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Abstract—Semantic query optimization consists in restricting the 

search space in order to reduce the set of objects of interest for a 
query. This paper presents an indexing method based on UB-trees 
and a static analysis of the constraints associated to the views of the 
database and to any constraint expressed on attributes. The result of 
the static analysis is a partitioning of the object space into disjoint 
blocks. Through Space Filling Curve (SFC) techniques, each 
fragment (block) of the partition is assigned a unique identifier, 
enabling the efficient indexing of fragments by UB-trees. The search 
space corresponding to a range query is restricted to a subset of the 
blocks of the partition. This approach has been developed in the 
context of a KB-DBMS but it can be applied to any relational 
system. 
 

Keywords—Index, Range query, UB-tree, Space Filling Curve, 
Query optimization, Views, Database, Integrity Constraint, 
Classification.  

I. INTRODUCTION 

ERFORMANCE enhancement is an important research area 
in the database domain especially when the DBMS deals 

with huge volumes of data. This problem has become crucial 
with the advent of applications/systems like Data Warehouses, 
Geographical Information Systems (GIS), spatial databases, 
multimedia databases, etc. Several techniques have been 
proposed and used to improve the performance of DBMS at 
the software level. Among these methods, there are data 
clustering, indexing data structures, query optimization, 
buffering, etc. Since a physical organization of data based on 
efficient indexing data structures with adapted query 
processing is one of the keys to efficient data retrieval, an 
important number of works in this domain have been 
proposed and implemented. There are two approaches to 
organize physically data on a secondary storage: 

1) indexing based on a single attribute, e.g., hashing 
techniques, binary-tree, B-tree family [3],  and 

2) indexing based on multiple attributes, known as 
multidimensional indexing, e.g., multi-dimensional 
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extensible hashing [7] R-trees [21], X-tree [8], Grid 
files [19], EXCELL [18]. 

This paper deals with the second approach. 
The indexing method presented in this paper was designed 

for an object data model that aims at unifying databases and 
knowledge bases [16]. This model has been implemented in 
the KB-DBMS prototype Osiris. As a DBMS, it is based on 
views defined by logical constraints on attributes; as a KBMS 
it performs instance classification on every object in the 
database.  

However, the indexing method presented in this paper can 
be applied to any relational system provided it is possible to 
build a partitioning of the data (object) space into disjoint 
clusters.  

In the Osiris KB-DBMS, a static analysis of the object data 
model enables the system to build a partitioning of the object 
space into disjoint blocks. Each block covers a portion of the 
object space. Instead of indexing directly the objects, the 
system indexes the blocks. For each query, the smallest set of 
indexing blocks that « contains » the query can be determined. 

The problem addressed in this paper is that of representing 
the object space through the disjoint blocks, in order to 
support efficient access to the objects of a query. Blocks are 
by nature multi-dimensional. A block is a hyper-rectangle in a 
N-dimensional space, where N is the number of attributes. 
Each side of this hyper-rectangle represents an interval of the 
domain of its attribute. An Active block contains at least one 
object in the actual database. The set of Active blocks is 
indexed using a UB-tree [1], which is a multi-dimensional 
generalization of B-tree [3] based on Z-order curve [6]. 

The paper is organized as follows. A short survey about the 
multi-dimensional indexes and the type of supported queries is 
presented, then the Osiris system and its main concepts that 
are necessary to understand the partitioning approach of the 
object space are explained. The UB-tree indexing and how the 
object space (called Classification Space) is indexed using 
UB-trees organization is then presented. Finally, the 
processing of range queries in our approach is explained. 

II. MULTI-DIMENSIONAL  INDEXING 
The indexing data structures which index data based on a 

single dimensional key like binary-tree, B-tree, etc. are 
efficient in database systems to support operations on data like 
retrieval, deletion, etc. However, these indexes are not suitable 
to situations where queries have multiple search keys [15], 
such as range queries and similarity queries, which play an 
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important role in many current situations such as Data 
Warehouses, spatial databases, multimedia databases, 
computer graphics, Geographical Information Systems (GIS), 
etc. To deal with these new database systems and applications; 
the representation of multi-dimensional data is an important 
issue. 

