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Unit Selection Algorithm Using Bi-grams Model
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Abstract—In this paper, we present a novel statistical approach to
corpus-based speech synthesis. Classically, phonetic information is
defined and considered as acoustic reference to be respected. In this
way, many studies were elaborated for acoustical unit classification.
This type of classification allows separating units according to their
symbolic characteristics. Indeed, target cost and concatenation cost
were classically defined for unit selection.
In Corpus-Based Speech Synthesis System, when using large text
corpora, cost functions were limited to a juxtaposition of symbolic
criteria and the acoustic information of units is not exploited in the
definition of the target cost.
In this manuscript, we token in our consideration the unit phonetic
information corresponding to acoustic information. This would be re-
alized by defining a probabilistic linguistic Bi-grams model basically
used for unit selection. The selected units would be extracted from
the English TIMIT corpora.

Keywords—Unit selection, Corpus-based Speech Synthesis, Bi-
gram model

I. INTRODUCTION

CONCATENATIVE Text-To-Speech synthesizers join pre-
recorded segments of speech data in order to produce

high quality output speech [1,2]. The synthesizer has to find
the best unit to concatenate from an inventory of speech
material.
Before unit selection, concatenative synthesis involved con-
catenation of units (usually diphones) from fixed databases,
i.e. databases which contained only one example of each
unit. However, having only one example of each unit in the
database can not account for variation in pronunciation gener-
ally found in natural speech. Segmental co-articulation effects
spread, as it is generally known, also across more than one
phone or diphone. Additionally, prosodic factors like stress,
position within the syllable or intonational phrase affect the
pronunciation of a unit. Correct prosody is achieved here by
signal processing techniques which distort the waveform and
impair the quality of the output. Also high frequency of unit
concatenation points proved to affect the quality of speech,
since it resulted in more audible joins between the units. The
primary motivation for unit selection synthesis was to improve
synthesis quality by reducing spectral mismatches at the points
where units are concatenated. This is achieved by storing
multiple examples of a unit recorded in different phonetic and
prosodic contexts in the database, and choosing the proper unit

Manuscript received November 2008.
M.A. KAMMOUN is with the Research Unit in Information technology

and Medical Electronics,(TIEM),(ENIS), BP W, 3038 SFAX, TUNISIA,
email:MohamedAli.Kammoun@isetma.rnu.tn.

A.B. HAMIDA is the Director of the Research Unit in Information
technology and Medical Electronics,(TIEM), National School of Engineers,BP
W, 3038 SFAX, TUNISIA email:Ahmed.Benhamida@enis.rnu.tn.

for the given context, automatically, at synthesis time.
In this way, Corpus-Based Speech Synthesis (CBSS) was
introduced. In fact, Corpus-based concatenative approach to
speech synthesis has been widely explored in the research
community in recent years. In this approach, best sequences of
phone or subphone-sized units are chosen from a large inven-
tory of possible units to synthesize input text, by minimizing
the overall cost function. The overall cost is often modelled as
the weighted sum of target costs and concatenation costs on
the various features such as spectral, intonational and duration
features.
In the new corpus-based speech synthesis framework that we
present in this paper, we go further and propose a probabilistic
approach to unit selection in concatenative speech synthesis.
We are pursuing this approach in the hope that a probabilistic
approach will make it easy to establish a method that is
mathematically manageable, needs fewer tuning parameters,
and is easy to train, by taking advantage of statistical prop-
erties emerging from the data. It can be regarded as a more
constrained subclass within the larger class of general cost-
based approach.
The paper outline is as follows. First, we considered relevant
background on topics in unit selection algorithm. Next, we
introduce our probabilistic framework for unit selection. It is
followed by the descriptions of the target and concatenation
models in our probabilistic approach. We then briefly describe
the unit search mechanism after that. We then describe the way
we generate the target word sequence from input. We finally
describe the implementation with TIMIT English corpora
followed by conclusion.

