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Abstract—The significant effects of the interactions between the 
system boundaries and the near wall molecules in miniaturized 
gaseous devices lead to the formation of the Knudsen layer in which 
the Navier-Stokes-Fourier (NSF) equations fail to predict the correct 
associated phenomena. In this paper, the well-known lattice 
Boltzmann method (LBM) is employed to simulate the fluid flow and 
heat transfer processes in rarefied gaseous micro media. Persuaded 
by the problematic deficiency of the LBM in capturing the Knudsen 
layer phenomena, present study tends to concentrate on the effective 
molecular mean free path concept the main essence of which is to 
compensate the incapability of this mesoscopic method in dealing 
with the momentum and energy transport within the above mentioned 
kinetic boundary layer. The results show qualitative and quantitative 
accuracy comparable to the solutions of the linearized Boltzmann 
equation or the DSMC data for the Knudsen numbers of ( )1O . 

 
 

Keywords— Fluid flow and Heat transfer, Knudsen layer, Lattice 
Boltzmann method (LBM), Micro-scale numerical simulation, 
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I. INTRODUCTION 
UO to its indispensability of implementation in different 
scientific and industrial fields, the branch of the so-called 

micro-electro-mechanical systems (MEMS) has attracted 
much consideration in recent years [1]. Hence, a special 
understanding of the physics associated with the flow and heat 
transfer in miniaturized devices – which is completely 
different from that of their macroscale counterparts – seems to 
be absolutely necessary. Because of the larger surface to 
volume ratio of the micro-fluidic systems, the interactions of 
the fluid molecules with the solid walls may have significant 
influences on the macroscopic properties of the flow in this 
scale. Moreover, the dynamics of the above mentioned 
interactions differ substantially from macro scale [2]. 
 

As a micro-scale point of view, different flow regimes may 
be encountered as the mean free path of the molecules λ  – the 
flight distance of the molecules before colliding into each 
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other – becomes comparable with the characteristic length of 
the system H . In other words, the main attributes of the 
micro-scale flows can be characterized through a 
nondimensional number called Knudsen number which is 
defined as the ratio of the mean free path of the molecules to 
the characteristic length of the system ( )/Kn Hλ= . It should 
be noted that λ , itself, is related to the macroscopic quantities 
of the flow via ( ) / 2BP k T mλ μ π=  where μ  is the 
viscosity, P  is the pressure, m  is the molecular mass, Bk  is 
the Boltzmann’s constant, and T  is the absolute temperature. 

The case of 0.01Kn <  is referred to as the continuum 
regime, in which the conventional hydrodynamic equations, 
i.e., the Navier-Stokes equations with no velocity slip 
boundary conditions and the Fourier heat conduction equation 
with no temperature jump boundary condition, are the 
appropriate governing equations. However as Kn  increases to 
the limit of 0.01 0.1Kn≤ < , which is treated as the slip flow 
regime, the already mentioned boundary conditions seem to 
fail and velocity slip and temperature jump will appear on the 
solid boundaries and the Navier-Stokes-Fourier (NSF) 
equations should be solved subject to the slip/jump boundary 
conditions. The values of 0.1 10Kn≤ <  is related to the 
transition flow regime in which the continuum descriptions 
break down and consequently the NSF equations with velocity 
slip and temperature jump boundary conditions are also 
invalid. In order to predict the realistic characteristic of the 
flow in this regime, one may need to deal with the molecular 
based models such as direct simulation Monte-Carlo (DSMC), 
Boltzmann equation (BE) or molecular dynamics (MD). In the 
flow regime of 10Kn ≥ , which is known as the free molecular 
flow regime, the transport process is assumed to be ballistic, 
since the rate of molecular interactions is much less than the 
rate of molecule-wall interactions [3]-[5]. 

