International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

Unconventional Calculus Spreadsheet Functions
Chahid K. Ghaddar

Abstract—The spreadsheet engine is exploited via a non-
conventional mechanism to enable novel worksheet solver functions
for computational calculus. The solver functions bypass inherent
restrictions on built-in math and user defined functions by taking
variable formulas as a new type of argument while retaining purity
and recursion properties. The enabling mechanism permits
integration of numerical algorithms into worksheet functions for
solving virtually any computational problem that can be modelled by
formulas and variables. Several examples are presented for
computing integrals, derivatives, and systems of deferential-algebraic
equations. Incorporation of the worksheet solver functions with the
ubiquitous spreadsheet extend the utility of the latter as a powerful
tool for computational mathematics.

Keywords—Calculus functions, nonlinear systems, differential
algebraic equations, solvers, spreadsheet.

1. INTRODUCTION

HE ubiquitous spreadsheet application, primarily Excel, is

widely used by professionals for diverse applications in
business [1], engineering and science [2], [3]. It is also
commonly used in the classroom as a math tool, thanks in part
to its ease of use, rich built-in mathematical and statistical
functions, and graphing tools. There are over 500 built in
intrinsic functions in Excel grouped in a dozen categories,
including engineering, math, financial, statistical, etc. The
author was intrigued by the logical question: why the
spreadsheet has never offered a calculus category among its
math functions.

Calculus is devoted to the study of functions which the
spreadsheet offers an intuitive interface for defining (i.e.,
formulas). It would thus present an ideal platform for
supporting built-in calculus functions. (Here we use the term
‘function” in its strict mathematical sense that is a
preserving map from input to output, i.e., a function does not
modify its input and produces no side effects.) For instance,
one can conceive of a pure worksheet integration function that
takes a formula and limits as inputs and computes its accurate
integral, much like a built-in math function takes a number
and computes its square root. Evidently, people have come up
with all sorts of procedures to approximate a formula integral,
from implementing trapezoidal summing integration rules on
discrete data in the spreadsheet to writing custom VBA
programs [4], [5]. Not only are such procedures generally
inaccurate, but they are inherently limited in scope, and
reusability.

Introducing worksheet calculus functions to the spreadsheet
requires the ability of the latter to support first class functions,
that is, functions that can take other functions as arguments

C. Ghaddar is with ExcelWorks LLC, Sharon, MA 02067 USA (e-mail:
cghaddar@excel-works.com).

while preserving mathematical properties. It turns out,
unfortunately, that the spreadsheet’s inherent design does not
naturally support the creation of first class worksheet
functions. Specifically, there are two distinct venues for
adding functionality to a spreadsheet: commands and
functions [6]. A command is the standard mechanism for
evaluating formulas in the spreadsheet: values for the
independent cells are changed and the dependent formulas
cells are recalculated. A command works by mutating its own
inputs and does not constitute a mathematical function. On the
other hand, the spreadsheet restricts intrinsic and user defined
functions that can be invoked in formulas to operate on
constant inputs only, and unlike commands, grants them
limited access to its features [7], [8]. As such a user defined
function cannot evaluate formulas or change any data in the
spreadsheet.

The benefits to be gained by overcoming the spreadsheet’s
restrictions on worksheet function input types are noteworthy.
For one, the spreadsheet’s computational engine could be
exploited to support calculus functions such as integration,
differentiation, and solvers for virtually any system defined by
functions (e.g., differential equations), in an intuitive manner.
Second, a worksheet solver encapsulates its underlining
algorithm and separates the numerical procedure which is
often of less interest to the user from the problem input model
and output solution. In contrast, the command mechanism,
utilizes the spreadsheet explicitly as the computational grid for
the numerical algorithm. In essence, it mixes up inputs,
algorithmic procedure, and results overwriting inputs by
results. More importantly, by preserving function properties
such as purity and recursion, the functions can achievably
support a functional paradigm for solving more complex
problems implicating multiple topics and solvers such as
dynamical optimization or optimal control [9]. As commands,
(the only mean for evaluating formulas) do not possess
essential properties to support a functional paradigm, solving
dynamical optimization problems have remained outside the
scope of traditional spreadsheet applications.