II. UNIT SELECTION ALGORITHM: STATE OF THE ART

In the context of concatenative speech synthesis, unit selec-
tion algorithm are first proposed in [3] and used in the speech
synthesis system CHATR and the systems influenced by it.
The starting point of the unit selection algorithm is a database
of N units ui and a sequence of T target units tT . The unit
selection algorithm finds the units from the database that best
match the given synthesis target units. The quality of the match
is determined by two distance functions, expressed as costs[4,
5, 6, 7, 8, 9, 10, 11, 12]: The target cost Ct corresponds to
the perceptual similarity of the database unit ui to the target
unit tT . It is given as a sum of p weighted individual feature
distance functions Ct

k as:

Ct(ui, tT ) =
p∑

k=1

wt
kCt

k(ui, tT ) (1)

The concatenation cost Cc predicts the discontinuity intro-
duced by concatenation of the unit ui from the database with
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a preceding candidate unit ui−1. It is given by a weighted sum
of q feature concatenation cost functions Cc

k:

Cc(ui−1, ui) =
q∑

k=1

wc
kCc

k(ui−1, ui) (2)

Consecutive units in the database have a concatenation cost of
zero. Thus, if a whole phrase matching the target is present
in the database, it will be selected in its entirety. The unit
selection algorithm has to find the least costly path that
constitutes the target. Using the weighted target cost wtCt as
the state occupancy cost bi, and the weighted concatenation
cost wcCc as the transition cost aij , the optimal path can be
efficiently found by a Viterbi algorithm [13, 14].

III. PROBABILISTIC APPROACH TO UNIT SELECTION

In a speech synthesis framework where units are selected
from the corpus, we are given some input specification such
as specifications for phone-sized or even finer subphone
units, s = s1, ..., sN . The major work of the synthesizer is
to find a best sequence of units u = u1, ..., uN for this input
specification. A specification for a unit si can be a collection
of target features, si = (fi(1), ...fi(p)). These features may
include such things as a phone label, a duration target, and
an F0 target for the i−th unit.
In our proposed method, words corpus can be seen as a fully
connected state transition network through which the unit
selection algorithm has to find the most probably path that
constitutes the target.
In fact, we observed that the database can offer phonemic
information for every word in the corpus. The first step can
be presented as follow: we browsed all directories to create
a list presenting basic words and corresponding phonetic
transcriptions.
As second step, we associated for every word a phonetic
transcription. Given sentence to synthesis, this implies that
we have to make a selection on all the phonetic transcriptions
proposed by the previous step. On standard way of doing this
is by the probabilistic linguistic model ”N − grams” [15,
16, 17].

The N − grams model appeared in the context of speech
recognition to estimate the sequence of the words w1, , wN

in a given language.

In the context of pre-selection for a given sentence
W = (w1, w2, ..., wN ), we look for the best sequence of
transcription T̂ on all possible sequences T = (t1, t2, ..., tN )
made on all the phonetic transcriptions {ph1, ph2, ..., phM}:

T̂ = arg max
T

p(T |W ) (3)

By Bayes’s rule, this is equivalent to find:

T̂ = arg max
T

p(T, W )
p(W )

= arg max
T

p(W |T )p(T )
p(W )

(4)

The denominator of the second equation is independent of T ,
we can ignored in the search of T̂ .

The N − grams for pre-selection assumes the following
estimation:
- The probability of a word, knowing the one who precedes
it, depends on the transcription.
- The probability of a transcription, knowing the one who
precedes it, depends on n − 1 previous transcriptions.
As result:

p(W |T ) = p(w1, w2, ..., wN |t1, t2, ..., tN ) (5)
= p(w1|t1, t2, ..., tN )...
.. p(wN |w1, ..., wN−1, t1, t2, ..., tN ) (6)

≈
N∏

i=1

p(wi|ti) (7)

p(T ) = p(t1, t2, ..., tN ) (8)
= p(t1)p(t2|t1)...p(tN |t1, t2, ..., tN ) (9)

≈
N∏

i=1

p(ti|ti−1, ti−2, ..., ti−N+1) (10)

It is then straightforward to see the problem in terms of
a finite state automaton. This machine represents a model
Bi-grams where n = 1 [15 , 16, 17]. The model Bi-grams
considered is represented by states associated to possible
phonetic transcriptions (a state by transcription). For every
transition, we associate a probability p(phi|phj) which
represents the probability that a word with the transcription
”phj” will be followed by a word with the transcription
”phi”. The emission probability p(wi|phj) represents the
probability that the phonetic transcription ”phj” corresponds
to the word ”wi”.
Once emission and transition probabilities are estimated, final
step consists in obtaining the best sequence of words for a
given sentence.
In fact, by analogy with cost function, target cost Ct can be
replaced by the inverse of the emission probability:

Ct =
1

p(wi|phj)
(11)

And the concatenation cost Cc by the inverse of the transition
probability:

Cc =
1

p(phi|phj)
(12)