Multi-dimensional data is to be seen as a collection of 
points (objects) in a higher dimensional space, i.e., whose 
dimension is greater than 1 [20]. For these object spaces, high-
dimensional indexing methods have been considered as an 
important means to facilitate fast query processing. To support 
efficient retrieval in such high-dimensional databases, indexes 
are required to prune the search space. 

Multi-dimensional indexes are required to support queries 
such as [15]: 

1) Complete/Partial Range queries, and 
2) Similarity queries: 

a) Similarity range queries: « find all objects 
in the database which are within a given 
distance from a given object », and 

b) K-nearest neighbor (KNN) queries: « find 
the K-most similar objects in the database 
with respect to a given object ». 

This paper deals with complete range queries. 
• Informally, a complete range query RQ is of the 

form « Find all objects whose attribute values fall 
within a certain given range » [15]. For this type of 
query, a class C with n attributes can be considered 
as a n-dimensional space EC, defined as a Cartesian 
product of the domains D1 x D2 x …x Dn, where the 
dimension Di represents the domain of an attribute 
Attri. In this space, an object oj, represented by the n-
uple :<vj1, vj2, …, vjn>, represents a point in the EC 
space and vji represents its coordinate in the 
dimension Di. In this space, a query is defined as: {o 
∈ Ec ⎪ o ∈ RQ}.  

• Formally [15], if δi is the range of a query along the 
dimension Di. The result of the query: Q={δ1, 
δ2,...,δn}; is the collection of {oj∈ EC} that satisfy the 
condition vj1 ∈ δ1, vj2 ∈ δ2, … , vjn ∈ δn.  

Multi-dimensional indexes such as R-trees [21] are not 
scalable in terms of the number of dimensions. When the 
dimensionality of data is high, the performances of R-tree-
based index structures deteriorate rapidly [17]. Another type 
of indexing structures such as Grid files [19] and EXCELL 
[18] have been proposed. In this type of structure, data 
partitioning is dynamic, i.e., for each attribute, it is based on 
the distribution of the attribute values on its domain at a given 
moment. 

To resolve the ‘dimensionality curse’ [15], [9] in these 
methods, some authors [5] have proposed to reduce the 
dimensionality of data by transforming data objects from a 
multi-dimensional space into one-dimensional space. Space 
Filling Curve is a way of mapping the multi-dimensional 
space into one-dimensional space [6]. A space filling curve 

imposes a linear order on the points by assigning an identifier 
to each one. A one-dimension index may then be used to 
index points (objects) by their identifier. As a result, the size 
of the indexed data is reduced, resulting in a smaller index 
size and a faster algorithm for search processing. 

A space filling curve technique and one-dimension index 
are not used to index directly the objects. The indexing 
method presented in this paper uses them to index the disjoint 
blocks of the partition of the object space. In this approach, 
the partition of the object space is a semantic partition because 
it is based on the static analysis of object data model. This 
semantic partition provides an efficient query optimization 
because the query handles sets of objects instead of individual 
objects. In this type of approach, the phenomenon of partitions 
overlapping which happens with an index like R-tree is 
avoided. To explain how disjoint blocks are obtained from the 
object data model, a short presentation of main notions of 
Osiris is needed.   

III. OSIRIS BASIC CONCEPTS 
A full presentation of the Osiris system is not necessary to 

understand the semantic partition of the object space. The 
main notions that are useful for this purpose: P-Types, views, 
attributes and constraints are presented below. 

Definitions 
P-Types. The global object space is divided into disjoint 

sub-spaces where each sub-space, called a P-Type space, 
concerns the objects of a same family. « P » stands for the 
French « partagé » which means « shared ». As an example, 
the data model of the Information System of a car insurance 
company consists of three P-Types: the P-Type CAR, the P-
Type CLIENT and the P-Type CONTRACT. In this data model, 
the object o1=(name: Jack, age:40, sex: m, ClientId: 
14524784AA, address:’01 Grande rue, Grenoble, 
FRANCE’,…) belongs to the object sub-space of the P-Type 
CLIENT, the object o2=(CarRegistration: 254 QDE 38, brand: 
Smart, doors number: 2, year: 2009,…) belongs to the object 
sub-space of the P-Type CAR and the object 
o3=(contracRef:14587515, InsuranceCoverages: Bodily 
Injury, BenefitID: 14524784AA, CarRegistration: 254 QDE 
38, duration: 25months,…) belongs to the object sub-space of 
the P-Type CONTRACT. Fig. 1 shows a simple representation 
of this data model.  

