is limited. Based 
on shortest processing time (SPT) and earliest due date (EDD) 
principles, [22] proposed a heuristic (PSK) to minimize the 
mean tardiness for the single-machine sequencing problem (

jT||1 ). [14] proposed a heuristic (KPM) for the jT||P  
problem, based on extending the PSK heuristic from the 
single-machine tardiness problem to a parallel-machine setting. 
[1] presented a modified due date (MDD) algorithm for the 

jjTw||P  problem. [8] developed a heuristic algorithm based 
on tabu search to solve the problem of simultaneously selecting 
and scheduling parallel machines to minimize the sum of 
machine holding cost and job tardiness cost. [27] solved the 

jT||P  problem using a branch-and-bound algorithm, and [5] 

proposed several efficient heuristic algorithms for the jT||P  
problem. According to [23], most unrelated parallel machine 
scheduling problems are NP-hard. [23] presented a survey of 
algorithms for single- and multi-objective unrelated parallel 
machine deterministic scheduling problems but indicated that 
unrelated parallel machine problems remain relatively 
unstudied. In particular, the study noted that there are a few 
solution approaches to minimize due-date-related criteria. [17] 
solved the ∑ jjTw||R  problem using a branch-and-bound 
algorithm that can solve a problem size up to 4 machines and 18 
jobs. The Apparent Tardiness Cost (ATC) rule proposed by 
[29], originally designed for the ∑ jjTw||1  problem, can be 

used to solve the ∑ jjTw||R  problem heuristically. [18] 

modified the ATC rule so that it can solve the ∑ jjTw||R  

problem. They proposed a heuristic, ATC-I, for the ∑ jjTw||R  
problem. Computational results show that the study’s proposed 
ATC-I outperformed other existing heuristics (MDD, KPM, 
and ATC). 

ACO is a constructive meta-heuristic that has been used to 
solve scheduling problems in recent years. [2] used an ACO 
algorithm to solve the single machine total tardiness problem 
( ∑ jT||1 ). [4] proposed an ACO algorithm that incorporates 
local search for the single machine total weighted tardiness 
problem ( ∑ jjTw||1 ).  
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[19] proposed an ACO algorithm that uses global pheromone 
information instead of using only local pheromone information 
for the ∑ jjTw||1  problem. Similarly, [30] presented an ACO 

algorithm for the ∑ jjTw||1  problem that can effectively 
improve the robustness of various simple constructive 
heuristics. Moreover, [13] proposed a fast ACO algorithm for 
the ∑ jjTw||1  problem. [16] used an ACO algorithm for 
scheduling single machine tardiness problems with 
sequence-dependent setups ( ∑ jjij Tw|s|1 ). [26] used an ACO 
algorithm to minimize makespan for identical parallel 
machines with sequence-dependent setup problems (

maxij C|s|P ). [31] and [20] both studied scheduling unrelated 
parallel machines to minimize total weighted tardiness using an 
ACO algorithm ( ∑ jjTw||R ). [28] suggested an ACO 
algorithm to solve scheduling identical parallel machines to 
minimize total weighted tardiness ( ∑ jjTw||P ). [21] used an 
ACO algorithm for scheduling jobs with incompatible families 
on parallel batch machines ( ∑ jjTw|leincompatibbatch,-p|P
). [3] studied parallel machine scheduling problems with 
sequence-dependent setup times to minimize makespan (

maxjk C|s|P ) using an ACO, a simulated annealing (SA), and a 
variable neighborhood search (VNS) hybrid algorithm.  

In this research, we present an ACO algorithm for the 
∑ jjTw||R  problem. 

II. APPLICATION OF ACO ALGORITHM 
ACO ([9]–[10]–[11]) is a meta-heuristic for solving hard 

combinatorial optimization problems. It is inspired by the 
pheromone trail laying and following behavior of real ants, 
which uses pheromones as a communication medium. In a 
double bridge experiment conducted on ants, the result showed 
that after an initial transitory phase in which some oscillations 
can appear, eventually most of the ants choose the shortest path. 
The ACO algorithm imitates this optimization capability of 
selecting the shortest path from the ant colony system. The 
ACO algorithm is based on indirect communication within a 
colony of simple agents, called (artificial) ants, mediated by 
(artificial) pheromone trails.  