This corresponds to finding the best path in a lattice. One
could obviously obtain the best path by first computing the
probability of all possible sequences and then retaining the
one with highest probability. This is sally a time-consuming
task, since the number of possible sequences of tags for a
sentence is the product of the numbers of possible tags for
all its words. We used a brute-force method for finding all
possible paths in a lattice and another algorithm for using it
in the context of our bigram model and obtaining the best tag
sequence.
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IV. EXPERIMENTS AND RESULTS

A. Experiment corpora: TIMIT Corpus

The TIMIT Corpus is an acoustic and phonetic database
dedicated mainly to speech recognition. It contains the
recordings of 630 American speakers, distributed on ”8”
regional dialects (”dr1” to ”dr8”). Each one pronounces 10
sentences. These sentences are distributed on three groups:
- sentences of calibration, pronounced by all speakers, serving
for illustrating the regional variations (identified as ”sa1” and
”sa2”);
- sentences are drawn lots among 450 well-calibrated phonetic
sentences (identified from ”sx3” to ”sx452”);
- sentences are chosen to maximize the acoustic contexts;
every sentence is pronounced only once, with a total of
1890 sentences for 630 speakers (identified from ”si453” to
”si2345”).

The total vocabulary of the database is 6100 words. The text
is read under good recording conditions. 630 speakers of
the base (438 men and 192 women) are distributed between
training’s folder (462 speakers: 326 women and 136 men) and
test’s folder (168 speakers: 56 women and 112 men). Every
speaker is identified by one letter indicating his genre (”m”
for men and ”f” for women). The hierarchical organization
of the constituent files’ corpus represents its key-point. In
fact, data are organized according to the following path : The

/<CORPUS>/<USAGE>/<DIALECT>/<SEX>..
..<SPEAKER ID>/<SENTENCE ID>.<FILE TYPE>

With:
CORPUS :=timit
USAGE :=train | test
DIALECT :=dr1 | dr2 | dr3 | dr4 | dr5 | dr6 | dr7 | dr8
SEX:=m | f
SPEAKER ID :== <INITIALS> <DIGIT>

With,
INITIALS :=3
DIGIT := 0-9
SENTENCE ID :==<TEXT TYPE><SENTENCE NUMBER>

With,
TEXT TYPE:==sa | si | sx
SENTENCE NUMBER :== 1 ...2342
FILE TYPE:==wav | txt | wrd | phn

TIMIT corpus includes several files corresponding to each
sentence. In addition to a speech waveform file (.wav),three
associated transcription files (.txt, .wrd, .phn) exist. These
associated files have the following form:

<BEGIN SAMPLE> <END SAMPLE> <TEXT><new-line>
.
.
.

<BEGIN SAMPLE> <END SAMPLE> <TEXT><new-line>

where,
BEGIN SAMPLE :== The beginning integer sample number for the segment
END SAMPLE :== The ending integer sample number for the segment
TEXT :== <ORTHOGRAPHY> | <WORD LABEL> | <PHONETIC LABEL>

where,
ORTHOGRAPHY :== Complete orthographic text transcription
WORD LABEL :== Single word from the orthography
PHONETIC LABEL :== Single phonetic transcription code

Each extension can be presented as below:
- .wav: SPHERE-headered speech waveform file.
- .txt: Associated orthographic transcription of the words the
person said.
- .wrd: Time-aligned word transcription. The words’

boundaries were aligned with the phonetic segments using a
dynamic string alignment program.
- .phn: Time-aligned phonetic transcription.

B. Lexicon Creation

Lexicon creation from the TIMIT corpus is made by brows-
ing the database by accessing files ”.txt” and ”.wrd” and
creates a list containing words from database followed by their
phonetic transcriptions.
The first three sentences will be shown as follows:
>> corpus init=corpus

corpus init =
’the’ ’dhiy’
’emperor’ ’ehmpclprix’
’had’ ’hvaedx’
’a’ ’ix’
’mean’ ’miyn’
’temper’ ’tcltehmpclpaxr’
’.’ ”
’how’ ’hhaw’
’permanent’ ’pclpermixnxehn’
’are’ ’aa’
’their’ ’dhehr’
’records’ ’rehkclkixdcldz’
’.’ ”
’the’ ’dhix’
’meeting’ ’miydxiyng’
’is’ ’ihz’
’now’ ’naw’
’adjourned’ ’ixdcljherndcld’
’.’ ”
.
.
.

