
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2689

Abstract—Semantic query optimization consists in restricting the

search space in order to reduce the set of objects of interest for a
query. This paper presents an indexing method based on UB-trees
and a static analysis of the constraints associated to the views of the
database and to any constraint expressed on attributes. The result of
the static analysis is a partitioning of the object space into disjoint
blocks. Through Space Filling Curve (SFC) techniques, each
fragment (block) of the partition is assigned a unique identifier,
enabling the efficient indexing of fragments by UB-trees. The search
space corresponding to a range query is restricted to a subset of the
blocks of the partition. This approach has been developed in the
context of a KB-DBMS but it can be applied to any relational
system.

Keywords—Index, Range query, UB-tree, Space Filling Curve,
Query optimization, Views, Database, Integrity Constraint,
Classification.

I. INTRODUCTION

ERFORMANCE enhancement is an important research area
in the database domain especially when the DBMS deals

with huge volumes of data. This problem has become crucial
with the advent of applications/systems like Data Warehouses,
Geographical Information Systems (GIS), spatial databases,
multimedia databases, etc. Several techniques have been
proposed and used to improve the performance of DBMS at
the software level. Among these methods, there are data
clustering, indexing data structures, query optimization,
buffering, etc. Since a physical organization of data based on
efficient indexing data structures with adapted query
processing is one of the keys to efficient data retrieval, an
important number of works in this domain have been
proposed and implemented. There are two approaches to
organize physically data on a secondary storage:

1) indexing based on a single attribute, e.g., hashing
techniques, binary-tree, B-tree family [3], and

2) indexing based on multiple attributes, known as
multidimensional indexing, e.g., multi-dimensional

 S. Housseno Laboratoire TIMC-IMAG, Faculté de Médecine de Grenoble

38706 La Tronche cedex – France fax : 0033 4 76 76 88 44, e-mail:
samer.housseno@imag.fr

A. Simonet Laboratoire TIMC-IMAG, Faculté de Médecine de Grenoble
38706 La Tronche cedex – France fax : 0033 4 76 76 88 44, e-mail:
ana.simonet@imag.fr

M. Simonet Laboratoire TIMC-IMAG, Faculté de Médecine de Grenoble
38706 La Tronche cedex – France fax : 0033 4 76 76 88 44, e-mail:
michel.simonet@imag.fr

extensible hashing [7] R-trees [21], X-tree [8], Grid
files [19], EXCELL [18].

This paper deals with the second approach.
The indexing method presented in this paper was designed

for an object data model that aims at unifying databases and
knowledge bases [16]. This model has been implemented in
the KB-DBMS prototype Osiris. As a DBMS, it is based on
views defined by logical constraints on attributes; as a KBMS
it performs instance classification on every object in the
database.

However, the indexing method presented in this paper can
be applied to any relational system provided it is possible to
build a partitioning of the data (object) space into disjoint
clusters.

In the Osiris KB-DBMS, a static analysis of the object data
model enables the system to build a partitioning of the object
space into disjoint blocks. Each block covers a portion of the
object space. Instead of indexing directly the objects, the
system indexes the blocks. For each query, the smallest set of
indexing blocks that « contains » the query can be determined.

The problem addressed in this paper is that of representing
the object space through the disjoint blocks, in order to
support efficient access to the objects of a query. Blocks are
by nature multi-dimensional. A block is a hyper-rectangle in a
N-dimensional space, where N is the number of attributes.
Each side of this hyper-rectangle represents an interval of the
domain of its attribute. An Active block contains at least one
object in the actual database. The set of Active blocks is
indexed using a UB-tree [1], which is a multi-dimensional
generalization of B-tree [3] based on Z-order curve [6].

The paper is organized as follows. A short survey about the
multi-dimensional indexes and the type of supported queries is
presented, then the Osiris system and its main concepts that
are necessary to understand the partitioning approach of the
object space are explained. The UB-tree indexing and how the
object space (called Classification Space) is indexed using
UB-trees organization is then presented. Finally, the
processing of range queries in our approach is explained.