Even though there have been much prosperous endeavors in 
simulating high speed transition flow problems using 
molecular based methods such as the direct simulation Monte 
Carlo (DSMC) and the direct solution of the Boltzmann 
equation (BE), the prospect of applying these methods to low-
speed, low Knudsen number flows is frustrated due to high 
computational costs and special requirements to reduce large 
statistical scatter of the former and complexities associated 
with the solution of the nonlinear differential-integral equation 
of the latter [6], [7]. 
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In the past two decades, a mesoscopic approach based on 
the evolution of the single-particle distribution function 
known as lattice Boltzmann method (LBM), has shown its 
potency to be considered as a powerful and promising 
numerical approach for simulating a wide range of flow and 
heat transfer problems including macro-, micro- and nano- 
fluidic applications [8]-[12]. The exceptional and peerless 
features of the LBM, e.g., having a kinetic nature, being a 
simplified solver of the Boltzmann equation (BE), explicitness 
of its dominant equation, simple programming procedure, easy 
boundary treatment and finally, intrinsic parallelism of its 
algorithm, have transmuted this method to a powerful and 
prevailing computational tool in challenging with complex 
fluid systems, e.g., porous media, multi phase and multi 
component flows [13]-[15]. In contrast with the MD method, 
in the LBM the computational effort is not related to the 
number of the fluid molecules. Instead, it depends on the 
number of the lattice nodes (or particles) and the lattice model 
(which demonstrates the lattice dimension and number of 
lattice links). Hence, LBM has emerged as a computationally 
efficient method, especially, for the case of micro- and nano-
fluidic systems.  

II. LATTICE BOLTZMANN METHOD 

Following the work of He, Chen and Doolen [16] and Shi, 
Zhao and Guo [17], who recently proposed thermal lattice 
Boltzmann BGK models which employ two discrete evolution 
equations for density- and internal energy distribution 
function, i.e., kf  and kg , respectively, the governing 
equations can be written as 

 

( ) ( ) ( ) ( )1, , , ,eq
k k k k kf x e t t t f x t f x t f x tδ δ

τ
⎡ ⎤+ + − = − −⎣ ⎦  

( ) ( ) ( ) ( )1, , , ,eq
k k k k k

t

g x e t t t g x t g x t g x tδ δ
τ

⎡ ⎤+ + − = − −⎣ ⎦  (1) 

 
where eq

kf  and eq
kg  are the density and energy distribution 

functions at equilibrium state, respectively, τ and tτ  are the 
relaxation times associated with the momentum and energy 
transport processes, dt  is the time step and kie  is the discrete 
velocity component along each lattice link. Note that because 
of the insignificant effects of the viscous heating in low-speed 
micro-scale gas flows, the term involving such effects has not 
been taken into account in our study and the simplest form of 
Shi’s model [16] is applied. 

Once the evolution process is done, the hydro and thermal 
macroscopic quantities (density, velocity and internal energy) 
can be then recovered from the following relations 
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where 
2

DRTε = , D  is the number of physical dimensions 

(here 2D = ) and R  is the gas constant. 
Using the two dimensional, nine-velocity lattice model 

( )2 9D Q  illustrated in Fig. 1, the equilibrium distribution 
functions read 

 

( )2

2 4 21
2 2
ki ieq ki i i i

k k
s s s

e ue u u uf w
c c c

ρ
⎡ ⎤
⎢ ⎥= + + −
⎢ ⎥⎣ ⎦

 

( )2

2 4 21
2 2
ki ieq ki i i i

k k
s s s

e ue u u ug w
c c c

ρ ε
⎡ ⎤
⎢ ⎥= + + −
⎢ ⎥⎣ ⎦

 (3) 

 
where sc  is the sound speed and kw  is the weight function for 
each lattice link given by 
 

0
4 1 1; 1 4 ; 5 8
9 9 36k kw w k w k= = = − = = −  (4)

  
and the discrete velocity components along D2Q9 lattice links 

ke  (k=0-8) can be denoted as  
 

0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1ke c

− − −⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

 (5)

  
here 3c RT=  is the r.m.s molecular speed which is equal to 
unity in this model. The sound speed is related to the r.m.s 
molecular speed through 2 2 3Csc = .  