 

 
 

Fig. 1 P-Types of the Car insurance company model 
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When designing an Information System in Osiris, choosing 
the P-Types of the application domain depends on the 
application needs. This is a designer’s decision.  

P-Types are primitive concepts in the Description Logic 
paradigm, but not all primitive concepts are P-Types. The 
objects of a P-Type are meant to be shared by different 
categories of users, hence through different points of view, 
which are expressed by views in Osiris. 

Views. A P-Type is organized as a hierarchy of views 
rooted in a minimal view that contains all the objects of the P-
Type. A view is defined by the view(s) it specializes (except 
the minimal view, which is the root of the hierarchy), by its 
own attributes and by its own constraints defined on attributes, 
i.e., its own attributes and the inherited attributes from parent 
views.  

Attributes. Attributes are defined within views. An 
attribute has a name and a type. The type of an attribute can be 
predefined (INTEGER, REAL, BOOLEAN, CHARACTER, STRING), 
a P-Type (i.e., a reference to a P-Type), and a collection (set, 
list) of a predefined type or a P-Type. Although attributes can 
be defined in any view (possibly in several views) of a P-
Type, for the sake of simplicity we will consider in this paper 
that the attributes of a P-Type are defined in the minimal view 
and their domain is restricted by constraints in the views that 
constitute the P-Type. 

Constraints. Constraints are Horn clauses whose literals 
are elementary Domain Predicates (in short DPs), i.e., 
predicates of the form Attr ∈ Domain, where Domain can be 
an interval (e.g., [10, 20]) or a set of enumerated values (e.g., 
{true, false}, {1, 3, 5, 7}, {blue, red, brown, yellow}).  

Example. The P-Type PERSON is shown in Fig. 2 and Fig. 3 
with very simple views. 

PERSON

ADULT

SENIOR EMPLOYEE CEO

CHILD

BOY GIRL
 

 
Fig. 2 P-Type PERSON 

 
 

view PERSON    -- Minimal view of the P-Type PERSON 
  attr   

name: STRING; 
 id: INT; 
  sex: CHAR in {m, f}; -- Domain constraint: Sex ∈ {m, f} 
    age: INT in [0..140]; -- Domain constraint: Age ∈ [0..140] 
  owns: setof CAR;   --The P-Type CAR is defined elsewhere 

salary : INT ≥ 0;  -- Domain constraint: salary ∈ [0..SUP] 
  … 
    age < 18  salary < 1200,00  
  end PERSON; 

  view ADULT: PERSON  -- Specializes the view PERSON 
   age ≥ 18     -- Domain constraint: age ∈ [18..140] 
  salary ≥ 600,00 
  end ADULT; 
  view SENIOR: ADULT   -- Specializes the view ADULT 
   age ≥ 65 
  end SENIOR; 
  view CHILD: PERSON   -- Specializes the view PERSON 
   age < 18       -- Domain constraint: age ∈ [0..18[ 
  end CHILD; 
  view GIRL: CHILD   -- Specializes the view CHILD 
   sex = f        -- Domain constraint: sex ∈ {f} 
  end GIRL; 
  view BOY: CHILD   -- Specializes the view CHILD 
   sex = m       -- Domain constraint: sex ∈ {m} 
  end BOY; 
  view EMPLOYEE: ADULT  -- Specializes the view ADULT 
   salary ≥ 1200,00   
  end EMPLOYEE; 
  view CEO: ADULT     -- Specializes the view PERSON 
   salary > 3000,00 
  end CEO; 
 

Fig. 3 Description of the P-Type PERSON  
 
The views and the P-Type defined above are very simple, in 

order to support the presentation of the Classification Space, 
which supports the indexing mechanism that is the basis of the 
semantic optimization mechanism. 