II. MULTI-DIMENSIONAL INDEXING
The indexing data structures which index data based on a

single dimensional key like binary-tree, B-tree, etc. are
efficient in database systems to support operations on data like
retrieval, deletion, etc. However, these indexes are not suitable
to situations where queries have multiple search keys [15],
such as range queries and similarity queries, which play an

UB-Tree Indexing for Semantic Query
Optimization of Range Queries

S. Housseno, A. Simonet and M. Simonet

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2690

important role in many current situations such as Data
Warehouses, spatial databases, multimedia databases,
computer graphics, Geographical Information Systems (GIS),
etc. To deal with these new database systems and applications;
the representation of multi-dimensional data is an important
issue.

Multi-dimensional data is to be seen as a collection of
points (objects) in a higher dimensional space, i.e., whose
dimension is greater than 1 [20]. For these object spaces, high-
dimensional indexing methods have been considered as an
important means to facilitate fast query processing. To support
efficient retrieval in such high-dimensional databases, indexes
are required to prune the search space.

Multi-dimensional indexes are required to support queries
such as [15]:

1) Complete/Partial Range queries, and
2) Similarity queries:

a) Similarity range queries: « find all objects
in the database which are within a given
distance from a given object », and

b) K-nearest neighbor (KNN) queries: « find
the K-most similar objects in the database
with respect to a given object ».

This paper deals with complete range queries.
• Informally, a complete range query RQ is of the

form « Find all objects whose attribute values fall
within a certain given range » [15]. For this type of
query, a class C with n attributes can be considered
as a n-dimensional space EC, defined as a Cartesian
product of the domains D1 x D2 x …x Dn, where the
dimension Di represents the domain of an attribute
Attri. In this space, an object oj, represented by the n-
uple :<vj1, vj2, …, vjn>, represents a point in the EC
space and vji represents its coordinate in the
dimension Di. In this space, a query is defined as: {o
∈ Ec ⎪ o ∈ RQ}.

• Formally [15], if δi is the range of a query along the
dimension Di. The result of the query: Q={δ1,
δ2,...,δn}; is the collection of {oj∈ EC} that satisfy the
condition vj1 ∈ δ1, vj2 ∈ δ2, … , vjn ∈ δn.

Multi-dimensional indexes such as R-trees [21] are not
scalable in terms of the number of dimensions. When the
dimensionality of data is high, the performances of R-tree-
based index structures deteriorate rapidly [17]. Another type
of indexing structures such as Grid files [19] and EXCELL
[18] have been proposed. In this type of structure, data
partitioning is dynamic, i.e., for each attribute, it is based on
the distribution of the attribute values on its domain at a given
moment.

To resolve the ‘dimensionality curse’ [15], [9] in these
methods, some authors [5] have proposed to reduce the
dimensionality of data by transforming data objects from a
multi-dimensional space into one-dimensional space. Space
Filling Curve is a way of mapping the multi-dimensional
space into one-dimensional space [6]. A space filling curve

imposes a linear order on the points by assigning an identifier
to each one. A one-dimension index may then be used to
index points (objects) by their identifier. As a result, the size
of the indexed data is reduced, resulting in a smaller index
size and a faster algorithm for search processing.

A space filling curve technique and one-dimension index
are not used to index directly the objects. The indexing
method presented in this paper uses them to index the disjoint
blocks of the partition of the object space. In this approach,
the partition of the object space is a semantic partition because
it is based on the static analysis of object data model. This
semantic partition provides an efficient query optimization
because the query handles sets of objects instead of individual
objects. In this type of approach, the phenomenon of partitions
overlapping which happens with an index like R-tree is
avoided. To explain how disjoint blocks are obtained from the
object data model, a short presentation of main notions of
Osiris is needed.

III. OSIRIS BASIC CONCEPTS
A full presentation of the Osiris system is not necessary to

understand the semantic partition of the object space. The
main notions that are useful for this purpose: P-Types, views,
attributes and constraints are presented below.