The pressure, kinematic viscosity and thermal diffusivity 
are obtained from 2

sP cρ= , ( ) 20.5 sc tυ τ δ= −  and 

( ) 20.5t sc tα τ δ= − , respectively. It’s worth mentioning that one 
of the most important features of the above double distribution 
function lattice Boltzmann model is that the Prandtl number 

( ) ( )Pr 0.5 0.5tτ τ= − −  is no longer fixed as a constant.  

 
Fig. 1 Lattice links for the D2Q9 lattice Boltzmann model 
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III. KNUDSEN LAYER, BOUNDARY CONDITIONS, RELAXATION TIME 
AND EFFECTIVE MEAN FREE PATH CONCEPTS 

The major challenges in dealing with micro-scale modeling 
through LBM are the application of the correct boundary 
conditions in order to capture the real velocity slip and 
temperature jump at the boundaries and the establishment of a 
proper relation between the Knudsen number and the 
relaxation time of the method. Hence, in the proceeding sub-
sections, the issues of the kinetic boundary conditions and the 
Kn-dependent relaxation time will be discussed and 
correspondingly, the concept of the Knudsen layer and 
effective mean free path will be addressed. 

A. Knudsen layer 
The significant effects of the interactions between the 

system walls and the gas molecules constitute a kinetic 
boundary layer with a thickness of ( )λO  at the vicinity of the 
solid walls, known as Knudsen layer. In this layer the 
conventional NSF equations are incapable of predicting the 
realistic phenomena associated with the momentum- and 
energy transport and especial solutions of the continuous 
Boltzmann equation (CBE) are required for this purpose. The 
reason must be sought in the breakdown of the linear 
constitutive relations defining the stress tensor and the heat 
flux vector in this layer. Consequently, according to the 
occurrence of a finite slip, there would be a significant 
difference between the wall velocity and temperature ( ),w wu T  
and the velocity and temperature of the gas located at the 
vicinity of the wall ( ),s su T  which leads to the following 
nondimensional slip/jump boundary conditions [4] 

 
2 2
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s w
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⎡ ⎤⎛ ⎞− ∂ ∂⎛ ⎞− = +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 (6)

 
2 2

2

2 2 1
1 P r 2

T
s w

T s s

T K n TT T K n
n n

σ γ
σ γ

⎡ ⎤⎛ ⎞⎡ ⎤− ∂ ∂⎛ ⎞− = +⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟+ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 where n  stands for the normal (unit) coordinate to the wall, γ  
is the ratio of specific heats, vσ  and Tσ  are the momentum 
and energy accommodation coefficients, respectively, Kn  is 
the Knudsen number, and finally, Pr  is the Prandtl number 

which is defined as Pr pc
k
μ

=  ( here pc  is the specific heat at 

constant pressure and k  is the thermal conductivity 
coefficient). The details of these models and their associated 
concepts are widely available in the literature, e.g, [4]. 

B. Boundary conditions 
In order to model the velocity slip at the boundary, the 

Maxwellian kinetic boundary condition with the assumption 
of a fully diffuse molecular reflection has been employed to 
determine the unknown distribution functions at the boundary 
coming to the flow domain from outside of the solid wall 
which reads [18], [19] 
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where k  and k′  refer to the directions of the reflected and 
incoming lattice particles, wu  and wρ  are the velocity and 
density at the wall, respectively, and n  is the inward unit 
normal vector of the solid boundary. More clearly, in the 
above expression, the k -ward distribution functions kf  on 
the walls are unknown (shown with dashed arrows in Fig. 2) 
and need to be determined using the known k′ -ward 
distribution functions kf ′  (shown with solid arrows in the 
same figure) according to the already mentioned Maxwellian 
rule. 