C. Corpus Preprocessing

The TIMIT corpus although it is wide, it is distinguished
by simplicity: it does not contain numbers, neither acronyms
nor complex proper nouns. Furthermore, the sentences to
be synthesized have to contain no spelling mistake. So, the
only task which remains to make is to decompose the text
into set of states (words and punctuation). The result of this
decomposition is shown as follows :
>> phrase=’she ask if some one needs money’

phrase = she ask if some one needs some money

>> sentence=tts preprocess(phrase)

sentence =
’she’
’ask’
’if’
’some’
’one’
’needs’
’money’

D. Phonological Analysis

Previously, we presented the advantages of use of the
corpus TIMIT as the acoustic database, and we showed that
its key-point resides into the hierarchical composition of its
files. Let us retain the possibilities offered by the phonetic
transcriptions files. Therefore, the phonological analysis of
the TIMIT corpus consists in presenting a list of the words
corpus associated to their phonetic transcriptions. So, we
browse all the directories and all ”.txt” and ”.wrd” files of
our corpus to create this list.
This step will create a matrix that presents basic words and



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:11, 2009

2053

all corresponding phonetic transcriptions.
>> corpus init=corpus;

>> wrd list=corpus to list(corpus init)

wrd list =
’.’ {1x1 cell}
’a’ {1x5 cell}
’academic’ {1x1 cell}
’adjourned’ {1x1 cell}
’all’ {1x2 cell}
’an’ {1x1 cell}
’and’ {1x3 cell}
’answer’ {1x1 cell}
’appreciated’ {1x1 cell}
’aptitude’ {1x1 cell}
’are’ {1x1 cell}
’as’ {1x1 cell}
’ashamed’ {1x1 cell}
’ask’ {1x3 cell}
.
.
.

For example, on the previous list, we obtained for the word
”ask” three phonetic transcriptions:

’aes’ ’aeskcl’ ’aeskclk’

With the same function, we can also get all possible
phonetic transcriptions:

>> [ph list,phn list]=corpus to list(corpus init);

>> phn list

Phn list =
”
’aa’
’aal’
’aan’
’aenser’
’aes’
’aeskcl’
’aeskclk’
’aez’
’ahn’
’ahnih’
’aol’
’aothrihzeyshixn’
’awdxixdcljh’
’ax’
’ax-h’
’axkclkers’
’axkclkwihqmixn’
’axn’

The first transcription corresponds to punctuation. The
transcriptions 6, 7 and 8 correspond to the word ”ask”.
Afterward, we created a function which allows us to find
phonetic transcriptions corresponding to a given word:

>> possible phn=list search(’ask’,wrd list)

possible phn =

’aes’ ’aeskcl’ ’aeskclk’

This function will be usefully used to find all possible
phonetic transcriptions corresponding to words constituting
the sentence to synthesize:

>> possible tags=tts ph using list(sentence,wrd list)

possible tags =
{1x2 cell}
{1x3 cell}
{1x1 cell}
{1x1 cell}
{1x1 cell}
{1x1 cell}
{1x1 cell}

>>possible tags {:, :}
ans =

’shix’ ’shiy’

ans =

’aes’ ’aeskcl’ ’aeskclk’

ans =

’qixf’

ans =

’sem’

ans =

’wahn’

ans =

’niydcldz’

ans =

’ahnih’

E. Unit Pre-selection

At this stage, Bi-grams model was constructed. Before one
can use such a model however, one still needs to estimate the
relevant parameters.
Computing emission probability is simple. Indeed, this
probability represents the number of times when the word
”wi” seems with the phonetic transcription ”phj” divided by
the total number of words with the transcription ”phj”:

p(wi|phj) =
#(wi, phj)

#(phj)
(13)

Similarly, the transitional probability between two
transcriptions ”phj” and ”phi” represents the number
of times when the transcription ”phi” is preceded by ”phj”
divided by the total number of words with the transcription
”phj”:

p(phi|phj) =
#(phi, phj)

#(phj)
(14)

An example of the model Bi-grams is given in figure1.
In order to compute these probabilities, we implement the
last two equations (equations 13 and 14) in a function which
returns the values of emission and transition probabilities
sketched in figure1:
>>[emission probs,transition probs]=corpus to bigrams(corpus init);

”emission probs” is a (w × p) matrix where ”w” is
the total number of words and ”p” is the total number of
phonetic transcriptions.
Let us note as example columns 6, 7 and 8. These columns
correspond to the transcriptions relative to the word ”ask”:
>> emission probs(:,6:8)

ans =
.
.
.