Accordingly, the author has developed a method which
supports the creation of worksheet first class functions in the
spreadsheet while preserving essential properties of purity and
recursion. Details of the method are provided in [10] and are
rather technical in nature as they relate to the spreadsheet
object model, Advanced Programming Interface (API), and
topics in computer science. The main idea of the method,
however, is to capture the definition of a function’s input
formula using the spreadsheet API and construct a relational
graph of nodes representing the formula inter-dependence on
nested formulas, variable cells, and recursive calls. A graph
evaluator which exploits the spreadsheet API is employed to
evaluate the relational nodes of the graph in an order of their

194

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

interdependence based on the supplied values of the variables,
and aggregating the values of the nodes to obtain the value of
the input formula all without modifying any data in the
spreadsheet. The method has been employed, according to the
flowchart of Fig. 1, to create several novel worksheet
functions for solving a variety of computational calculus
problems [12].

Input:
. Problem formulas
* Problem variables
. Problem parameters

A

Construct evaluation graphs for problem
formulas

Run Solver
CONVERGED?

Solver numerical algorithm provides values for formulas’
variables and requests values for formulas

Y

Evaluate formulas’ graphs and return values to
solver underlining algorithm

Fig. 1 Flowchart for worksheet calculus function design

The remainder of this article is divided into three sections,
with each section dedicated to presenting selected worksheet
solvers and examples for the following topics:
= Computing integrals and derivatives of any order,
= Solving nonlinear systems of algebraic equations,
= Solving ordinary differential algebraic equations.

We remark that the focus of the paper is to illustrate the
application of the new spreadsheet solution methodology
rather than analyze any specific problem. Furthermore, it is
not our intent here to provide a review of other non-
spreadsheet tools capable of solving similar problems. Instead
the reader can withdraw own conclusion on the merits of this
approach in comparison to other familiar mathematical
software. Finally, we recommend reviewing Appendix Al
which includes a brief description of basic spreadsheet
concepts for any reader not familiar with spreadsheet prior to
reviewing the worksheet solvers.

II. INTEGRALS AND DERIVATIVES

We begin by introducing the worksheet numerical
integration function

=QUADF (f, x, a, b, [Options]) ()

for computing definite or improper one-dimensional integrals
f: f(x)dx. QUADF implements the algorithms in the package
QUADPACK [11] which include fixed-order, and adaptive
algorithms suitable for smooth and irregular integrands. In
addition to the required parameters f, X, @, and b, QUADF
accepts optional arguments for algorithm selection control,
and for supplying any known singularities as described in
[12]. We demonstrate QUADF by computing the following
integral:

1
f l%}:dx =—4)
0

The integrand formula in (2) is defined in cell Al using X1
as variable as shown in Fig. 2. Note that Excel reports an error
in Al since X1 is undefined and defaults to zero. This error
can be ignored since X1 merely serves as a dummy variable
and its value is irrelevant. The integration formula is defined
in A2, passing in the integrand formula, the variable of
integration, and values for the limits. Evaluating A2 yields the
result. Note, that since QUADF is a pure function, it does not
modify its input or any data in the spreadsheet other than
displaying the result in its own cell A2.

A A
1 =LN(X1)/SQRT(X1) 1 #NUM!
2 =QUADF(A1,X10,1)) 2 4

Fig. 2 Computing integral (2) in Excel

Using recursion, multiple integrals of any order can be
computed by a direct nesting of QUADF, as demonstrated by
the following volume integral example:

fdxf dy f 1—x dz= 3)

To compute (3), we construct a simple functional program
consisting of three nested calls of QUADF, as shown in Fig. 3.
Using X1, Y1 and Z1 as dummy variables, the integrand
formula is defined in Al, and the inner, middle, and outer
integrals formulas are inserted in A2, A3 and A4 respectively,
with each inner QUADF formula serving as the integrand for
the next outer QUADF formula. Evaluating the outer integral
in A4 computes the triple integral value.

