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Two-Stage Compensator Designs with Partial
Feedbacks
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Abstract—The two-stage compensator designs of linear system are
investigated in the framework of the factorization approach. First, we
give “full feedback” two-stage compensator design. Based on this
result, various types of the two-stage compensator designs with partial
feedbacks are derived.
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I. INTRODUCTION

The factorization approach to control systems has the ad-
vantage that it embraces, within a single framework, numerous
linear systems such as continuous-time as well as discrete-
time systems, lumped as well as distributed systems, one-
dimensional as well as multidimensional systems, etc.[1], [2],
[3]. Hence the result given in this paper will be able to a num-
ber of models in addition to the multidimensional systems.
In factorization approach, when problems such as feedback
stabilization are studied, one can focus on the key aspects of
the problem under study rather than be distracted by the special
features of a particular class of linear systems. This approach
leads to conceptually simple and computationally tractable
solutions to many important and interesting problems[4].
A transfer matrix of this approach is considered as the ratio
of two stable causal transfer matrices. For a long time, the
theory of the factorization approach had been founded on the
coprime factorizability of transfer matrices, which is satisfied
by transfer matrices over the principal ideal domains or the
Bézout domains.

In some design problems, one uses a so-called two-state pro-
cedure for selecting an appropriate stabilizing compensator[4].
Given a plant, the first stage consists of selecting a stabi-
lizing compensator for the plant. The second stage consists
of selecting a stabilizing controller for the new closed-loop
system that also achieves some other design objectives such as
decoupling, sensitivity minimization, etc. The rationale behind
this procedure is that the design problems are often easier to
solve when the plant is stable. So far, the results of the two-
stage compensator design use the norm algebras as well as
the factorization approach. Because the analysis by the norm
algebra is based on a concrete specified model, this reduces
the attractiveness of the factorization approach.

First, we present a two-stage compensator design based on
“full feedback” (Theorem 3). Using this result, we will present
various types of the two-stage compensator designs as subsets
of “full feedback” (Theorems 4 to 7).
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II. PRELIMINARIES

The stabilization problem considered in this paper follows
that of [5], and [6], who consider the feedback system Σ [4,
Ch.5, Fig. 5.1] as in Fig. 1. For further details the reader is
referred to [4], [7], [5], and [6].
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u2

u1 e1 e2y1 y2

Fig. 1. Feedback system Σ.

We consider that the set of stable causal transfer functions is
an integral domain, denoted by A. The total ring of fractions
of A is denoted by F ; that is, F = {n/d |n, d ∈ A, d �=
0}. This F is considered as the set of all possible transfer
functions. Matrices over F are transfer matrices. Let Z be
a prime ideal of A with Z �= A. Define the subsets P and Ps
of F as follows: P = {a/b ∈ F | a ∈ A, b ∈ A\Z}, Ps =
{a/b ∈ F | a ∈ Z, b ∈ A\Z}. Then, every transfer function
in P (Ps) is called causal (strictly causal). Analogously, if
every entry of a transfer matrix is in P (Ps), the transfer
matrix is called causal (strictly causal).

Throughout the paper, the plant we consider has m inputs
and n outputs, and its transfer matrix, which is also called a
plant itself simply, is denoted by P and belongs to Pn×m. We
can always represent P in the form of a fraction P = ND−1

(P = D̃−1Ñ), where N ∈ An×m (Ñ ∈ An×m) and D ∈
Am×m (D̃ ∈ An×n) with nonsingular D (D̃).

For P ∈ Fn×m and C ∈ Fm×n, a matrix H(P, C) ∈
F (m+n)×(m+n) is defined as

H(P, C) :=
[

(In + PC)−1 −P (Im + CP )−1

C(In + PC)−1 (Im + CP )−1

]
(1)

provided that det(In +PC) is a nonzero of A. This H(P, C)
is the transfer matrix from [ ut

1 ut
2 ]t to [ et

1 et
2 ]t of the

feedback system Σ. If det(In + PC) is a nonzero of A and
H(P, C) ∈ A(m+n)×(m+n), then we say that the plant P
is stabilizable, P is stabilized by C, and C is a stabilizing
controller of P . In the definition above, we do not mention
the causality of the stabilizing controller. However, it is known
that if a causal plant is stabilizable, there always exists a causal
stabilizing controller of the plant [6].