In order to capture the temperature jump at the wall, the 
unknown k -ward energy distribution functions, should be 
defined. For this objective, one may obey the spirit of the 
Maxwellian diffuse reflection which states that the reflected 
molecules are in thermal equilibrium with the solid boundary. 
With respect to this idea, we have [20] 
 

2
w

k k
DRTg f=  (8) 

 
where wT  is the temperature of the wall. A similar set of 
diffuse scattering boundary conditions for thermal flows has 
been proposed by Niu, Shu and Chew [21], which is based on 
the assumption that the incoming particles toward the wall 
forget their previous information and reemit so that they 
satisfy the mass-balance and normal-flux conditions and is 
shown to be equivalent to the second order boundary 
conditions in (6).  

C. Relaxation time 
In a two-dimensional nine-velocity lattice BGK model 

(D2Q9) the Knudsen number can be written in terms of the 
relaxation time as [10] 
 

( )0.58
3 H

Kn
N

τ
π

−
=  (9) 

 
where HN  is the number of lattice sites across the channel 
height H , i.e., HN H xδ=  ( xδ  is the lattice length). 

 
Fig. 2 Schematic diagram of the known (solid arrows) and 

unknown (dashed arrows) distribution functions for the bottom wall 
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D. Effective mean free path 
Many authors – in individual issues – have reported the 

prosperity of the LBM in going beyond the NSF equations 
and simulating the flow and heat transfer in the slip and 
transition flow regimes [21]-[25]. In contrast, recent studies 
have denoted that the current LB models are unable to capture 
the correct flow properties, especially in the near-wall region 
[20], [26]-[28]. Figs. 3 and 4 are schematic diagrams of the 
considerable difference between the real velocity and 
temperature profiles and those obtained from the NSF 
equations and common LB models for some typical rarefied 
shear-driven and Fourier flows which state that the already 
mentioned methods are unable to capture the realistic macro 
properties of such micro-scale problem. Moreover, it is 
observed that the difference between the predictions of such 
methods and the actual quantities increases as the wall is 
approached and vanishes at the vicinity of the core region. 

Regarding this problematic deficiency of the LBM, some 
possible strategies were proposed in order to enable the 
capturing of the Knudsen layer phenomena within the 
framework of this mesoscopic method. Recently, Zhang, Gu, 
Barber and Emerson [20], [27] introduced the concept of the 
spatio-variational mean free path. The main idea behind this 
procedure is that the solid surface affects the near-wall region 
through causing substantial reduction in the mean time 
between consecutive collisions of the gas molecules located 
close to the wall compared to that of the bulk flow molecules. 
Consequently, there would be a significant reduction in the 
average distance that near-wall gas molecules travel before 
colliding each other, i.e., the mean free path λ . This 
promising procedure – which is employed in our study – is 
briefly outlined in the following. The effective mean free path 

effλ  that accounts for the reduction of λ  in the near-wall  
region can be expressed as 

( )

( )

1

0.7exp

eff y

yy c

λλ
ψ λ

ψ λ
λ

⎧ =⎪ +⎪
⎨

⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠⎩

 (10)

 

 

here y  is the distance normal to the solid wall, λ  is the mean 
free path, c  is a constant through which the extent of the 
Knudsen layer can be controlled and depends on the 
governing equations. In the current work we set 1c = .  

For non isothermal flows, the influence of density and 
temperature on the mean free path should be considered, 
which leads to the following relation for the effλ

 
 

( )

0.5
1

1
eff ref

ref ref

T
y T

ω
λ ρ
λ ψ λ ρ

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟+ ⎝ ⎠
 (11) 

 
here refλ  and refρ  are the mean free path and density at a 
reference temperature, say refT , local macroscopic density and 
temperature are denoted by ρ  and T , respectively, and 
finally ω  is a parameter which depends on the employed 
molecular interaction model taking a value of 0  for hard-
sphere molecular interactions and 1  for Maxwellian 
interactions. 

Considering how temperature affects the mean free path of 
the molecules and substituting its corresponding expression in 
(9), allows the local relaxation time to be formulated as [29] 

 

Fig. 3 Schematic diagram showing velocity defect in the Knudsen 

layer for a rarefied gaseous shear driven flow, where slipU
 and 

NS LBMU −  represent the microscopic and macroscopic velocity slip, 
respectively. Real velocity profile predicted by kinetic theory 
( ) and profile obtained from NS equations and common LB 
models ( − − − ). 