195

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

=1-X1
=QUADF(A1,21,0,6-3*X1-2*Y1)
=QUADF(A2,Y1,0,3-3*X1/2)
=QUADF(A3,X1,0,2) —

B W N R
B W N R
ww oo e P

Fig. 3 Computing triple integral (3) in Excel

Using the same procedure, we can as easily compute
improper integrals such as the double integral (4) by
specifying the strings “inf” or “-inf’ for infinite limits as
demonstrated in Fig. 4.

[ee] [ee] 1
fdx f e dy = c 4)
0 X
B B
=EXP(-X1-2%Y1) 1 1
=QUADF(B1,Y1,X1,"inf") 2 0.5

3 -QUADF(B2,X1,0,"inf") |:’> 3 0.1666666667

Fig. 4 Computing improper integral (4) in Excel

Likewise, we introduce the numerical differentiation
worksheet function:

=DERIVF(t x, p,n, [options]) (5)

to compute the nt" exact derivative of a function f(x) at a
specified point p, ;x—n f(x =p). DERIVF implements
Ridders’ algorithm [13], [14] which uses an adaptive step size
to produce superior accuracy compared to a simple finite
difference scheme. Algorithm settings can be adjusted via the
optional arguments [12]. We illustrate DERIVF in Fig. 5 by

computing the derivative for the following formula at the point
x=0.5.

O Jos = 2 —3 ¥R =~ 3.808685268 6
dx\/§|°'5_(x 5 VxInx)fos = 3. ©6)
2 A
1 =N(X1)/SQRT(X1) 1 #NUM!

3.808685268

[::) 2

Fig. 5 Computing derivative (6) in Excel

2 =DERIVF(A1,X1,0.5)

Applying recursion again, DERIVF can be employed to
compute a mixed partial derivative for any formula in Excel as
demonstrated in Fig. 6 for the following example:

cos(xy) |(gm = — sin(m?) — w?cos(m?)

= 9.3394486379

0
Jdy 0x (N

B B
1 =cos(x1*Yv1) 1 1
2 -DERIVF(B1,X1,PI() 2 0

3 _perIVF(B2,YLPI() [3 9.3394486379

Fig. 6 Computing mixed partial derivative (7) in Excel

III. NONLINEAR ALGEBRAIC SYSTEMS

To compute the least-squares solution to a system of
algebraic equations and inequalities, we require the system be
presented in the following ordered form in which any
inequalities are listed last:

, i=k+1m ®)

To solve the system (8) we introduce the worksheet solver
function NLSOLVE:

=NLSOLVE (lhs, vars, [ineq], [options]) ©)]

NLSOLVE is passed references to the system LHS formulas
f;, the variables, and the number of inequalities. The system
analytic Jacobian and algorithm settings may be supplied via
optional parameters [12]. NLSOLVE employs the Levenberg-
Marquardt algorithm [15], [16] to find optimal values for the
system variables, x, by minimizing an implicit objective
function representing the sum of squares of the equations and
active inequalities. We demonstrate using NLSOLVE for
solving the following system which has the solution (1, 10, 1,
5,4,3)[17]:

Xze 01Xt — x,0701%2 4y @ O01Xs _ =01 4 §o=1 _ 3,04

=0

x3e_0'2x1 _ x4e_°'2x2 + x6e—0.2x5 — e 02y 52 _ 3,708
=0

x3e_0'3"1 _ x4e_°'3x2 + x6e_0'3x5 — e 03 153 _ 3,712
0 (10)

x3e—0.4x1 _ x4e_0'4x2 + x6e—0.4x5 — e 04 L 54 _ 3,716
=0

x3e‘°'5"1 _ x4e_°'5"2 + xée‘°-5"5 — @705 1 5075 _ 32
=0

x3e—0.6x1 _ x4e—0.6x2 + x6e—0.6x5 _ e—o.s + 56_6 _ 36_2'4
>0

We define the system formulas in Excel as shown in Fig. 7,
and compute the solution by evaluating the following
NLSOLVE formula in an allocated range B1:C7:

=NLSOLVE (A1:A6, X1:X6, 1) (11)
passing in the formulas, the variables which are seeded by an

initial guess of one, and the number 1 to indicate the last
formula in the argument A1:A6 represents an inequality.