It is known that W (P, C) defined below is over A if and
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only if H(P, C) is over A:

W (P, C) := (2)[
C(In + PC)−1 −CP (Im + CP )−1

PC(In + PC)−1 P (Im + CP )−1

]
.

This W (P, C) is the transfer matrix from u1 and u2 to y1 and
y2.

We employ the factorization approach [1], [8], [4], [2] and
the symbols used in [9] and [5]. Also we will denote by S(P )
the set of stabilizing controllers of P and by W(P ) the set of
all W (P, C)’s with C ∈ S(P ).

III. TWO-STAGE COMPENSATOR DESIGN

In some design problems, one uses a so-called two-state pro-
cedure for selecting an appropriate stabilizing compensator[4].
Given a plant P , the first stage consists of selecting a
stabilizing compensator for P . Let C0 ∈ S(P ) denote this
compensator (that is, an arbitrary but fixed compensator of P )
and define P1 = P (I + C0P )−1. The second stage consists
of selecting a stabilizing controller for P1 that also achieves
some other design objectives such as decoupling, sensitivity
minimization, etc. The rationale behind this procedure is that
the design problems are often easier to solve when the plant
is stable. The resulting configuration with its inner and outer
loops is shown in Figure 2.

P

C1

P1

C0

Fig. 2. Two-Stage Compensator Design (y2 to u2).

Here we give that the two-stage compensator design based
on Figure 2 cannot give all stabilizing controllers. The follow-
ing Theorem 1 is same as Theorem 5.3.10 of [4]. More detailed
result can be found in Mori[10], which is shown as Theorem 2.

Theorem 1: Let P denote a causal plant of Pn×m and C0

a causal stabilizing controller of P (C0 ∈ Pm×n). Further let
P1 be P (Im + C0P )−1. Denote by C0 +S(P1) the following
set:

{C0 + C1 |C1 ∈ S(P1)}.
Then

C0 + S(P1) ⊂ S(P ), (3)

with equality holding if and only if C0 ∈ Am×n.
Theorem 2: Let P , C0, P1 be as in Theorem 1.

Let N , D, Ñ , D̃, Y , X , Ỹ , X̃ be matrices over A such
that
{

P = ND−1 = D̃−1Ñ, C0 = Y X−1 = X̃−1Ỹ ,

Ỹ N + X̃D = I, ÑY + D̃X = I.
(4)

Then we have

C0 + S(P1) (5)

= {(X̃−RÑ)−1(Ỹ + RD̃) |R=X̃R1X, R1 ∈ Am×n}(6)

= {(Y + DR)(X−NR)−1 |R=X̃R1X, R1 ∈ Am×n}.(7)

P

C1

C0

Fig. 3. Composite Stabilized Feedback with C0 and C1.

By Theorem 1, we see that the sum of C0 and a stabilizing
controller of P1, say C1, is again a stabilizing controller of P .
This sum, a stabilizing controller of P , is the parallel allocation
of C0 and C1, as shown in Figure 3.

The stabilizing controller C0 is over A if and only if the
matrices X̃ and X are unimodular. That is the equality of (3)
holds if and only if C0 is over A.

IV. “FULL FEEDBACK” TWO-STAGE COMPENSATOR

DESIGN

The two-stage compensator design of the previous section
was based on the feedback from y2 to u2 (cf. Figures 1 and 2).
Even so, we note that we have two inputs u1 and u2 and two
outputs y1 and y2. Thus we consider the feedback as shown
in Figure 4. This is a feedback from y1 and y2 to u1 and u2.

In Figure 4, C0 is a stabilizing controller of P and C1 is a
stabilizing controller of W (P, C0). By noting that W (P, C0)
is over A, the parametrization of C1 is given as

C1 = (Im+n − R1W (P, C0))−1R1 (8)

= R1(Im+n − W (P, C0)R1)−1

with a parameter R1 ∈ A(m+n)×(m+n).
We next decompose this C1 as follows:

C1 =
[

m n

n C111 C112

m C121 C122

]
.

where C111 ∈ Pn×m, C112 ∈ Pn×n, C121 ∈ Pm×m, and
C122 ∈ Pm×n. Also we next decompose R1 as follows:

R1 =
[

m n

n R111 R112

m R121 R122

]
,
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Fig. 4. Composite Stabilized Feedback with C0 and C1.
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Fig. 5. Feedback System with C0 and C1.
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Fig. 6. Reconfigured Feedback System
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TABLE I
FEEDBACK FROM OUTPUTS TO INPUTS

No. Input(s) Output(s)

1 u1 y1

2 u1 y2

3 u2 y1

4 u2 y2

5 u1, u2 y1

6 u1, u2 y2

7 u1 y1, y2

8 u2 y1, y2

9 u1, u2 y1, y2

where R111 ∈ An×m, R112 ∈ An×n, R121 ∈ Am×m, and
R122 ∈ Am×n. Using these parameters, we have the following
theorem.