Fig. 4 Schematic diagram showing Temperature over-prediction in 

the Knudsen layer for a rarefied gaseous Fourier flow, where kinT  and 
NSF LBMT −  represent the microscopic- and macroscopic Temperature 

jump, respectively. Actual Temperature profile predicted by kinetic 

theory ( ) and profile obtained from NSF   
equations and common LB models ( − − − ). 
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8 1

refH

ref

KnN T
y T

ω
ρπτ

ψ λ ρ

−
⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
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 where refKn Hλ= . Finally, the thermal relaxation time can be 
obtained via ( )0.5 / Pr 0.5tτ τ= − + . 
It should be bore in mind that the above correction factor is 
developed for the isothermal Kramers’ problem – which is a 
gas bounded by a planner surface and under a constant shear 
stress – in which the overlap of the Knudsen layers is not 
encountered. In contrast with the Kramers’ problem, in the 
case of the channel flow the Knudsen layers attached to the 
solid walls start to overlap by the increase in the Knudsen 
number and this should be taken into account through another 
correction function which is given by  
 

( ) ( ) ( )y y H yϕ λ ψ λ ψ λ⎡ ⎤= + −⎣ ⎦  (13)
 

 
where H  is the height of the channel, y  is the distance from 
one of the walls while H y−  is the distance from the other 
one. Summarily, all the previous relations for the Kramers’ 
problem can correspondingly be applied to the channel flow if 
ψ  is replaced by ϕ .  

IV. RESULTS AND DISCUSSIONS 

To demonstrate advantages of implementing the wall 
function concept in the LBM, some typical cases of the shear-
driven and thermal rarefied flows, namely, the planner 
Couette and Fourier flows confined between two parallel 
plates for a range of Knudsen numbers are simulated in this 
section and the results are validated using those of the 
solutions of the linearized Boltzmann equation given by Sone, 
Takata and Ohwada [30] for the Couette flow and the DSMC 
data obtained by Gallis, Rader and Torczynski [31] for the 
rarefied Fourier flow. Hereafter we adopt a rescaled Knudsen 
number ( )/ 2K Knπ=  as a new parameter to match our 

results with [30]. 

A. Planner Couette flow  
The first case study is a planner Couette flow confined 

between two plates (walls) parallel to the x -axis separated by 
distance H , which are moving oppositely with a constant 
velocity wU± . The kinetic boundary condition of (7) is used to 
describe the gas surface interactions with the solid walls after 
the streaming process of the particles, while periodic boundary 
conditions are employed at the inlet and outlet.  

Figs. 5 and 6 show the grid-independent normalized 
velocity wU U  profiles versus the nondimensional distance 
y H  at different degrees of the rarefaction. At low values of 
K  the effect of the Knudsen layer on the flow domain is 
minimal and as a consequence, for 0.001K = , namely in the 
continuum regime, the predicted velocity profiles with and 
without the local mean free path correction are almost 

identical (Fig. 5). 
Fig. 6 illustrates the velocity profiles of the planner Couette 

flow in the early transition flow regime, namely, at 
0.1 1.0K = − , respectively. The results are compared with the 

solutions of the linearized Boltzmann equation [30]. As shown 
in this figure, the magnitude of the velocity slips on the plates 
increase as K  becomes larger since the extent of the Knudsen 
layers attached to the walls become larger and larger. 
Furthermore, one can observe from this figure that the main 
characteristics of the rarefaction effects, i.e., the nonlinear 
velocity profile in the Knudsen layer and the overlap effects of 
the Knudsen layers at the upper and lower walls are well 
captured in the present simulation and the predicted results are 
in relatively good agreement with those given by [30] both in 
the near-wall- and core regions up to the the rescaled Knudsen 
numbers of ( )1O . 