196

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

A
=X3*EXP(-0.1*X1)-X4*EXP(-0.1*X2)+ X6 *EXP(-
0.1*X5)-EXP(-0.1)+5*EXP(-1)-3*EXP(-0.4)
=X3*EXP(-0.2*X1)-X4*EXP(-0.2*X2)+X6* EXP(-
0.2*X5)-EXP(-0.2)#5*EXP(-2)-3*EXP(-0.8)
=X3*EXP(-0.3*X1)-X4*EXP(-0.3*X2)+ X6 *EXP(-
0.3*X5)-EXP(-0.3)+5*EXP(-3)-3*EXP(-1.2)
=X3*EXP(-0.4*X1)-X4*EXP(-0.4%X2)+X6* EXP(-
0.4*X5)-EXP(-0.4)+5*EXP(-4)-3*EXP(-1.6)
=X3*EXP(-0.5*X1)-X4*EXP(-0.5*X2)+X6*EXP(-
0.5*X5)-EXP(-0.5)+5*EXP(-5)-3%EXP(-2)
=X3*EXP(-0.6*X1)-X4*EXP(-0.6*X2)+X6* EXP(-
0.6*X5)-EXP(-0.6)+5*EXP(-6)-3*EXP(-2.4)

Fig. 7 Definition of system (10) formulas in Excel

Since NLSOLVE formula (11) computes an array of
numbers, it must be executed as an array formula in the
allocated range by pressing the keys CTRL+SHIFT+ENTER.
The solver computes the solution shown in Fig. 8.

B C
1 X1 1
2 X2 10
3 X3 1
4 X4 5
5 X5 4
6 X6 3
7 SSERROR 5.86E-29

Fig. 8 Solution computed by (11) in Excel

IV. ORDINARY DIFFERENTIAL EQUATIONS

By the same method, we developed pure worksheet
functions for solving a general ordinary differential algebraic
system (DAE). We require the system be represented as a set
of first order ODEs followed by any algebraic equations as:

dui_ =1
E—fi(X,u.J’), i=1n (12)

0 :gj(xrul}’)' j: 17 m

where u are the differential variables, and y are the algebraic
variables. We define the DAE system (12) in Excel by ordered
RHS formulas (f,.., fu, g1, -, gm) and corresponding variables
(x, Uy, .., U, Y1, -+, Ym), and represent the computed solution in a
tabular array as shown in Fig. 9. In the solution layout, values
for the independent variable are reported at uniform intervals
according to the available number of rows in the allocated
range that holds the solution. Alternatively, we can also report
the solution at custom values for the independent variable via
optional parameters to the solver [12]. Depending on the type
of boundary conditions, the system (12) could describe either
an initial value problem or a multi-point boundary value
problem. We present below two worksheet solvers and
examples for both types of problems.

A B C D
1 X u; Uz Uz
2
3 Uniform or
custom output Corresponding

4 values for solution values for
5 independent dependent

variable variables
N

Fig. 9 Solution layout for DAE systems in Excel

A. Initial Value Problems

To computes the solution to an initial value DAE system
(12) with initial conditions u;(0) = a;, y;(0) = b;, and over
the intervalx € [0 T] we introduce the worksheet solver
function IVSOLVE:

=[VSOLVE (rhs, vars, interval, m, [options]) (13)

References to the system RHS formulas are supplied via
rhs, and the system variables are seeded with initial
conditions and supplied via vars, The integration interval is
defined in the third parameter, interval, and the number of
algebraic constraints is supplied in m. IVSOLVE implements
several integration schemes [18], [19] suitable for stiff and
smooth problems. Algorithmic control an optional system
analytic Jacobian can be supplied via [options] [12]. We
illustrate IVSOLVE by solving the index 1 DAE system given
in (14) on the interval t € [0,1000] starting from initial
conditions y; = 1,y, = 0,y; = 0.

d
—dyt L = 0.04y; + 10%y,y,
dy

—5 = 004y, — 10%y,y; — 3+ 1073
O=y+y,+y;—1

(14)

The system RHS formulas are defined in cells A1:A3 using
T1 for the time variable, and Y1, Y2, Y3 for the state variables
with the specified initial conditions as shown in Fig. 10.