Theorem 3: Any stabilizing controller C of P is in the form
C = CnC−1

d , where

Cn = eY +(eY R112X+ eXR122X− eY R111Y − eXR121Y ) eD, (9)

Cd = eX−(eY R112X+ eXR122X− eY R111Y − eXR121Y ) eN. (10)

Proof: (Due to the space limitation, we give a brief proof
only.) First we consider the feedback system as in Figure 5.
This can be reconfigured as in Figure 6.

From the matrix computation with C in the description of
Theorem 3, we have a matrix equation:

W (P, C) =

[
O Im Im O
O O O In

]
W (W (P, C0), C1)

⎡

⎢
⎣

O O
In O
In O
O Im

⎤

⎥
⎦ .

Thus C is a stabilizing controller of the plant P .
On the other hand, by letting

R111 = −NRÑ,

R112 = NRD̃,

R121 = −DRÑ,

R122 = DRD̃,

we have
C = (Ỹ + RD̃)(X̃ − RÑ)−1,

This means any stabilizing controller can be expressed as in
(9) and (10).

V. PARTIAL TWO-STAGE COMPENSATOR DESIGNS

From Theorem 3, we can derive two-stage compensator
designs based on various feedback styles. From Figure 1, we
have two inputs u1 and u2, and two outputs y1 and y2. Thus
we have 9 types of feedbacks, which are shown in Table I. For
each type of feedback, we can obtain a two-stage compensator
design.

In the following, we first, review the two-stage compensator
design based on the feedback from y2 to u2 (No. 4). Then
we give the two-stage compensator designs based on the
feedbacks of Nos. 5 to 8. The feedback of No. 9 is just
Theorem 3.

(Review) Feedback from y2 to u2 (No. 4)

Let us review the two-stage compensator design of Sec-
tion III, which is based on the feedback from y2 to u2. In this
case, the feedback system is as in Figure 2. Under the current
situation, we have used new symbol C122 instead of C1, which
is shown in Figure 7.

P
P1

C0

C122

Fig. 7. Feedback from y2 to u2.

This is the case where C111, C112, and C121 of Figures 5
and 6 are zero matrices. From (Im+n − R1W (P, C0))−1R1

of (8), R111 and R121 are zero matrices. Analogously, from
R1(Im+n − W (P, C0)R1)−1 of (8), R111 and R112 are zero
matrices. Thus only R122 can be nonzero matrix and other
R111, R112, and R121 are zero matrices. This implies Theo-
rem 2.

The procedure to obtain a stabilizing controller based on
this feedback (No. 4) is summarized below.

Input
P : A plant to be stabilized (∈ Pn×m).
C0: A stabilizing controller (∈ Fm×n).
R1: A parameter matrix (∈ Am×n).

Output
CNew: A new stabilizing controller (∈ Fm×n).

Procedure
(i) Let P1 = P (Im + C0P )−1.
(ii) Assume Im − R1P1 is nonsingular.
(iii) Let C1 = (Im − R1P1)−1R1.
(iv) Let CNew = C0 + C1.
(v) Return (CNew).

Feedback from y1 to u1 and u2 (No. 5)

Let us consider the two-stage compensator design based
on the feedback from y1 to u1 and u2. That is, we do not
consider the output u2. In this case, the feedback system is as
in Figure 8.

This is the case where C112 and C122 of Figures 5 and 6 are
zero matrices. From (Im+n−R1W (P, C0))−1R1 of (8), R112

and R122 are zero matrices. Thus only R111 and R121 can be
nonzero matrix. Hence the configuration is as in Figure 9.

The following is a derivative result of Theorem 3 based on
the feedback from y1 to u1 and u2.
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C
P

C111

0

121C

Fig. 8. Feedback from y1 to u1 and u2.

C
C0

111C121

P

Fig. 9. Composite Stabilized Feedback based on Feedback from y1 to u1

and u2.