Definitions
P-Types. The global object space is divided into disjoint

sub-spaces where each sub-space, called a P-Type space,
concerns the objects of a same family. « P » stands for the
French « partagé » which means « shared ». As an example,
the data model of the Information System of a car insurance
company consists of three P-Types: the P-Type CAR, the P-
Type CLIENT and the P-Type CONTRACT. In this data model,
the object o1=(name: Jack, age:40, sex: m, ClientId:
14524784AA, address:’01 Grande rue, Grenoble,
FRANCE’,…) belongs to the object sub-space of the P-Type
CLIENT, the object o2=(CarRegistration: 254 QDE 38, brand:
Smart, doors number: 2, year: 2009,…) belongs to the object
sub-space of the P-Type CAR and the object
o3=(contracRef:14587515, InsuranceCoverages: Bodily
Injury, BenefitID: 14524784AA, CarRegistration: 254 QDE
38, duration: 25months,…) belongs to the object sub-space of
the P-Type CONTRACT. Fig. 1 shows a simple representation
of this data model.

Fig. 1 P-Types of the Car insurance company model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2691

When designing an Information System in Osiris, choosing
the P-Types of the application domain depends on the
application needs. This is a designer’s decision.

P-Types are primitive concepts in the Description Logic
paradigm, but not all primitive concepts are P-Types. The
objects of a P-Type are meant to be shared by different
categories of users, hence through different points of view,
which are expressed by views in Osiris.

Views. A P-Type is organized as a hierarchy of views
rooted in a minimal view that contains all the objects of the P-
Type. A view is defined by the view(s) it specializes (except
the minimal view, which is the root of the hierarchy), by its
own attributes and by its own constraints defined on attributes,
i.e., its own attributes and the inherited attributes from parent
views.

Attributes. Attributes are defined within views. An
attribute has a name and a type. The type of an attribute can be
predefined (INTEGER, REAL, BOOLEAN, CHARACTER, STRING),
a P-Type (i.e., a reference to a P-Type), and a collection (set,
list) of a predefined type or a P-Type. Although attributes can
be defined in any view (possibly in several views) of a P-
Type, for the sake of simplicity we will consider in this paper
that the attributes of a P-Type are defined in the minimal view
and their domain is restricted by constraints in the views that
constitute the P-Type.

Constraints. Constraints are Horn clauses whose literals
are elementary Domain Predicates (in short DPs), i.e.,
predicates of the form Attr ∈ Domain, where Domain can be
an interval (e.g., [10, 20]) or a set of enumerated values (e.g.,
{true, false}, {1, 3, 5, 7}, {blue, red, brown, yellow}).

Example. The P-Type PERSON is shown in Fig. 2 and Fig. 3
with very simple views.

PERSON

ADULT

SENIOR EMPLOYEE CEO

CHILD

BOY GIRL

Fig. 2 P-Type PERSON

view PERSON -- Minimal view of the P-Type PERSON
 attr

name: STRING;
 id: INT;
 sex: CHAR in {m, f}; -- Domain constraint: Sex ∈ {m, f}
 age: INT in [0..140]; -- Domain constraint: Age ∈ [0..140]
 owns: setof CAR; --The P-Type CAR is defined elsewhere

salary : INT ≥ 0; -- Domain constraint: salary ∈ [0..SUP]
 …
 age < 18 salary < 1200,00
 end PERSON;

 view ADULT: PERSON -- Specializes the view PERSON
 age ≥ 18 -- Domain constraint: age ∈ [18..140]
 salary ≥ 600,00
 end ADULT;
 view SENIOR: ADULT -- Specializes the view ADULT
 age ≥ 65
 end SENIOR;
 view CHILD: PERSON -- Specializes the view PERSON
 age < 18 -- Domain constraint: age ∈ [0..18[
 end CHILD;
 view GIRL: CHILD -- Specializes the view CHILD
 sex = f -- Domain constraint: sex ∈ {f}
 end GIRL;
 view BOY: CHILD -- Specializes the view CHILD
 sex = m -- Domain constraint: sex ∈ {m}
 end BOY;
 view EMPLOYEE: ADULT -- Specializes the view ADULT
 salary ≥ 1200,00
 end EMPLOYEE;
 view CEO: ADULT -- Specializes the view PERSON
 salary > 3000,00
 end CEO;

Fig. 3 Description of the P-Type PERSON

The views and the P-Type defined above are very simple, in

order to support the presentation of the Classification Space,
which supports the indexing mechanism that is the basis of the
semantic optimization mechanism.