A
=-0.04*Y1+10000*Y2*Y3 1
=0.04*Y1-10000¥Y2¥Y3-30000000¥Y2"2 | 2
=Y1+Y2+Y3-1 3

W k=
o o =

Fig. 10 Definition of system (14) in Excel

Next the IVSOLVE formula (15) is executed in the range
C1:F22 which computes and displays the solution shown
partially in Fig. 11, and plotted in Fig. 12.

=IVSOLVE (A1:A3,(T1,Y1:Y3),{0,1000}1) (15)

197

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

C D E F
1 7 Y1 Y2 Y3
2 0 1 0 0
3 50 069288 8.34415E-06 0.307111
4 100 0.617245 6.1538BE-06 0.382748
5 150 0.570229 5.12407E-06 0.429765

20 | S00 0.349743
21 S50 0.343131
22 | 1000 0.336882

2.13047E-06 0.650255
2.06992E-06 0.656867
2.01377e-06 0.663116

Fig. 11 Solution computed by (15) in Excel

12 0.000009
- =] + 0.000008

! \ ceeeeey3 L 0.000007
038 ¥2 0.000006

\ veessses| 0.000005
0.6 ~ esss®

' ‘*\ - 0.000004
0.4 LS 0.000003
& &

: - 0.000002

02 4&
" + 0.000001
0 : : : . 0
0 200 400 600 800 1000

Fig. 12 Plot of solution computed by (15)

B. Boundary Value Problems

To compute solutions to multi-point boundary-value DAE
systems (12), we introduce the worksheet solver function
BVSOLVE:

=BVSOLVE (rhs, vars, bpts, bcs, interval, m, [options]) (16)

BVSOLVE implements the COLDAE collocation algorithm
[20], [21]. The steps for defining a boundary value problem in
Excel are similar to the initial value problem, but requires
additional input to specify the boundary points and associated
conditions which are supplied via bpts and bcs respectively.
Algorithmic control, as well as Jacobian matrices, can be
supplied via optional parameters [12].

We demonstrate BVSOLVE for the following nonlinear
stiff differential equation [22]:

2.4 A 0.4
e A(X)yy" — <— - eA’(x)) yy' + y; + @) (1 _ —yz)

2 A(x) 2
=0
(17)
A(x) =1+ x?
y(0) =0.9129, y(1) = 0.375
0<x<1

Using a standard substitution, we convert the 2™ order
equation (17) to two 1% order equations:

dy
E—Z
dz _ 1
E_SA(x)y (18)

2.4 , z A'(x) 0.4
(3 ore-i-200-2)

To model (18) in Excel, we define the RHS formulas in
C1:C2 using X1 for the free variable and, Y1 and Z1 for the
differential variables, as shown in Fig. 13.

C
1 =Z1

=((2.42-E1*B1)*Y1*Z1-Z1/Y1-BI/A1*(1-

2| 0.42*Y172))(E1*A1*Y1)

Fig. 13 Definition of system (18) formulas in Excel

In the RHS formulas, we make references to three
additional cells E1, A1 and Bl1. These cells define formulas
for €, A(x), and A'(x), respectively, as shown in Fig. 14. We
could have substituted these values directly into the RHS
formulas C1 and C2; however, this permits us to vary the
definitions for these parameters later, and Excel automatically
recalculates a new solution.

1| =Z1
=((2.4/2-E1*B1)*Y1*Z1-ZI/Y1-BI/A1*(1-

2 0.42*Y172))(E1*A1*Y1)

Fig. 14 Definitions for ¢, A(x), A'(x) of system (18)

Next, we define the boundary points and corresponding
condition formulas in cells F1:F2 and G1:G2, respectively, as
shown in Fig. 15. Note transformation (18) preserves the
original boundary conditions assigned to the variable y.