Theorem 4: Let Py1u1u2 denote

[ C0(In + PC0)−1 −C0P (Im + C0P )−1 ] .

Then we have

{(In + C121)(Im + C0C111)−1C0 |[
C111

C121

]
∈ S(Py1u1u2),

|Im + C0C111| �= 0}
= {(X̃−RÑ)−1(Ỹ + RD̃) |

R=−Ỹ R111Y − X̃R121Y,

R111 ∈ An×m, R121 ∈ Am×m,

|X̃−RÑ | �= 0}
= {(X̃−RÑ)−1(Ỹ + RD̃) |

R=R′Y, R′ ∈ Am×m,

|X̃−RÑ | �= 0}. (11)

The procedure to obtain a stabilizing controller based on
this feedback is summarized below.

Input
P : A plant to be stabilized (∈ Pn×m).
C0: A stabilizing controller (∈ Fm×n).
R1: A parameter matrix (∈ A(m+n)×m).

Output
CNew: A new stabilizing controller (∈ Fm×n).

Procedure
(i) Let P1 = [C0(In + PC0)−1 −C0P (Im + C0P )−1 ].

(ii) Let C1 = (Im+n − R1P1)−1R1.
(iii) Decompose [ Ct

111 Ct
121 ]t := C1

with C111 ∈ Fn×m and C121 ∈ Fm×m.
(iv) Assume Im + C0C111 is nonsingular.
(v) Let CNew = (Im + C121)(Im + C0C111)−1C0.
(vi) Return (CNew).

Feedback from y2 to u1 and u2 (No. 6)

The feedback of No. 5 described above has employed the
output y1. Alternatively we now consider to use the output y2.
That is, consider the two-stage compensator design based on
the feedback from y2 to u1 and u2. In this case, the feedback
system is as in Figure 10.

P

C122

112CC0

Fig. 10. Feedback from y2 to u1 and u2.

This is the case where C111 and C121 of Figures 5 and 6 are
zero matrices. From (Im+n−R1W (P, C0))−1R1 of (8), R111

and R121 are zero matrices. Thus only R112 and R122 can be
nonzero matrix. Hence the configuration is as in Figure 11.

C0
C112

C122

P

Fig. 11. Composite Stabilized Feedback based on Feedback from y2 to u1

and u2.

The following is a derivative result of Theorem 3 based on
the feedback from y1 to u1 and u2.

Theorem 5: Let Py2u1u2 denote

[ PC0(In + PC0)−1 P (Im + C0P )−1 ] .
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Then we have

{C0(In + C112) + C122 |
[

C112

C122

]
∈ S(Py2u1u2)}

= {(X̃−RÑ)−1(Ỹ + RD̃) |
R= Ỹ R112X + X̃R122X,

R112 ∈ An×n, R122 ∈ Am×n,

|X̃−RÑ | �= 0}
= {(X̃−RÑ)−1(Ỹ + RD̃) |

R=R′X, R′ ∈ Am×n,

|X̃−RÑ | �= 0}. (12)

The procedure to obtain a stabilizing controller based on
this feedback is summarized below.

Input
P : A plant to be stabilized (∈ Pn×m).
C0: A stabilizing controller (∈ Fm×n).
R1: A parameter matrix (∈ A(m+n)×n).

Output
CNew: A new stabilizing controller (∈ Fm×n).

Procedure
(i) Let P1 = [PC0(In + PC0)−1 P (Im + C0P )−1 ].
(ii) Let C1 = (Im+n − R1P1)−1R1.
(iii) Decompose [ Ct

112 Ct
122 ]t := C1

with C112 ∈ Fn×n and C122 ∈ Fm×n.
(iv) Let CNew = C0(In + C112) + C122.
(v) Return (CNew).

Feedback from y1 and y2 to u1 (No. 7)

The feedbacks of Nos. 5 and 6 described above has em-
ployed two inputs. In the following, we consider one inputs
and two outputs. First, we consider the feedback from y1 and
y2 to u1.

In this case, the feedback system is as in Figure 12.

C
P

0

C111

C112

Fig. 12. Feedback from y1 and y2 to u1.

This is the case where C121 and C122 of Figures 5 and 6 are
zero matrices. From R1(Im+n−W (P, C0)R1)−1 of (8), R121

and R122 are zero matrices. Thus only R111 and R112 can be
nonzero matrix. Hence the configuration is as in Figure 13.