Stable SubDomains. In a P-Type T, for each attribute
Attri let Ρ(Attri) be the set of elementary predicates on Attri
that appear in all the assertions of all the views of T. Each
elementary predicate has the form Attri ∈ dij where dij is a
subset of the domain of definition of Attri, i.e., Di and j ∈
[1..NumSBDi] where NumSBDi is the number of the subset
of the domain Di.

An elementary predicate, i.e., Attri ∈ dij, determines a
partition of Di into two elements: dij and (Di - dij). The
product of all the partitions defined by the predicates of
P(Attri) constitutes a partition of Di [14]. An element of this
partition constitutes a block called Stable SubDomains (SSD),
written dij. A subdomain is Stable because it verifies the
stability property of an object with respect to the related
attribute.

Definition 1: stability property of an attribute: When the
value of an attribute Attri of an object ok varies within a SSD,
e.g., dij ; j ∈ [1..NumSBDi], the object ok continues to
satisfy exactly the same predicates of P(Attri).

A static analysis of the P-Type description allows
determining the list of the SSDs of all the classifying1
attributes, see Fig. 4. Explaining the static analysis technique
is outside the scope of this paper.

1 Classifying attributes are the attributes that take part in at least one
domain constraint in a view of a data model.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2692

P-Type
description

Attributes SSDs:
Attr1: d11, ..., d1i
Attr2: d21, ..., d2j
 …
Attrn: dn1, ..., dnkStatic Analysis

Fig. 4 Static analysis of P-Type description and its output

Given the set of constraints defined in all the views of the

P-Type PERSON, the products of the partitions for the attributes
age, sex and salary lead to the following partitioning of their
domain:

age: d11 = [0, 18[, d12 = [18, 65[, d13 = [65,140]
sex: d21 = {f}, d22 = {m}
salary: d31 = [0, 600[, d32 = [600, 1200[,

 d33 = [1200, 3000[, d34 = [3000, SUP[
SDSATTR is the set of all the stable subdomains of the attribute

Attr. In the considered example, the SSDs of the attributes are:
SSDage = {d11, d12, d13},
SSDsex = {d21, d22} and
SSDsalary = {d31, d32 , d33, d34}
Validity of SSD for a view: A stable subdomain is valid for

a view v if and only if:
1) It is valid for its parent views and
2) It satisfies its constraints.

Validity of a SSD for a P-Type: A stable subdomain is valid
for a P-Type T iff it is valid for the minimal view of T.

Eq-class. The Classification Space is a subset of the
Cartesian product of SSDs of all the classifying attributes of
the P-Type:

SSD1 × SSD2 × …× SSDi ×… × SSDn = {<d1i, d2j,
…,dnk> ⏐ d1i ∈ SSD1 ∧…∧ dnk ∈ SSDn}

Where SSDj represents the set of stable subdomains of the
attributes Attrj, for j ∈ [1..N], where N is the number of
classifying attributes.

The Classification Space is a N-dimensional space where
each element, called Eq-class (for Equivalence Class) is a
hyperrectangle represented by a N-uple of stable subdomains,
i.e., <d1i, d2j, …,dnk>. See Fig. 5.

For the graphical representations, we limit ourselves to the
3D space. Thus, considering only the three attributes age, sex
and salary, the Classification Space of the P-Type PERSON is
represented in Fig. 6.
Validity of an Eq-class for a view: an Eq-class is valid for a
view iff all the SSDs of its N-uple are valid for this view.
Validity of an Eq-class for a P-Type: an Eq-class is valid for a
P-Type iff all the SSDs of its N-uple are valid for the P-Type.

The valid Eq-classes of a P-Type PERSON are represented in
bold on Fig. 6. For example, the Eq-class (d13, d22, d34), that
contains among others the object (age=65, sex=m, salary =
4000) is valid because d13, d22 and d34 are valid, whereas any
object of the Eq-class (d11, d22, d33) is invalid, because any
person aged less than 18 (age ∈ d11) can only satisfy d31=
[0..600[or d32= [600..1200[.

The stability property of an attribute (see Definition 1) can
be extended to the whole Classification Space.
Stability property of an Eq-class: all the objects of the same
Eq-class have the same validity for all the views of a P-Type.
Corollary: when one or more attribute of an object is modified
while remaining in the same Stable SubDomain, the object
continues to satisfy the same predicates, hence the same
assertions and consequently the same views.