The (artificial) ants in the ACO algorithm implement a 
randomized construction heuristic that probabilistically selects 
the solution components of the problem based on the 
pheromone trail and possibly available heuristic information, 
which is based on the input data of the problem to be solved. 
The (artificial) pheromone trails in the ACO algorithm serve as 
distributed, numerical information for the ants to 
probabilistically construct solutions to the problem being 
solved and to reflect their search experience. In this research, 
we apply the ACO algorithm to solve the problem of 
scheduling unrelated parallel machines to minimize total 
weighted tardiness. The following notation is used to define the 
problems. 

 

m The number of machines 
n The number of jobs 
U  The set of unscheduled jobs 

 pij  The processing time of job j on machine i  

 wj  The weight of job j  

 d j  The due date of job j  

 ti  Makespan of the scheduled jobs on machine i 

(t)τij  Pheromone trail intensity of assigning job j on machine i in 
iteration t 

ijη  The heuristic desirability of assigning job j on machine i 

α  Relative influence of pheromone information 

β  Relative influence of heuristic information  

localρ  Local pheromone evaporation rate ( 1ρ0 local << ) 

globalρ  Global pheromone evaporation rate ( 1ρ0 global << ) 

m0q  The user-specified number such that 1q0 m0 ≤≤  

j0q  The user-specified number such that 1q0 j0 ≤≤  

ANTS
 

The number of ants in each ant colony 

ITER Total number of iterations to be run 

The ACO algorithm 
Step 1: Initialization. Set ACO parameters α , β , localρ , globalρ ,

m0q , j0q , ITER, ANTS. Initialize, ∞=*TWT , iter=1, 

ants=1, n}{1,..., U = , m1,2,...,i  ,0ti == .   
Step 2: Machine selection. Let mq  be the random number 

generated from the uniform distribution [0,1] and m0q  be 
the user-specified number such that 1q0 m0 ≤≤ . Select the 
machine *i  from the following equation, 

⎩
⎨
⎧ ≤

= ≤≤

      otherwise             I,
qq if   ,t min

i m0mi* mi1  where I is a probability 

distribution with  
1/t

1/tP m

1p
p

i
i

∑
=

=

, m1,2,...,i = .  

Step 3: Job selection. Let jq  be the random number 
generated from the uniform distribution [0,1] and j0q  
be the user-specified number such that 1q0 j0 ≤≤ . 
Select the job *j  from the following equation,

⎪⎩

⎪
⎨
⎧ ≤∈⋅

=
      otherwise                                               ,J

qq if        Uj },η(t)max{τ arg
j j0j

β
j*i
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Step 4: Machine re-selection. For job *j , find machine **i  

such that *j**i
p =min { }mi0,1dpt|p *j*iji*ij

≤≤≤−+  . 

If **i cannot be found from the above equation, conclude 
that there is no job that can be assigned without being 
tardy, then calculate **i  from arg=i **

)dp(tmin *j*ijimi1 −+≤≤
.  

Step 5: Assign job *j  on machine **i . Set *j\UU =  and 
******* jiii ptt += . Update local pheromone for the 

selected machine **i  and job *j  as 

0local*j**ilocal*j**i
τρ(t))τρ(1(t)τ +−=  where 

)TWT/(ANTSτ I-ATC⋅=10 , I-ATCTWT  is the ATC-I 
([18]) objective value. 

Step 6:  Repeat Steps 2-5 until all jobs are scheduled. 
Step 7:  Apply local search procedure to improve the given 

schedule. 
Step 8:  Find current TWT for the current solution. If 

*TWTTWT < , then TWTTWT* = . Update ants=ants+1. 
If ANTSants ≤ , set n}{1,..., U =  and m1,2,...,i  ,0ti ==  
and go to Step 2. If ANTSants > , go to Step 9.  