The following is a derivative result of Theorem 3 based on
the feedback from y1 and y1 to u1.

C0

C112C111

P

Fig. 13. Composite Stabilized Feedback based on Feedback from y1 and y2

to u1.

Theorem 6: Let Py1y2u1 denote
[

C0(In + PC0)−1

PC0(In + PC0)−1

]
.

Then we have

{(Im + C0C111)−1C0(In + C112) |
[ C111 C112 ] ∈ S(Py1y2u1)}

= {(X̃−RÑ)−1(Ỹ + RD̃) |
R= Ỹ R112X − Ỹ R111Y,

R112 ∈ An×n, R111 ∈ An×m,

|X̃−RÑ | �= 0}
= {(X̃−RÑ)−1(Ỹ + RD̃) |

R= Ỹ R′, R′ ∈ An×n,

|X̃−RÑ | �= 0}. (13)

The procedure to obtain a stabilizing controller based on
this feedback is summarized below.

Input
P : A plant to be stabilized (∈ Pn×m).
C0: A stabilizing controller (∈ Fm×n).
R1: A parameter matrix (∈ An×(m+n)).

Output
CNew: A new stabilizing controller (∈ Fm×n).

Procedure

(i) Let P1 =
[

C0(In + PC0)−1

PC0(In + PC0)−1

]
.

(ii) Let C1 = R1(Im+n − P1R1)−1.
(iii) Decompose [ C111 C112 ] := C1

with C111 ∈ Fn×m and C112 ∈ Fn×n.
(iv) Assume Im + C0C111 is nonsingular.
(v) Let CNew = (Im + C0C111)−1C0(In + C112).
(vi) Return (CNew).

Feedback from y1 and y2 to u2 (No. 8)

The final feedback is that from from y1 and y2 to u2.
In this case, the feedback system is as in Figure 14.
This is the case where C111 and C112 of Figures 5 and 6 are

zero matrices. From R1(Im+n−W (P, C0)R1)−1 of (8), R111
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P

C122

C121 C0

-1

Fig. 14. Feedback from y1 and y2 to u2.

and R112 are zero matrices. Thus only R121 and R122 can be
nonzero matrix. Hence the configuration is as in Figure 15.

C0

P

C121
C122

Fig. 15. Composite Stabilized Feedback based on Feedback from y1 and y2

to u2.

The following is a derivative result of Theorem 3 based on
the feedback from y1 and y1 to u1.

Theorem 7: Let Py1y2u2 denote
[−C0P (Im + C0P )−1

P (Im + C0P )−1

]
.

Then we have

{(Im + C121)C0 + C122 |
[ C121 C122 ] ∈ S(Py1y2u2)}

= {(X̃−RÑ)−1(Ỹ + RD̃) |
R=X̃R122X − X̃R121Y,

R121 ∈ Am×m, R122 ∈ Am×n,

|X̃−RÑ | �= 0}
= {(X̃−RÑ)−1(Ỹ + RD̃) |

R=X̃R′, R′ ∈ Am×n,

|X̃−RÑ | �= 0}. (14)

The procedure to obtain a stabilizing controller based on
this feedback is summarized below.

Input
P : A plant to be stabilized (∈ Pn×m).
C0: A stabilizing controller (∈ Fm×n).

R1: A parameter matrix (∈ Am×(m+n)).
Output

CNew: A new stabilizing controller (∈ Fm×n).
Procedure

(i) Let P1 =
[−C0P (Im + C0P )−1

P (Im + C0P )−1

]
.

(ii) Let C1 = R1(Im+n − P1R1)−1.
(iii) Decompose [ C121 C122 ] := C1

with C121 ∈ Fm×m and C122 ∈ Fm×n.
(iv) Let CNew = (Im + C121)C0 + C122.
(v) Return (CNew).

VI. CONCLUSION

In this paper, we have investigated two-stage compensator
designs. We have given five two-stage compensator designs
with partial feedbacks. All results are given based on the
factorization approach, so that the results can be applied to
numerous linear systems.

As future works, we will consider to obtain the optimized
stabilizing controller within the framework of two-stage com-
pensator designs. Our result of this paper have shown that
the two-stage compensator designs with partial feedbacks
cannot give, in general, all stabilizing controllers. Even so,
the optimized stabilizing controller may be included in the set
prameterizd as in Theorems 4 to 7. We will need to investigate
these criteria.
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