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Abstract—The main objective of this paper is to investigate the 

enhancement of power system stability via coordinated tuning of 
Power System Stabilizers (PSSs) in a multi-machine power system. 
The design problem of the proposed controllers is formulated as an 
optimization problem. Chaotic catfish particle swarm optimization 
(C-Catfish PSO) algorithm is used to minimize the ITAE objective 
function. The proposed algorithm is evaluated on a two-area, 4-
machines system. The robustness of the proposed algorithm is 
verified on this system under different operating conditions and 
applying a three-phase fault. The nonlinear time-domain simulation 
results and some performance indices show the effectiveness of the 
proposed controller in damping power system oscillations and this 
novel optimization algorithm is compared with particle swarm 
optimization (PSO). 
 

Keywords—Power system stabilizer, C-Catfish PSO, ITAE 
objective function, Power system control, Multi-machine power 
system 

I. INTRODUCTION 

N 1950s and to 1960s, many power-generating plants were 
equipped with continuously acting automatic voltage 

regulators (AVRs). As the number of power plants with AVRs 
grew, it became apparent that the high performance of these 
voltage regulators had a destabilizing effect on the power 
system. Power oscillations of small magnitude and low 
frequency often persisted for long periods of time. Since the 
development of interconnected large electric power systems, 
there have been spontaneous system oscillations at very low 
frequencies in order of 0.2–3.0 Hz. Once started, they would 
continue for a long period of time. In some cases, they 
continue to grow, causing system separation if no adequate 
damping is available. Moreover, low frequency oscillations 
present limitations on the power-transfer capability. In some 
cases, this presented a limitation on the amount of the power to 
be transmitted within the system [1]. Power system stabilizers 
(PSSs) are auxiliary control devices on synchronous 
generators, used in conjunction with their excitation systems to 
provide control signals toward enhancing the system damping 
and extending power transfer limits.  
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Thus, maintaining reliable operation of the power system 

[2]. Several approaches based on modern control theory have 
been applied to power system stabilizer design problems. 
These include optimal control, adaptive control, variable 
structure control and intelligent control [3]–[5]. Novel 
intelligent control design methods such as fuzzy logic 
controllers [6] and artificial neural network controllers [7] 
have been used as the PSSs. Unlike other classical control 
methods, fuzzy logic and neural network controllers are 
model-free controllers; i.e. they do not require an exact 
mathematical model of the controlled system. Moreover, speed 
and robustness are the most significant properties in 
comparison to other classical schemes. ∞H  optimization 

techniques [8] have been also applied to the robust PSS design 
problem. However, the importance and difficulties in the 
selection of weighting functions of the ∞H  optimization have 

been reported. Recently, intelligent optimization techniques 
like genetic algorithms (GA) [9]–[12], Tabu search [13], 
simulated annealing [14], evolutionary programming [15] and 
rule based bacteria foraging [16] have been applied for PSS 
parameter optimization. These evolutionary algorithms are 
heuristic population-based search procedures that incorporate 
random variation and selection operators. Although, these 
methods seem to be good methods for the solution of PSS 
parameter optimization problem, However, when the system 
has a highly epistatic objective function (i.e. where parameters 
being optimized are highly correlated), and number of 
parameters to be optimized is large, then they have regarded 
efficiency to obtain global optimum solution and also 
simulation process use a lot of computing time. An algorithm 
for computerized automatic tuning of power system stabilizers 
has been presented in [17]. Particle swarm optimization [18] 
has been applied for PSSs parameter optimization in 3-
machines power system. In this paper, a comprehensive 
assessment of the effects of the coordinated design of PSSs 
stabilizers on power system stability enhancement has been 
carried out in multi-machine power system. Chaotic catfish 
particle swarm optimization (C-Catfish PSO) algorithm is used 
to minimize the ITAE objective function for a two-area, 4-
machines system under different operating conditions and 
applying a three-phase fault. Unlike the other heuristic 
techniques, C-Catfish PSO has a flexible and well-balanced 
mechanism to enhance the global and local exploration 
abilities. The nonlinear time-domain simulation results and 
some performance indices show the effectiveness of the 
proposed controller in damping power system oscillations. 
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II. C-CATFISH PSO ALGORITHM 

PSO is one of the optimization techniques and belongs to 
evolutionary computation techniques [19].  The method has 
been developed through a simulation of simplified social 
models. The features of the method are as follows: 

1) The method is based on researches on swarms such as 
fish schooling and bird flocking. 

2) It is based on a simple concept. Therefore, the 
computation time is short and it requires few memories. 

According to the research results for bird flocking, birds are 
finding food by flocking (not by each individual). It leaded the 
assumption that information is owned jointly in flocking. 
According to observation of behavior of human groups, 
behavior pattern on each individual is based on several 
behavior patterns authorized by the groups such as customs 
and the experiences by each individual (agent). The 
assumptions are basic concepts of PSO. 