As two objects of the same Eq-class satisfy the same
assertions, and consequently validate (or invalidate) the same
views, it is possible to determine a priori the views that the
objects of an Eq-class satisfy. As a consequence, it is possible
to associate with each view the set of Eq-classes that validate
it.

Attr2

Attr1
d

11
d

12
d

13
d

14

d
23

d
22

d
21

Eq-class <d12,d22>

Fig. 5 Partition of the object space into equivalence classes (Eq-
classes) in a 2-dimensional space with Eq-class (d12,d22) as example

Accordingly, the Classification Space is a partitioning of

the object space into equivalence classes such that all the
objects of an Eq-class are classified into the same set of views
and therefore satisfy the same set of constraints.

An active Eq-class is an Eq-class that contains at least one
object.

Age

Sex

Salary

d
13

d
31

d
32

d
33

d
34

[0,600[[600,1200[[1200,3000[[3000,SUP[

[65,140[

d
12

[18,65[

d
11

[0,18[

d
21

{f}

d
22

{m}

age = 65
sex = m
salary = 4000

o1

Fig. 6 Classification Space of the P-Type PERSON

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2693

IV. INDEXING ACTIVE EQ-CLASSES IN OSIRIS
Before explaining the use of UB-trees in the indexing

engine of the Osiris system, UB-trees [1] and the DRU
algorithm [10] will be presented in this section.

Single-attribute indexing data structures are well tested and
optimized. The need to index on many attributes and the
emergence of multi-dimensional applications motivate the
adaptation of single-attribute indexing data structures in these
contexts. The transformation from multi-dimensional space to
uni-dimensional space is an important and necessary step to
use single-attribute indexing data structures. UB-tree indexing
[1] is inspired by this approach.

UB-trees are a multi-dimensional generalization of B-trees
[3] based on the Z-curve space filling curve [6].

A. Space-Filling Curve
The Space-Filling Curve is a method to map a multi-

dimensional space into a one-dimensional space. In 1890, G.
Peano was the first mathematician who constructed a curve
that maps from the unit interval [0,1] to the unit square [0,1]2
[11]. In 1891, Hilbert constructed a mapping of the whole
space [12] and many curves have been proposed since [6].

Each curve has its own mapping function: Z order, Peano
curve, Hilbert order, Gray order, U order, etc. Each curve
visits the points of the multi-dimensional space one after
another. The main difference between the curves is the choice
of the next point to be visited. The multi-dimensional data
universe is linearized to a one-dimensional space by
representing a multi-dimensional point by its position on the
curve. Consequently, the points are ordered, which permits to
index them using a single-attribute indexing data structure,
e.g., UB-trees. UB-trees are based on the Z-curve, which is
presented in the next section. For other curves, see [6].

Space-Filling Z-curve
The mapping of a point from multi-dimensional space into
one-dimensional space is done by calculating its position on
the Z-curve, which is called its Z-value. Based on the binary
representation, the Z-value is assembled by cyclically taking a
bit from each coordinate of a point and appending it to those
taken previously. Fig. 7

an a2 a1...
1 ... 0 11 ... 1 1 1 ...1 0 ...

1 ...1 1 … 1 …1 0 0 ... 1 1

Fig. 7 Bit-interleaving algorithm in N-dimensional space

Fig. 8 shows how the Z-curve fills the two dimensional
space.

The cost of Z-value construction is cheap and the work of
[22] demonstrates that it has very good characteristics.

D 1

D 2

Fig. 8 Space-Filling Z-curve in bi-dimensional space

B. UB-tree
A UB-tree is a balanced multi-dimensional data structure

based on the space filling Z-curve [6] and B-trees [3].
In a UB-tree, a Z-value, which is a position of a point on

the Z-curve, is called a Z-address. Z-regions represent clusters
of points in the indexed space. A Z-region is bounded by two
Z-addresses which are the lower and the upper Z-addresses
inside it. The Bounding UB-tree (BUB-tree) [4] does not
index the Z-regions which do not contain objects (the dead
space).