0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
0 0 0

.

.

.
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shix

BOS

aes

qixf

sem

wahn

niydcldz

ahnih

EOS

she     1

ask     1

if     1
some     1

one     1

needs     1

money     1

Fig. 1: A possible Bi-grams automaton for TIMIT Corpus (all states are supposed to be fully connected: only a few
connections are shown).

The zero probabilities are in the 14th line which
correspond to the word ”ask” in the matrix ”wrd list”.
”transition probs” is a (p×p) dimension matrix where ”p”
is the total number of the transcriptions. For this probability,
we take the example of the 40th column which corresponds
to the phonetic transcription ”dhax”:
>> transition probs(:,40)

ans =
.
.
.
0
0
0
0.2500
0
0
0
0
.
.
.

A non-zero probability appears in 22nd line. This means
that the phonetic transcription ”dhax” can be followed by
the transcription ”bclbaadxaxm” (22nd line of the matrix
”phn list”) with a probability of 0.25. In practice, though,
one can never be sure to cover all possible cases in a corpus,
however, large it is. People typically address this problem by
changing zeros into small non-zero values, which will tend
to restrain the algorithm from choosing very unlucky paths,
while avoiding the assumption of strict null probabilities. In
our script we simply add 10−8 to all probabilities [2, 15, 17].

F. Unit Selection

Once emission and transition probabilities are estimated,
obtaining the best sequence of words for a given sentence
reduces to selecting the best sequence of words transcriptions

for the sentence, i.e., the one with highest probability (given
the sequence of words and the Bi-gram model). In section 4,
we showed that we can replace the target cost by the inverse
of the emission probability and the concatenation cost by
the inverse of the transition probability. This corresponds
to finding the best path in a lattice. As a matter of fact,
while figure1 shows a Bi-grams automaton for all possible
sentences of TIMIT Corpus, the automaton reduces to a
lattice for a given sentence (see figure2 ).

An example of use, to obtain the best sequence, is presented
as follows:
>> possible tags=tts ph using list(sentence,ph list);

>>tags=tts tag using bigrams(emission probs,..

..transition probs,ph list,tr phn,sentence,possible tags)

tags =
’shix’
’aes’
’qixf’
’sem’
’wahn’
’niydcldz’
’ahnih’

In our case, we have 6 possible paths. The adequate path is
represented by the matrix ”tags”. Once we found phonetic
transcriptions, we browse again the TIMIT corpus and we
extract the words samples corresponding to the target tran-
scriptions previously picked.

V. CONCLUSION AND FUTURES WORKS

In this paper, we proposed a probabilistic approach to
unit selection in concatenative speech synthesis, where all
the ”costs” are formulated in a probabilistic framework. We
have described a new Bigram based approach to Corpus-Based
Speech Synthesis. We have given details of how this approach
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shix

BOS

aes

qixf sem wahn niydcldz ahnih EOS

shiy

aeskcl

aeskclk

she ask if some one needs money

Fig. 2: An example of a lattice Bi-grams for a simple TIMIT sentence. Transition probabilities are associated to arcs.

has been applied to unit selection from large corpora. In
fact, the Bigram-based selector algorithm captures phonetic
information from large text corpus. The selection is made
on computing the best path giving the maximal probability,
as opposed to cost functions computation basically used in
context of concatenative synthesis. The system is still in its
infancy and we plan to improve on various aspects of the
system.

APPENDIX A

Bayes’ theorem relates the conditional and marginal prob-
abilities of stochastic events A and B:

P (A|B) =
P (B|A)P (A)

P (B)
(15)

Each term in Bayes’ theorem has a conventional name:
- P (A) is the prior probability or marginal probability of A.
- P (A|B) is the conditional probability of A, given B. It is
also called the posterior probability.
- P (B|A) is the conditional probability of B given A.
- P (B) is the prior or marginal probability of B, and acts as
a normalizing constant.
There is also a version of Bayes’ theorem for continuous
distributions. It is somewhat harder to derive, since probability
densities, strictly speaking, are not probabilities, so Bayes’
theorem has to be established by a limit process. Bayes’s
theorem for probability densities is formally similar to the
theorem for probabilities:

f(x|y) =
f(x, y)
f(y)

=
f(y|x)f(x)

f(y)
(16)
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