
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:9, No:3, 2015

473

�

Abstract—Zinc oxide (ZnO) is one of the light
in ultraviolet (UV) region. In addition, ZnO nano
attracting increasing research interest as buildin
optoelectronic applications. We have succeede
vertically-aligned ZnO nanostructures by laser inter
which is catalyst-free and non-contact techniq
vertically-aligned ZnO nanowall arrays were 
two-beam interference. The maximum height and a
the ZnO nanowalls were about 4.5 μm and 200 nm
lasing from a piece of the ZnO nanowall was obtai
harmonic of a Q-switched Nd:YAG laser excitation
threshold power density for lasing was abo
Furthermore, UV lasing from the vertically-aligned
also achieved. The results indicate that ZnO nanow
to random laser.
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I. INTRODUCTION

INC oxide (ZnO) is a group II-VI semi
wide band gap energy of 3.37 eV and

binding energy of 60 meV [1], which is larger
energy at room temperature. Thus, ZnO i
promising material for optoelectronic devices
addition, ZnO nanostructures, such as nano
have attracted a great deal of attention becaus
optoelectronic properties. ZnO nanostruc
emitting devices, including light emitting
[2]-[4] and UV lasing mediums [5], [6] hav
Those ZnO nanostructures can be fabric
methods, such as chemical vapor deposit
hydrothermal synthesis [8]; nanoparticle assi
deposition (NAPLD) method [9], [10] and so
order to apply the ZnO nanostructures to p
controlling growth position is essentially req
lithographic and imprinting methods are 
[11]-[14]. On the other hand, these manufactur
complex and catalysts or resists are generally 
we have succeeded in growing periodic ZnO n
laser interference patterning to a ZnO buffer la
this study, we synthesized vertically-aligne
array by using two-beam interference. Th
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II.SYNTHESIS OF ZNO
ZnO nanostructures were fabricat

sapphire substrates by NAPLD met
growth of the ZnO nanostructures, th
control was prepared by the pulse
method using ZnO sintered target. Th
which was placed on a SiC plate in fr
500°C. These were placed in a vacu
gas at 3 Pa. Target was ablated f
harmonics of a Q-switched Nd: YAG
repetition rate of 10 Hz at a fluence o
the ZnO buffer layer was about
two-beam laser interference pattern
buffer layer using the third harmonic
nm) to the buffer layer with a flue
shows the schematic of the two
patterning. The laser beam was di
diffracted beams were collimated by
beams were extracted by a spatial fil
on the surface of ZnO buffer layer b

Fig. 1 Schematic of two-beam lase

Figs. 2 (a) and (b) show the sca
(SEM) image and cross-sectional pro
layer measured by the atomic force
periodic structures were obtained
patterning. The patterned depth of Z
86 nm, and the rims were created at 
line.
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Fig. 3 SEM images of (a) the ZnO nanowalls grow
and (

The patterned buffer layer was put on the S
750 °C in the vacuum chamber filled with Ar
of 26.7 kPa, and ZnO nanostructures were sy
buffer layer by ablating a pure ZnO sinter
minutes. Fig. 3 (a) shows the SEM image o
synthesized on the patterned buffer layer. V
ZnO nanowalls were grown at edge of the pat
maximum height of ZnO nanowall was about
average thickness of the ZnO nanowall was a
the other hand, vertically-aligned nanowires w
non-patterned buffer layer, as shown Fig. 3 (b
have a diameter of 100-150 nm. In Fig. 3 (a), s
can be seen between the nanowalls, on whic
was irradiated. In contrast, random nanowire
the sapphire substrate, as shown in Fig. 3 (c). 
that the buffer layer works to align the nanowir
buffer layer enhances the nucleation and gr
nanowires [15].

III. OPTICAL CHARACTERISTIC OF ZNO N

A. Lasing in Single Piece of ZnO Nanowall
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propagates inside the nanowall by the reflectio
of ZnO and air, and then random oscillation 
nanowall would be formed due to the distorte

Fig. 6 The peak intensities plotted as a function of th
densities at 386.2 nm

Fig. 7 (a) CCD image of the vertically-aligned Zn
under excitation, and (b) the SEM image of the ZnO

by the circle in Fig. 7 (a)
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Fig. 10 The CCD images of the vertically-aligned ZnO nanowall array excited from different angles of (a) 92o, (b) 20o, and (c) 120o

Fig. 11 PL spectra of the vertically-aligned ZnO nanowall excited
from different angles as shown in Fig. 10.

IV. CONCLUSION

Vertically-aligned ZnO nanowalls were synthesized by
NAPLD method on ZnO buffer layer patterned by two-beam
interference patterning. The size of the ZnO nanowall was that
the maximum height was about 4.5 μm, and the average
thickness was about 200 nm. Random lasing from a piece of
ZnO nanowall was obtained due to high-light confinement. In
addition, lasing from the vertically-aligned ZnO nanowall
having relative low leakage of the light was achieved for the
first time, and the threshold excitation power density was
estimated about 1150 kW/cm2. Moreover, PL spectra from the
ZnO nanowalls were changed by changing irradiation angle.
Our results demonstrate the potential application of the
vertically-aligned ZnO nanowall array for random lasing
devices.
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