F G
0 =Y1-0.9129
2 1 =Y1-0.375

Fig. 15 Boundary points and conditions for system (18)

Finally, since the system RHS formula involves division by
the variable y, we need to start from a nonzero initial guess for
Y1; therefore, we assign the value 1 for cell Y1 to avoid
division by zero. This completes the definition for the
boundary value problem (17) in Excel.

To solve the boundary value problem (17) we execute the
following BVSOLVE formula:

=BVSOLVE (C1:C2, (X1,Y1,Z1), F1:F2, G1:G2, {0,1})) (19)

in an allocated range H4:J25, passing in the system RHS
formulas, variables, boundary points and conditions, and the

198

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

domain [0 1]. BVSOLVE computes and displays the solutions
shown in Fig. 16 and plotted in Fig. 17.

H I J

4 X1 Y1 Z1

5 0 0.9129 0.835223
6 0.05 | 0.954646 0.834019
7 |01 0.996237 0.828936
8 0.15 | 1.037468 0.819592
9 02 1.078129 0.806201
10 025 | 1.118026 0.789141
11 03 1.15699 0.7689
12 035 | 1.194872 0.745969
13 04 1.231542 0.72026
14 | 045 126676 0.684865
15 05 1.29864% 0.546927
16 055 | 1.305552 -0.73972
17 | 0.6 1.083584 -10.5522
18 | 0.65 | 0.603002 -2.53229
19 | 0.7 0.547885 -0.76692
20 | 0.75 | 0.511759 -0.68353
21 08 0.479252 -0.6188
22 085 | 0.449708 -0.56442
23 09 0.422687 -0.51745
24 | 095 | 0.397869 -0.47612

25 |1 0.375 -0.43631

Fig. 16 Solution computed by (19) in Excel

2 1.4
-"‘\
0 . == NV T 1.2
- '
0z-"" 04 &6 /'—U'r—_
-
2 f—swe=” A 1
o |‘I
4 ll 0.8
\
6 0.6
— 71 Sal
- - -

8 ===Vl el 04
10 V 0.2
12 0
Fig. 17 Plot of solution computed by (19) for boundary value system

a7

V.CONCLUSION

Excel’s computing engine was exploited to develop a novel
set of worksheet calculus solver functions with no precedent in
spreadsheet utility. Design of the solvers was made possible
by bypassing inherent spreadsheet limitations that restricted
functions to operating on constant inputs only, while retaining
essential properties of purity and recursion. The solvers are
assembled in an Add-In software library [12], which integrates
seamlessly with MS Excel. Detailed descriptions, additional
solvers and examples can be found in [12].

Several examples were presented to demonstrate the merits
of the worksheet solvers, including simplified modeling,
transparency with no hidden settings, or user dialogues, and
separation of input, algorithms, and output which are
inherently mixed when using conventional methods.

Recognizing that performance is central to the viability of
any computational strategy, the solvers achieve competitive
performance thanks to the direct coupling to the spreadsheet
engine APIL. Although we do not provide benchmark
performance data in this article, we comment that all the
preceding examples compute on the order of a second or less,
on a typical computer with an Intel core i5 processor.

The effort invested in this development aims at offering
intuitive and readily accessible advanced computing suited for
both novices and experts. Future work will focus on extending
this frame work to support a functional paradigm approach for
problems in dynamical optimization and optimal control.

APPENDIX

A. Basic Spreadsheet Concepts

A typical worksheet in Excel is composed of a large
structured grid. Each cell in the grid is referenced by its
column label and row number, e.g., Al, and represents a
global memory placeholder. A range of cells can be referenced
as a rectangular array, e.g., A1:B3, or a union of disjoint
arrays and cells, e.g., (X1, A1:A3). A cell may store a
constant value or a formula defined using basic spreadsheet
syntax, e.g., ‘= SQRT (X1"2 + Y1*¥Y1)’. The spreadsheet
engine insures orderly evaluation of all dependent formulas
upon a change in the value of any cell. A general function can
thus be identified by a root formula and a list of variable cells.
Nested dependency allows arbitrarily complex functions to be
constructed. To motivate the possibilities, consider the
formula ‘=SUM (X1:Z1)’ assigned to Al, the pair (Al, Y1)
identifies the function f(y)=X1+y+Z, where X1 and Z1 are
treated as constant values. In another example, consider the
formula ‘=1+COS(B1)’ assigned to Al, and the formula
‘=SQRT(ABS(X1))’ assigned to BIl, the pair (Al, X1)
identifies the function f(x)=1+cos (\ (|x|)).