Stable SubDomains. In a P-Type T, for each attribute 
Attri let Ρ(Attri) be the set of elementary predicates on Attri 
that appear in all the assertions of all the views of T. Each 
elementary predicate has the form Attri ∈ dij where dij is a 
subset of the domain of definition of Attri, i.e., Di and j ∈ 
[1..NumSBDi] where NumSBDi is the number of the subset 
of the domain Di. 

An elementary predicate, i.e., Attri ∈ dij, determines a 
partition of Di into two elements: dij and (Di - dij). The 
product of all the partitions defined by the predicates of 
P(Attri) constitutes a partition of Di [14]. An element of this 
partition constitutes a block called Stable SubDomains (SSD), 
written dij. A subdomain is Stable because it verifies the 
stability property of an object with respect to the related 
attribute. 

Definition 1: stability property of an attribute: When the 
value of an attribute Attri of an object ok varies within a SSD, 
e.g., dij ; j ∈ [1..NumSBDi], the object ok continues to 
satisfy exactly the same predicates of P(Attri). 

A static analysis of the P-Type description allows 
determining the list of the SSDs of all the classifying1 
attributes, see Fig. 4. Explaining the static analysis technique 
is outside the scope of this paper. 
 

1 Classifying attributes are the attributes that take part in at least one 
domain constraint in a view of a data model. 
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P-Type
description

Attributes SSDs:
Attr1: d11, ..., d1i
Attr2: d21, ..., d2j
            …
Attrn: dn1, ..., dnkStatic Analysis  

 
Fig. 4 Static analysis of P-Type description and its output 

 
Given the set of constraints defined in all the views of the 

P-Type PERSON, the products of the partitions for the attributes 
age, sex and salary lead to the following partitioning of their 
domain: 

age: d11 = [0, 18[, d12 = [18, 65[, d13 = [65,140]  
sex: d21 = {f}, d22 = {m} 
salary: d31 = [0, 600[, d32 = [600, 1200[, 

     d33 = [1200, 3000[, d34 = [3000, SUP[ 
SDSATTR is the set of all the stable subdomains of the attribute 

Attr. In the considered example, the SSDs of the attributes are:  
SSDage   = {d11, d12, d13}, 
SSDsex   = {d21, d22}      and      
SSDsalary = {d31, d32 , d33, d34} 
Validity of SSD for a view: A stable subdomain is valid for 

a view v if and only if: 
1) It is valid for its parent views and 
2) It satisfies its constraints.  

Validity of a SSD for a P-Type: A stable subdomain is valid 
for a P-Type T iff it is valid for the minimal view of T. 

Eq-class. The Classification Space is a subset of the 
Cartesian product of SSDs of all the classifying attributes of 
the P-Type: 

SSD1 × SSD2 × …× SSDi ×… × SSDn = {<d1i, d2j, 
…,dnk> ⏐ d1i ∈ SSD1 ∧…∧ dnk ∈ SSDn} 

Where SSDj represents the set of stable subdomains of the 
attributes Attrj, for j ∈ [1..N], where N is the number of 
classifying attributes.  

The Classification Space is a N-dimensional space where 
each element, called Eq-class (for Equivalence Class) is a 
hyperrectangle represented by a N-uple of stable subdomains, 
i.e., <d1i, d2j, …,dnk>.  See Fig. 5. 

For the graphical representations, we limit ourselves to the 
3D space. Thus, considering only the three attributes age, sex 
and salary, the Classification Space of the P-Type PERSON is 
represented in Fig. 6. 
Validity of an Eq-class for a view: an Eq-class is valid for a 
view iff all the SSDs of its N-uple are valid for this view. 
Validity of an Eq-class for a P-Type: an Eq-class is valid for a 
P-Type iff all the SSDs of its N-uple are valid for the P-Type. 

The valid Eq-classes of a P-Type PERSON are represented in 
bold on Fig. 6. For example, the Eq-class (d13, d22, d34), that 
contains among others the object (age=65, sex=m, salary = 
4000) is valid because d13, d22 and d34 are valid, whereas any 
object of the Eq-class (d11, d22, d33) is invalid, because any 
person aged less than 18 (age ∈ d11) can only satisfy d31= 
[0..600[ or d32= [600..1200[. 