Step 9: Update the global pheromone of the best solution 
found in the current iteration as 

(t)Δτρ(t))τρ(11)(tτ ijglobalijglobalij +−=+ , where 
*

ij 1/TWT(t)Δτ = and *TWT is the best TWT value up 
to the current iteration. Set iter=iter+1. If ITERiter ≤ , 
then set ants=1, n}{1,..., U =  and m1,2,...,i  ,0ti ==  
and go to Step2. If iter> ITER, go to Step 10.  

Step 10: Terminate the ACO algorithm. 
 
In Step 2, when m0m qq ≤ , an ant selects the first available 

machine *i  that leads to the smallest makespan among the 
parallel machines (i.e,. imi1*i

tmin=t ≤≤ ). When m0m qq > , 

then an ant randomly selects machine I from the probability 
distribution formed by the probabilities Pi .  

In Step 3, once machine *i  is selected, the next decision of 
an ant is to select the job. Job selection considers both the 
heuristic information (

j*i
η ) and pheromone trails ( (t)τ

j*i
). 

(t)τ
j*i

 is the pheromone trail associated with the assignment of 

job j to machine *i . The parameter t is used for the current 
iteration of the ACO algorithm. 

j*i
η  is the heuristic desirability 

of assigning job j to the selected machine *i . 
j*i

η  is a 

modification of ATC index defined by Eq.(1). More precisely, 
we add jw  into the exponential term of the original ATC index. 
K is a scaling parameter that can be determined empirically, and 

/np=p
j*i

n
1=j*i

∑  is the average job processing time of machine 

*i . Hence, if K is very small, Eq. (1) reduces to the weighted 
minimal slack rule, (i.e., ,0)tpmax(d w *ij*ijj −− ), when 

there are no overdue jobs and otherwise to the weighted 
shortest processing time (WSPT) first rule for the overdue jobs. 

Parameters α  and β  determine the relative influence of the 
pheromone trails and the heuristic information. When j0j qq ≤ , 

an ant selects the job *j  that maximizes the value of 

}η(t){τ β
j*i

α
j*i

⋅ . When j0j qq > , then an ant randomly selects 

job J from the probability distribution formed by the 
probabilities 

j*i
P .  

In Step 4, the ACO algorithm applies a greedy rule to find the 
fastest machine, **i , from among the machines to which job 

*j  can be assigned without being tardy. If job *j  would be 
tardy on all machines, the ACO algorithm would choose the 
machine that would lead to the minimum total tardiness.  

In Step 5, the ACO algorithm applies local pheromone 
updating. The intention of the pheromone update is to make 
solution components belonging to good solutions more 
desirable for ants operating in the following iterations.  

In Step 7, the ACO algorithm uses local searches to further 
improve the schedule obtained so far. [3] introduced three local 
searches for the maxjk C|S|P  problem: (1) LS1. Job swaps on 
one machine: randomly choose a machine i, and then randomly 
choose two jobs, j1 and j2 from machine i. Swap jobs j1 and j2.  
(2) LS2. Job swaps on different machines: randomly choose 
two machines i1 and i2, and then randomly choose two jobs, j1 
from machine i1 and j2 from machine i2. Swap jobs j1 and j2. (3) 
LS3. Job insertion: randomly choose one job j1 and one 
machine i2, where j1 does not belong to i2. Randomly choose a 
valid position r in i2. Transfer job j1 to i2 at position r. In our 
ACO algorithm, we always try to use LS1 first. If after LS1, no 
improvement is made, then another local search is used (l is 
incremented), and every time a new solution is found, the first 
local search is used (l=1).  

In Step 9, global pheromone updating is applied. Global 
pheromone updating is intended to provide a greater amount of 
pheromone to the schedule with the best performance. 
Therefore, only the ant that found the best schedule up to the 
current iteration is permitted to deposit pheromone.  