B. Rarefied Fourier flow 
As the second case study we consider a planner rarefied 

Fourier flow confined between two plates parallel to the x -
axis at 2y H= ± . Both of the plates (walls) are assumed to be 
stationary and are kept at constant temperatures 

263CT K= (lower plate) and 283HT K= (upper plate), 
respectively. The simulations are carried out using an argon-
like monatomic gas with a Maxwellian collision model which 
coerces the viscosity temperature exponent ω  
to be equal to unity ( 1ω = ). The Prandtl number is fixed at 
0.67  and the reference temperature is considered as 

( ) 2 273H LrefT T T K= + = . All other parameters are set to those 

used by [31] for consistency with the DSMC data.  
The initial conditions for flow and temperature fields are a 

zero velocity distribution and a constant temperature profile 
refT , respectively. The Maxwellian diffuse scattering boundary 

conditions of (7) and (8) are used to describe the molecular 
interactions with the solid walls after the streaming process of 
the particles, while periodic boundary conditions are 
employed at the inlet and outlet. 

Figs. 7 and 8 show the grid-independent normalized 

temperature ( ) C

H C

T y T
T T

⎡ ⎤−
⎢ ⎥−⎣ ⎦

 profiles as a function of the 

nondimensional distance y H  for the already mentioned case 
study, at different degrees of the rarefaction. To validate the 
present approach, the DSMC data given by [31] is also 
included. Again, at low Knudsen numbers, i.e., the continuum 
limit, the Knudsen layer correction doesn’t play a significant 
role on the mean free path – which emanates from the 
negligible effects of the Knudsen layer in this flow regime – 
and hence the differences between the results of the simulation 
with and without this modification 
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Fig. 5 Normalized velocity profile for shear driven Couette flow in the continuum limit. 
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Fig. 6 The Normalized velocity profiles for rarefied shear driven Couette flow in the transition regime. Our LB results are compared with  
the data given by [30]. 
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Fig. 7 Normalized temperature profiles for rarefied Fourier flow in the continuum flow regime. 
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Fig. 8 The normalized temperature profiles of the rarefied Fourier flow in the transition flow regime. Our LB results are compared with 

 the DSMC data given by [31]. 
 

and the DSMC data can be hardly distinguished which is 
shown for 0.001Kn =  (Fig. 7). But as the Knudsen number 
approaches higher values, namely, the transition flow regime, 
the results of the standard LBE departs further from those of 
the DSMC data and as can be seen, the predicted profiles of 
this non-modified model proffer a linear temperament for 
temperature variation across the channel that is inconsistent 
with the nonlinear physical inclination of the actual 
temperature profiles within the Knudsen layer (Fig. 8). 
However, implementation of the wall function technique 
enables the capturing of both the nonlinear temperature 
variation in the near-wall region and the overlap effects of the 
Knudsen layers at the upper and lower walls – that are the 
direct nonequilibrium effects of the rarefaction phenomenon – 

and results in satisfactory heat transfer predictions comparable 
with the DSMC data even at a relatively moderate transitional 
Knudsen number suchlike 1.58Kn = . In addition, it can be 
concluded from the plots that an increase in the Knudsen 
number leads to the flatter temperature profiles which is the 
obvious consequent of the increasing temperature jump at the 
channel walls. 

V. CONCLUSIONS 

In summary, a geometry dependent wall function technique 
has been implemented in the standard lattice Boltzmann BGK 
model in order to rectify the inadequacies associated with this 
mesoscopic method in dealing with the momentum and energy 
transport within the Knudsen layer and to enhance the potency 
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of such a numerical method in challenging with the simulation 
of the micro-scale rarefied gaseous flows. The procedure has 
been successfully applied to some typical rarefied shear-
driven and Fourier flows between two parallel plates and the 
results are shown to be in relatively excellent agreement with 
those of the linearized Boltzmann equation and the DSMC 
data ,respectively, for the Knudsen numbers of ( )1O . In 
conclusion, the above mentioned technique seems to be 
promising and reliable for flow and heat transfer simulation of 
the miniaturized devices in the framework of the LBM. 
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