The stability property of an attribute (see Definition 1) can 
be extended to the whole Classification Space. 
Stability property of an Eq-class: all the objects of the same 
Eq-class have the same validity for all the views of a P-Type. 
Corollary: when one or more attribute of an object is modified 
while remaining in the same Stable SubDomain, the object 
continues to satisfy the same predicates, hence the same 
assertions and consequently the same views. 

As two objects of the same Eq-class satisfy the same 
assertions, and consequently validate (or invalidate) the same 
views, it is possible to determine a priori the views that the 
objects of an Eq-class satisfy. As a consequence, it is possible 
to associate with each view the set of Eq-classes that validate 
it. 

 

Attr2

Attr1
d

11                      
d

12                     
d

13                  
d

14

d
23

d
22

d
21

Eq-class <d12,d22>

 
 

Fig. 5 Partition of the object space into equivalence classes (Eq-
classes) in a 2-dimensional space with Eq-class (d12,d22) as example 

 
Accordingly, the Classification Space is a partitioning of 

the object space into equivalence classes such that all the 
objects of an Eq-class are classified into the same set of views 
and therefore satisfy the same set of constraints. 

An active Eq-class is an Eq-class that contains at least one 
object. 

Age
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Fig. 6 Classification Space of the P-Type PERSON 
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IV. INDEXING ACTIVE EQ-CLASSES IN OSIRIS 
Before explaining the use of UB-trees in the indexing 

engine of the Osiris system, UB-trees [1] and the DRU 
algorithm [10] will be presented in this section.  

Single-attribute indexing data structures are well tested and 
optimized. The need to index on many attributes and the 
emergence of multi-dimensional applications motivate the 
adaptation of single-attribute indexing data structures in these 
contexts. The transformation from multi-dimensional space to 
uni-dimensional space is an important and necessary step to 
use single-attribute indexing data structures. UB-tree indexing 
[1] is inspired by this approach.  

UB-trees are a multi-dimensional generalization of B-trees 
[3] based on the Z-curve space filling curve [6].  

A. Space-Filling Curve 
The Space-Filling Curve is a method to map a multi-

dimensional space into a one-dimensional space. In 1890, G. 
Peano was the first mathematician who constructed a curve 
that maps from the unit interval [0,1] to the unit square [0,1]2 
[11]. In 1891, Hilbert constructed a mapping of the whole 
space [12] and many curves have been proposed since [6].  

Each curve has its own mapping function: Z order, Peano 
curve, Hilbert order, Gray order, U order, etc. Each curve 
visits the points of the multi-dimensional space one after 
another. The main difference between the curves is the choice 
of the next point to be visited. The multi-dimensional data 
universe is linearized to a one-dimensional space by 
representing a multi-dimensional point by its position on the 
curve. Consequently, the points are ordered, which permits to 
index them using a single-attribute indexing data structure, 
e.g., UB-trees. UB-trees are based on the Z-curve, which is 
presented in the next section. For other curves, see [6]. 

Space-Filling Z-curve 
The mapping of a point from multi-dimensional space into 
one-dimensional space is done by calculating its position on 
the Z-curve, which is called its Z-value. Based on the binary 
representation, the Z-value is assembled by cyclically taking a 
bit from each coordinate of a point and appending it to those 
taken previously. Fig. 7 

an a2 a1...
1 ... 0 11 ... 1 1 1 ...1 0 ...

1 ...1 1       …        1 …1 0       0 ... 1 1
 

Fig. 7 Bit-interleaving algorithm in N-dimensional space 
 

Fig. 8 shows how the Z-curve fills the two dimensional 
space. 

The cost of Z-value construction is cheap and the work of 
[22] demonstrates that it has very good characteristics. 

D 1

D 2

 
 

Fig. 8 Space-Filling Z-curve in bi-dimensional space 

B. UB-tree 
A UB-tree is a balanced multi-dimensional data structure 

based on the space filling Z-curve [6] and B-trees [3]. 
In a UB-tree, a Z-value, which is a position of a point on 

the Z-curve, is called a Z-address. Z-regions represent clusters 
of points in the indexed space. A Z-region is bounded by two 
Z-addresses which are the lower and the upper Z-addresses 
inside it. The Bounding UB-tree (BUB-tree) [4] does not 
index the Z-regions which do not contain objects (the dead 
space).  