The UB-tree offers a hierarchical representation of space
and also it partitions the whole space into a set of disjunctive
but consecutive Z-regions (Z-intervals). Each Z-region
containing the indexed data is inserted into one leaf node in
the UB-tree. On the other hand, the inner nodes contain super-
Z-regions [10]. A super-Z-region bounds all the super-Z-
regions in its subtrees.

The algorithms for insertion, deletion and point queries are
similar to those implemented in B-trees except that the Z-
address of the manipulated data must be computed before the
execution of an algorithm. Due to the nature of range queries
and the mapping into one-dimensional space, this query has its
own algorithm in the UB-tree.

Range query processing
For range queries, the linear DRU algorithm proposed in

[10] is used because its performance is better than the original
linear algorithm proposed by Bayer-Markl [1], [2].

This algorithm is based on the intersection operation
between the range query and the (super-)Z-regions mapped in
the inner and leaf nodes. If a super-Z-region intersects the
range query, so do its children. For more details, the reader is
referred to [10].

The complexity of this algorithm is linear according to Z-
address bit-length; i.e., O(n log(|D|)). A path stack is used to
keep the current path being processed. The main steps of the
DRU algorithm are:

1) Compute the Z-address of the query box lower and
higher bounds, (Zlb and Zhb respectively)

2) Find the Z-region (leaf) which contains the Zlb, set
it as the current leaf and push its path onto the
stack.

3) Search in the current leaf for data tuples that
satisfy the range query.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2694

4) If the lower bound of the right-neighbour-leaf Z-
region is inside the range query, set it as the
current leaf and goto 3.

5) The top of the stack is popped. It contains the
parent node (node P) of the last treated leaf.

6) Peek node P to find an entry pointing to the next
query-intersected node (node R). We have two
cases:

a. No such entry is found: remove node P
from the stack and repeat step 6.

b. One entry is found: retrieve the node R
and push it onto the stack. If node R is a
leaf, then goto step 3 otherwise repeat
step 6.

In a two-dimensional space, Fig. 9 shows the super Z-
regions and the Z-regions represented in the UB-tree. The tree
itself was not represented for the sake of clarity. At each level,
regions are larger but less numerous than those at the
immediately lower level. The treatment of the RQ starts at the
root level, where two super-Z-regions intersect RQ.

In the next level (level 1), three smaller super-Z-regions
intersect the RQ. At level 2, four smaller super-Z-regions
intersect the RQ. In the last level, which is the leaf level, four
Z-regions intersect the RQ.

Fig. 9 Common regions between a range query RQ and (super)-Z-

regions at each level in the UB-Tree

C. Using UB-trees in the Osiris indexing engine
In the indexing method, one UB-tree is used to index the

active Eq-classes by their identifiers, instead of indexing
directly the objects. This tree is called Active Eq-classes UB-
tree (AEC UB-tree). The objects of each Eq-class are also
indexed by another UB-tree, which is called Active Eq-class k

Objects UB-tree (AECk-O UB-tree); k is the Eq-class
identifier. A Z-region in an AEC UB-tree contains a set of Eq-
class identifiers and pointers to the appropriate AECk-O UB-
trees. A Z-region in an AECk-O UB-tree is a set of indexed
objects (Fig. 10).

Recent systems have a large volume of RAM. Since the
AEC UB-tree Z-regions contain a set of Eq-class identifiers
and pointers, a whole AEC UB-tree and possibly the inner
nodes of AECk-O UB-trees can be stored in the RAM. This is
an efficient organization in the case of very large volumes of
data.

Fig. 10 AEC UB-tree and AECk-O UB-trees organization

V. QUERIES IN OSIRIS
For the insertion, deletion, and point query algorithms,

firstly, the Z-address of the Eq-class of the object is calculated
and then the UB-tree original algorithm is called. This paper
deals complete range queries.

A. Range queries processing in Osiris
A query Q={δ1,…, δj,...,δn} such that l1≤δ1≤h1,…, lj ≤δj≤hj

…,ln≤δn≤hn can be seen as a hyper-rectangle in the N-
dimensional space. This hyper-rectangle is bounded by a
lower bound point Pl and an upper bound point Pu such that
Pl=(l1,l2,...,ln) and Pu=(u1,u2,...,un). In Osiris, these two points
are transformed into the Z-addresses of Eq-classes.