III. COMPUTATIONAL RESULTS 
In this section, we present several computational results on 

the performance of the proposed ACO algorithm. The ACO 
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algorithm was implemented in C++ and run on a computer with 
2.5 GHz Pentium(R) Dual-Core CPU and 2G RAM. Processing 
times were generated from the uniform distribution [1,100]. 
The value of jw  for each j  was chosen randomly from the 
uniform distribution [1,10]. Due dates were generated from the 
uniform distribution [ R/2)TP(1R/2),TP(1 +−−− ], where 

2
ij

n
1=j

m
1=i /mp=P ∑∑ , T is the average tardiness factor, and R is 

the relative range of due dates, as was done in [24]. We study 
cases with tight due dates since it is more challenging. Hence, 
due dates factor T  was set to 0.8, and R  was set to 0.4 and 0.8. 
We also used 4 machines with 20 jobs ( 4m20n) to represent 
small problem instances and used 10 machines with 100 jobs (
10m100n ) to represent large problem instances. For each 
combination of due date tightness and problem instance size, 20 
problem instances were randomly generated. According to our 
extensive computational experimentation, ACO 
algorithm-related parameters were set to α =1, β =3, localρ
=0.01, globalρ =0.01, m0q =0.9, j0q =0.9, ANTS =20, and 
ITER=250.   

A. Comparison of algorithms 
[28] proposed an ACO algorithm (named ACO-SV) for the 

∑ jjTw||P  problem. Lin et al. (2011) proposed a genetic 

algorithm (GA) for the ∑ jjTw||R  problem. We compare the 
proposed ACO algorithm with these two existing algorithms. 
The two algorithms ACO-SV and GA have been 
re-implemented in our work. For the small problem instances, 
we compare the average relative percentage deviations from the 
optimal solution obtained from the branch-and-bound 
algorithm proposed by [17] to the number of instances solved to 
optimal solution. For the large problem instances we compare 
the average relative percentage deviations from our proposed 
ACO algorithm and the number of instances solved to best 
heuristic solution. For each problem instance, K  value for AU 
index in the ACO-SV algorithm and Eq. (1) in our proposed 
ACO algorithm was set to 0.6. Table 1 gives computational 
results for small problem instances, which show that the ACO 
algorithm outperformed the ACO-SV algorithm and the GA in 
terms of total weighted tardiness and number of instances 
solved to optimal solution.  

 
TABLE I 

THE PERFORMANCE OF THE ACO ALGORITHM (4M20N) 
 T=0.8, R=0.4 T=0.8, R=0.8 

Instances Opt. ACO ACO-SV GA Opt. ACO ACO-SV GA 
1 1118 1118 1287 1118 1336 1336 1530 1342 
2 590 590 725 591 1398 1398 1547 1408 
3 568 568 724 632 925 925 1203 968 
4 1045 1045 1123 1060 690 690 824 770 
5 2689 2689 2853 2751 2801 2801 2828 2801 
6 927 927 999 987 258 258 356 258 
7 1557 1557 1776 1665 855 855 1282 858 
8 863 863 928 880 357 357 387 357 
9 1188 1188 1243 1188 373 373 493 373 
10 693 693 938 738 593 596 641 645 
11 459 459 656 538 1428 1428 1675 1435 
12 796 796 955 849 788 788 984 911 
13 489 492 643 642 1437 1437 1645 1437 
14 1468 1468 1706 1497 1679 1679 1786 1679 
15 127 127 272 140 1023 1023 1332 1055 
16 1528 1528 1593 1582 539 539 677 545 
17 1375 1375 1730 1495 391 391 485 391 
18 947 947 1118 970 479 479 595 511 
19 433 433 596 451 1840 1842 2168 1879 
20 624 624 754 650 457 457 522 457 

Average 974.20 974.35 1130.95 1021.20 982.35 982.60 1148.00 1004.00 
(Algo.-opt.)/opt. - 0.0002 0.1609 0.0482 - 0.0003 0.1686 0.0220 