The UB-tree offers a hierarchical representation of space 
and also it partitions the whole space into a set of disjunctive 
but consecutive Z-regions (Z-intervals). Each Z-region 
containing the indexed data is inserted into one leaf node in 
the UB-tree. On the other hand, the inner nodes contain super-
Z-regions [10]. A super-Z-region bounds all the super-Z-
regions in its subtrees. 

The algorithms for insertion, deletion and point queries are 
similar to those implemented in B-trees except that the Z-
address of the manipulated data must be computed before the 
execution of an algorithm. Due to the nature of range queries 
and the mapping into one-dimensional space, this query has its 
own algorithm in the UB-tree. 

Range query processing  
For range queries, the linear DRU algorithm proposed in 

[10] is used because its performance is better than the original 
linear algorithm proposed by Bayer-Markl [1], [2]. 

This algorithm is based on the intersection operation 
between the range query and the (super-)Z-regions mapped in 
the inner and leaf nodes. If a super-Z-region intersects the 
range query, so do its children. For more details, the reader is 
referred to [10].  

The complexity of this algorithm is linear according to Z-
address bit-length; i.e., O(n log(|D|)). A path stack is used to 
keep the current path being processed. The main steps of the 
DRU algorithm are: 

1) Compute the Z-address of the query box lower and 
higher bounds, (Zlb and Zhb respectively) 

2) Find the Z-region (leaf) which contains the Zlb, set 
it as the current leaf and push its path onto the 
stack. 

3) Search in the current leaf for data tuples that 
satisfy the range query. 
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4) If the lower bound of the right-neighbour-leaf Z-
region is inside the range query, set it as the 
current leaf and goto 3. 

5) The top of the stack is popped. It contains the 
parent node (node P) of the last treated leaf. 

6) Peek node P to find an entry pointing to the next 
query-intersected node (node R). We have two 
cases:  

a. No such entry is found: remove node P 
from the stack and repeat step 6. 

b. One entry is found: retrieve the node R 
and push it onto the stack. If node R is a 
leaf, then goto step 3 otherwise repeat 
step 6. 

In a two-dimensional space, Fig. 9 shows the super Z-
regions and the Z-regions represented in the UB-tree. The tree 
itself was not represented for the sake of clarity. At each level, 
regions are larger but less numerous than those at the 
immediately lower level. The treatment of the RQ starts at the 
root level, where two super-Z-regions intersect RQ. 

In the next level (level 1), three smaller super-Z-regions 
intersect the RQ. At level 2, four smaller super-Z-regions 
intersect the RQ. In the last level, which is the leaf level, four 
Z-regions intersect the RQ. 

 

 
Fig. 9 Common regions between a range query RQ and (super)-Z-

regions at each level in the UB-Tree  
 

C. Using UB-trees in the Osiris indexing engine 
In the indexing method, one UB-tree is used to index the 

active Eq-classes by their identifiers, instead of indexing 
directly the objects. This tree is called Active Eq-classes UB-
tree (AEC UB-tree). The objects of each Eq-class are also 
indexed by another UB-tree, which is called Active Eq-class k 

Objects UB-tree (AECk-O UB-tree); k is the Eq-class 
identifier. A Z-region in an AEC UB-tree contains a set of Eq-
class identifiers and pointers to the appropriate AECk-O UB-
trees. A Z-region in an AECk-O UB-tree is a set of indexed 
objects (Fig. 10).  

Recent systems have a large volume of RAM. Since the 
AEC UB-tree Z-regions contain a set of Eq-class identifiers 
and pointers, a whole AEC UB-tree and possibly the inner 
nodes of AECk-O UB-trees can be stored in the RAM. This is 
an efficient organization in the case of very large volumes of 
data. 

 
 

Fig. 10 AEC UB-tree and AECk-O UB-trees organization 
 

V. QUERIES IN OSIRIS 
For the insertion, deletion, and point query algorithms, 

firstly, the Z-address of the Eq-class of the object is calculated 
and then the UB-tree original algorithm is called. This paper 
deals complete range queries. 