To illustrate how UB-trees are used in Osiris, a two-
dimensional space is used, with the dimensions age and salary
of the P-Type PERSON (Fig. 11). Considering these two
dimensions, the Eq-classes (d11, d33) and (d11, d34) are
excluded from the P-Type, because of the constraint age<18
 salary <1200. The set of possibly valid Eq-classes is

surrounded by bold lines.
In a N-dimensional space, an Eq-class is designated by a N-

uple of SSDs. In the example shown in Fig. 11, the Eq-classes
are written (d11, d31), (d11, d32), …, (d13, d34). This is a bi-
dimensional representation. To obtain a one-dimensional
representation, each SSD is assigned a binary code that is
unique for each attribute. For example:

age d11 = 00, d12 = 01, d13 = 10
salary d31 = 00, d32 = 01, d33 = 10, d34 = 11
Applying the Z-order or (bit-interleaving), the unique

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2695

identifiers associated with the Eq-classes are computed. They
are called Eq-class z-addresses:

(d11, d31) = 0000, (d11, d32) = 0001
(d12, d31) = 0010, (d12, d32) = 0011, (d12, d33) = 0110, (d12,

d34) = 0111
(d13, d31) = 1000, (d13, d32) = 1001, (d13, d33) = 1100, (d13,

d34) = 1101

600 1200 3000 sup

Age

18

60

140

Salary(0) (1)

(2) (3) (6) (7)

(8) (9) (12) (13)

d
31

d
32

d
33

d
34

18

60

140

(0)

(2)

(8)

d
13

d
12

d
11

Fig. 11. Eq-classes of the P-Type person

The size of the binary code of an attribute is determined by
the number of SSDs of this attribute. The decimal numbering
corresponding to the binary code of the z-addresses of Eq-
classes is presented in the lower left corner of each Eq-class in
Fig. 11.

In the example shown in Fig. 11, the Eq-classes (0), (3) and
(8) will not be represented since they do not contain any
object (non active Eq-classes).

For RQ {25 ≤ age ≤ 62 and 500 ≤ salary ≤ 1500} (Fig. 12),
the lower and the upper Eq-class Z-addresses for RQ are
respectively 2 and 12. Since the active Eq-classes are 2, 6, 9
and 12, the result of processing the DRU algorithm on the
AEC UB-tree is 2, 6, 9 and 12. These are not the objects
which satisfy RQ. They are the Eq-class Z-addresses which
may contain objects satisfying the query. Another step is
necessary to search the appropriate AECk-O UB-trees for
objects lying inside RQ.

Fig. 12 Eq-classes for RQ

VI. CONCLUSION
The indexing method presented in this paper is designed for

the P-Type object data model that aims at unifying databases
and knowledge bases [13]. This model has been implemented
in the KB-DBMS prototype Osiris. As a DBMS, it is based on
views defined by the views they specialize, their own
attributes and logical constraints on attributes. A static
analysis of the object data model enables the system to
partition the object space into a so-called Classification Space,
whose elements are no longer individual objects but
Equivalence Classes, named Eq-classes. The Classification
space is used to optimize integrity checking, object
classification, and for primary object indexing.

Moreover, in order to provide an efficient access to the
objects referenced by an Eq-class, the UB-tree structure is
used, which is a multi-dimensional generalization of B-trees
based on the Z-curve space filling curve.

Our approach can be applied to any relational system by
taking into account the integrity constraints of the database as
a basis for the determination of SSDs and Eq-classes.

The indexing method presented in this paper is an efficient
organization in the case of very huge volume of data. The
processing of the DRU algorithm on the AEC UB-tree
eliminates an important number of objects which are not
inside the range query.

At present, the performance of the indexing method based
on UB-trees is compared and analyzed with the performance
of different indexing methods used in DBMSs.