Num. of opt. found - 19 0 2 - 18 0 8 
 

When the due dates were very tight ( 0.4=R0.8,=T ), the 
ACO algorithm deviated 0.02% from the optimal solution, the 
ACO-SV algorithm deviated 16.09% from the optimal solution, 
and the GA deviated 3.51% from the optimal solution. 
Moreover, out of 20 problem instances, the ACO algorithm 
solved 19 problem instances to optimal solution, the ACO-SV 
solved 0 problem instances to optimal solution, and the GA 
solved 2 problem instances to optimal solution. When the due 
dates were tight ( 0.8=R0.8,=T ), the ACO algorithm deviated 
0.03% from the optimal solution, the ACO-SV algorithm 
deviated 16.86% from the optimal solution, and the GA 

deviated 2.2% from the optimal solution. Moreover, out of 20 
problem instances, the ACO algorithm solved 18 problem 
instances to optimal solution, the ACO-SV solved 0 problem 
instances to optimal solution, and the GA solved 8 problem 
instances to optimal solution.  

For large problem instances, we compared the average 
relative percentage deviations from our proposed ACO 
algorithm and the number of instances solved to best heuristic 
solution. The results from this experimentation are given in 
Table 2; they show that the proposed ACO algorithm 
outperformed other existing algorithms. 
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TABLE II 
THE PERFORMANCE OF THE ACO ALGORITHM (10M100N) 

 T=0.8, R=0.4 T=0.8, R=0.8 
Instances ACO ACO-SV GA ACO ACO-SV GA 

1 49 501 84 2673 3322 2743 
2 521 899 581 3040 3296 3180 
3 264 1338 388 2833 3586 2980 
4 414 936 698 1406 1667 1415 
5 392 1581 592 2652 3232 2851 
6 281 537 285 2315 2807 2509 
7 116 641 191 2994 3314 3214 
8 159 654 173 1674 2109 1753 
9 486 933 523 1810 2021 1899 
10 682 1077 708 3578 4079 3808 
11 455 1177 477 1534 2049 1620 
12 327 971 409 1865 2208 2093 
13 471 1405 866 3118 3404 3205 
14 114 443 271 3739 4291 3681 
15 266 824 349 1960 2206 2015 
16 243 1043 396 2183 3183 2434 
17 469 785 574 2849 3659 2916 
18 686 1639 811 1857 2475 1955 
19 127 411 153 2725 3210 2639 
20 384 936 392 4358 5114 4726 

Average 345.30  936.55  446.05  2558.15  3061.60 2681.80  
(Algo.-ACO)/ACO - 1.7123  0.2918  - 0.1968  0.0483  
Num. best heuristic 20 0 0 18 0 2 

 
When the due dates were very tight ( 0.4=R0.8,=T ), the 

ACO-SV algorithm deviated 171.23% from the ACO algorithm 
and the GA deviated 29.18% from the ACO algorithm. 
Moreover, the ACO found 20 best solutions (minimum TWT) 
out of 20 problem instances, both the ACO-SV algorithm and 
the GA found 0 best solutions out of 20 problem instances. 
When the due dates were tight ( 0.8=R0.8,=T ), the ACO-SV 
algorithm deviated 19.68% from the ACO algorithm and the 
GA deviated 4.83% from the ACO algorithm. Moreover, the 
ACO found 18 best solutions (minimum TWT) out of 20 
problem instances, the ACO-SV algorithm found 0 best 
solutions out of 20 problem instances, and the GA found 2 best 
solutions out of 20 problem instances. 

IV. CONCLUSIONS 
This research proposed an ACO algorithm for the problem of 

scheduling unrelated parallel machines to minimize total 
weighted tardiness. Computational results showed that the 
proposed ACO algorithm outperformed other existing 
algorithms (ACO-SV and GA) in terms of total weighted 
tardiness and the number of instances solved to best heuristic 
solution. 
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