A. Range queries processing in Osiris 
A query Q={δ1,…, δj,...,δn} such that l1≤δ1≤h1,…,  lj ≤δj≤hj 

…,ln≤δn≤hn can be seen as a hyper-rectangle in the N-
dimensional space. This hyper-rectangle is bounded by a 
lower bound point Pl and an upper bound point Pu such that  
Pl=(l1,l2,...,ln) and Pu=(u1,u2,...,un). In Osiris, these two points 
are transformed into the Z-addresses of Eq-classes. 

To illustrate how UB-trees are used in Osiris, a two-
dimensional space is used, with the dimensions age and salary 
of the P-Type PERSON (Fig. 11). Considering these two 
dimensions, the Eq-classes (d11, d33) and (d11, d34) are 
excluded from the P-Type, because of the constraint age<18 
 salary <1200. The set of possibly valid Eq-classes is 

surrounded by bold lines. 
In a N-dimensional space, an Eq-class is designated by a N-

uple of SSDs. In the example shown in Fig. 11, the Eq-classes 
are written (d11, d31), (d11, d32), …, (d13, d34). This is a bi-
dimensional representation. To obtain a one-dimensional 
representation, each SSD is assigned a binary code that is 
unique for each attribute. For example: 

age    d11 = 00, d12 = 01, d13 = 10 
salary   d31 = 00, d32 = 01, d33 = 10, d34 = 11 
Applying the Z-order or (bit-interleaving), the unique 
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identifiers associated with the Eq-classes are computed. They 
are called Eq-class z-addresses: 

(d11, d31)  =  0000, (d11, d32)  = 0001 
(d12, d31) = 0010, (d12, d32) = 0011, (d12, d33) = 0110, (d12, 

d34) = 0111 
(d13, d31) = 1000, (d13, d32) = 1001, (d13, d33) = 1100, (d13, 

d34) = 1101 
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Fig. 11.  Eq-classes of the P-Type person 
 

The size of the binary code of an attribute is determined by 
the number of SSDs of this attribute. The decimal numbering 
corresponding to the binary code of the z-addresses of Eq-
classes is presented in the lower left corner of each Eq-class in 
Fig. 11. 

In the example shown in Fig. 11, the Eq-classes (0), (3) and 
(8) will not be represented since they do not contain any 
object (non active Eq-classes). 

For RQ {25 ≤ age ≤ 62 and 500 ≤ salary ≤ 1500} (Fig. 12), 
the lower and the upper Eq-class Z-addresses for RQ are 
respectively 2 and 12. Since the active Eq-classes are 2, 6, 9 
and 12, the result of processing the DRU algorithm on the 
AEC UB-tree is 2, 6, 9 and 12. These are not the objects 
which satisfy RQ. They are the Eq-class Z-addresses which 
may contain objects satisfying the query. Another step is 
necessary to search the appropriate AECk-O UB-trees for 
objects lying inside RQ. 

 
 

Fig. 12 Eq-classes for RQ 
 

VI. CONCLUSION 
The indexing method presented in this paper is designed for 

the P-Type object data model that aims at unifying databases 
and knowledge bases [13]. This model has been implemented 
in the KB-DBMS prototype Osiris. As a DBMS, it is based on 
views defined by the views they specialize, their own 
attributes and logical constraints on attributes. A static 
analysis of the object data model enables the system to 
partition the object space into a so-called Classification Space, 
whose elements are no longer individual objects but 
Equivalence Classes, named Eq-classes. The Classification 
space is used to optimize integrity checking, object 
classification, and for primary object indexing. 

Moreover, in order to provide an efficient access to the 
objects referenced by an Eq-class, the UB-tree structure is 
used, which is a multi-dimensional generalization of B-trees 
based on the Z-curve space filling curve.  

Our approach can be applied to any relational system by 
taking into account the integrity constraints of the database as 
a basis for the determination of SSDs and Eq-classes. 

The indexing method presented in this paper is an efficient 
organization in the case of very huge volume of data. The 
processing of the DRU algorithm on the AEC UB-tree 
eliminates an important number of objects which are not 
inside the range query. 

At present, the performance of the indexing method based 
on UB-trees is compared and analyzed with the performance 
of different indexing methods used in DBMSs.  
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