Excel supports two types of formulas: simple formulas and
array formulas. A simple formula is assigned to one cell and
evaluates to a single value, e.g.,’=SUM (Al:B4)".
Alternatively, an array formula is assigned to a range of cells
and evaluates to an array of values (e.g., ‘=MINVERSE
(A1:C3)> which computes the inverse of the 3 by 3 matrix
Al1:C3).

REFERENCES

[1] Laughbaum, Edward D., Seidel, Ken, “Business math Excel
applications,” Prentice Hall 2008.

[2] Larsen, R. W., “Engineering with Excel,” Pearson Prentice Hall 2009,
New Jersey. ISBN 0-13-601775-4

[3] Bourq, David M., “Excel scientific and engineering cookbook,”
O’Reilly, 2006

[4] E. J. Billo, Excel for Scientists and Engineers, WILEY-
INTERSCIENCE, 2007

[5] Kim Gaik Tay, Tau Han Cheong, Nur Kamil Adli Mohd Nawar, Sie
Long Kek, Rosmila Abdul-KaharA, “Romberg Integral Spreadsheet
Calculator”, Spreadsheets in Education (eJSiE), 2015

[6] Excel Commands, Functions, and States, MSDN publication, accessed
1/20/2016,
https://msdn.microsoft.com/en-us/library/bb687832(v=office.15).aspx

[7]1 S. Dalton, Financial Applications using Excel Add-in Development in
C/C++, The Wiley Finance Series, 2007.

199

9]

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

[18]

[19]

[20]

[21]

[22]

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:4, 2016

Description of limitations of custom functions in Excel, accessed
1/20/2016, https://support.microsoft.com/en-us/kb/170787

C. Ghaddar, “Modeling and Optimization of Dynamical Systems by
Unconventional Spreadsheet Functions.” American Journal of Modeling
and Optimization. Vol. 4, No. 1, 2016.

C. Ghaddar, “Method, Apparatus, and Computer Program Product for
Optimizing Parameterized Models Using Functional Paradigm of
Spreadsheet Software,” USA Patent No. 9286286.

R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, and D.K.
Kahaner, “QUADPACK A subroutine package for automatic
integration,” Springer Verlag, 1983.

C. Ghaddar, “ExceLab Reference Manual”, accessed 3/7/2016,
www.excel-works.com

C.J.F. Ridders, Advances in Engineering Software, vol 4, 75-76, 1982.
Numerical Recipes in C: The Art of Scientific Computing, Cambridge
University Press, 1992.

K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” Quarterly of Applied Mathematics vol 2,
164-168, 1944.

D. Marquardt “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters,” SIAM Journal on Applied Mathematics vol 11 (2), 431—
441, 1963.

J. More, B. S. Garbow, and K. E. Hillstrom, “Testing unconstrained
optimization software,” ACM Trans. Math. Softw, vol 7, 17-41, 1981

E Hairer and G Wanner, “Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems,” Springer Series in
Computational Mathematics, 1996.

A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE
Solvers,” in Scientific Computing, R. S. Stepleman et al. (Eds.), North-
Holland, Amsterdam, 1983, pp. 55-64.

U. M. Ascher, R. M. Mattheij and R. D. Russell, “Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations,” SIAM,
1995.

U. Ascher and R. Spiteri “Collocation software for boundary value
differential-algebraic equations,” SIAM Journal on Scientific
Computing. 1994, 15,938-952.

K Soetaert, J. Cash, and F. Mazzia, Package bvpSolve, solving test
problems, accessed 1/20/2016,
http://www.ma.ic.ac.uk/~jcash/BVP_software/PROBLEMS.PDF

200