VII. REFERENCES
[1] Bayer, R.: The universal B-Tree for multi-dimensional

Indexing: General Concepts. In World-Wide Computing and its
Applications ’97 (WWCA’97), Lecture Notes on Computer
Science. Springer Verlag, Tsukuba, Japan (1997)

[2] Markl, V.: Processing Relational Queries using a
Multidimensional Access Technique. PhD thesis, DISDBIS,
Band 59, Infix Verlag (1999)

[3] Bayer, R., McCreight, E.: Organization and Maintenance of
large ordered Indexes. In Acta Informatica 1, pp. 173--189
(1972)

[4] Ramsak , F.: The BUB-Tree. In Proceedings of 28rd VLDB
International Conference on Very Large Data Bases, VLDB
2002, Hong Kong, China (2002)

[5] Orenstein, J.A., Merrett, T.H.: A Class of Data Structures for
Associative Searching. In Proceedings of the Third ACM
SIGACT-SIGMOD Symposium on PODS, April 2-4, pp. 181--
190. ACM (1984)

[6] Sagan, H.: Space-Filling Curves, Springer; 1 edition (September
2, 1994), ISBN-10: 0387942653, ISBN-13: 978-0387942650

[7] Otoo, E. J.: A Mapping Function for the Directory of a
Multidimensional Extendible Hashing, Proceedings of the 10th
International Conference on Very Large Data Bases(VLDB), pp.
493–-506, San Francisco, CA, USA (1984)

[8] Berchtold, S., Keim, D. A.., Kriegel, H.: The X-tree: An Index
Structure for High-Dimensional Data, Proceedings of the 22nd
International Conference on Very Large Data Bases (VLDB),
pp. 28—39, India (1996)

[9] Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-
dimensional spaces: index structures for improving the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2696

performance of multimedia databases, ACM Comput. Surv. 33
(3), pp. 322–373, (2001)

[10] Skopal, T., Krátký, M., Pokorný, J., Snášel, V.: A new range
query algorithm for universal B-trees, Information Systems,
Vol. 31, Issue 6, pp. 489 – 511, (September 2006)

[11] Peano, G.: Sur une courbe qui remplit toute une aire plaine,
Mathematishe Annalen, 36, pp. 157—160, (1890)

[12] Hilbert, D.: Ueber die stetige Abbildung einer Line auf ein
Flächenstück, Mathematische Annalen, 38: pp. 459–460, (1891)

[13] Simonet, A., Simonet, M.: OSIRIS : an Object-Oriented system
Unifying Databases and Knowledge bases, KBKS’95 : Towards
Very Large Knowledge Bases, Enschede, The Netherlands, pp.
217--227, N. Mars Ed., IOS Press, (1995)

[14] Stanat, D., McAllister, D. : Discrete Mathematics in Computer
Science, Prentice Hall (1977)

[15] Yu, C.: High-Dimensional Indexing: Transformational
Approaches to High-Dimensional Range and Similarity
Searches, Springer (2002)

[16] Simonet, A., Simonet, M.: Objects with Views and Constraints :
from Databases to Knowledge Bases, Object-Oriented
Information Systems OOIS'94, Springer Verlag, pp. 182--197,
London (1994)

[17] Bertino, E., Chin, O.B., Sacks-Davis, R., Tan, K., Zobel, J.,
Shidlovsky, B., Andronico, D.: Indexing Techniques for
Advanced Database Systems. Kluwer Academic (1997)

[18] Tamminen, M., Sulonen, R.: The excell method for efficient
geometric access to data, Annual ACM IEEE Design
Automation Conference, Proceedings of the 19th conference on
Design automation, pp. 345--351 (1982)

[19] Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The Grid File: An
Adaptable, Symmetric Multikey File Structure, ACM Trans.
Database Syst, vol. 9(1), pp. 38--71 (1984)

[20] Samet, H.: Foundations of Multidimensional and Metric Data
Structures, ISBN-10: 0123694469, ISBN-13: 978-0123694461,
Morgan Kaufmann (2006)

[21] Guttman, A. : R-trees: a dynamic index structure for spatial
searching, Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, SIGMOD 84,
pp. 47—57, Boston, Massachusetts (1984)

[22] Mokbel, M. F., Aref, W. G., Kamel, I.: Performance of multi-
dimensional space-filling curves, Geographic Information
Systems, Proceedings of the 10th ACM international
symposium on Advances in geographic information systems,
pp.149 – 154 McLean, Virginia, USA (2002)