The PSO starts with a population of random solutions 
"particles" in a D-dimension space. The ith particle is 
represented by Xi=(xi1, xi2, ..., xiD). Each particle keeps track 
of its coordinates in hyperspace, which are associated with the 
fittest solution it has achieved so far. The value of the fittest 
for particle i (Pbest) is also stored as Pi=(Pi1, Pi2, ..., PiD). The 
global version of the PSO keeps track of the overall best value 
(gbest), and its location, obtained thus far by any particle in the 
population. PSO consists of changing the velocity of each 
particle toward its Pbest and gbest, at each step according to (1). 
The velocity of particle i is represented as Vi=(vi1, vi2, ..., viD). 
Acceleration is weighted by a random term, with separate 
random numbers being generated for acceleration toward Pbest 
and gbest. The position of the ith particle is then updated 
according to (2) [20] and [21].  

( ) ( )1 1 2 2id id id id gd idV W V C r P X C r P X= × + × × − + × × −              (1) 

id id idx x cv= +                                                                     (2) 

Where Pid and Pgd are Pbest and gbest. Several modifications 
have been proposed in literature to improve the PSO algorithm 
speed and convergence toward the global minimum. One 
modification is to introduce a local-oriented paradigm (Ibest) 
with different neighborhoods.  

It is concluded that gbest version performs best in terms of 
median number of iterations to converge. However, Pbest 
version with neighborhoods of two is most resistant to local 
minima. The positive constants C1 and C2 are the cognitive and 
social components that are the acceleration constants 
responsible for varying the particle velocity towards Pbest  and 
gbest, respectively. Variables r1 and r2 are two random functions 
based on uniform probability distribution functions in the 
range [0,1]. The inertia weight w is responsible for 
dynamically adjusting the velocity of the particles, so it is 
responsible for balancing between local and global searches 
and hence requiring less iteration for algorithm to converge. 
The following inertia weight is used in (1): 

max min
max

max

-
-

W W
W W iteration

iter
=                                          (3) 

Where itermax is the maximum number of iterations and 
iteration is the current number of iteration. (3) presents that the 
inertia weight is updated, considering  Wmax and Wmin are the 
initial and final weights, respectively. The underlying idea for 
the development of Catfish PSO was derived from the catfish 
effect observed when catfish were introduced into large 
holding tanks of sardines [22]. The catfish in competition with 
the sardines, stimulate renewed movement amongst the 
sardines. Similarly, the introduced catfish particles stimulate a 
renewed search by the other ‘‘sardine’’ particles in Catfish 
PSO. In other words, the catfish particles can guide particles 
trapped in a local optimum onto a new regions of the search 
space, and thus to potentially better particle solutions. 

In Catfish PSO, a population is randomly initialized in a 
first step, and the particles are distributed over the                 
D-dimensional search space. The position and velocity of each 
particle are updated by (1)–(3). If the distance between gbest 
and the surrounding particles is small, each particle is 
considered a part of the cluster around gbest and will only move 
a very small distance in the next generation. To avoid this 
premature convergence, catfish particles are introduced and 
replace the 10% of original particles with the worst fitness 
values of the swarm. 

In PSO, the parameters w, r1 and r2 are the key factors 
affecting the convergence behavior. The inertia weight 
controls the balance between the global exploration and the 
local search ability. A large inertia weight favors the global 
search, while a small inertia weight favors the local search. For 
this reason, an inertia weight that linearly decreases from 0.9 
to 0.4 throughout the search process is usually used [23]. Since 
logistic maps are frequently used chaotic behavior maps and 
chaotic sequences can be quickly generated and easily stored, 
there is no need for storage of long sequences [24]. In C-PSO, 
sequences generated by the logistic map substitute the random 
parameters r1 and r2 are modified by the logistic map based on 
the following equation. 

( 1) ( ) ( )(1 )t t tCr k Cr Cr+ = × × −                                                       (4) 

In (4), Cr(0) is generated randomly for each independent run, 
with Cr(0) not being equal to {0, 0.25, 0.5, 0.75,1} and k equal 
to 4. The driving parameter k of the logistic map, controls the 
behavior of Cr(t) (as t goes to infinity) [25]. The velocity 
update equation for C-PSO can be formulated as: 

1

2

( )

(1 ) ( )
id id id id

gd id

V W V c Cr P X

c Cr P X

= × + × × − +
× − × −

                                         (5) 

In (5), Cr is a function based on the results of the logistic map 
with values between 0.0 and 1.0. 

In C-Catfish PSO, a logistic map is embedded into Catfish 

PSO, which updates the parameters  1r  and 2r based on (4) 

[26]. The logistic map improves the search capability of 
Catfish PSO significantly. The particle velocities are updated 
according to (5). 

This new approach features many advantages; it is simple, 
fast and easy to be coded. Also, its memory storage 
requirement is minimal. Another advantage of C-Catfish PSO 
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is that the initial population of the PSO is maintained, and so 
there is no need for applying operators to the population, a 
process that is time and memory-storage-consuming. It is 
shown in [26] that better solutions can be found by guiding the 
whole swarm to more promising regions in the search space. 
C-Catfish PSO achieved far better performance than PSO, C-
PSO, Catfish PSO and several other advanced PSO algorithms. 
The proposed algorithm will proceed as follows: 
01: Begin 
02: Randomly initialize particles swarm 
03: Randomly generate Cr(0) 

04: while (number of iterations, or the stopping criterion is not 
met) 
05: Evaluate fitness of particle swarm 
06: for n = 1 to number of particles 
07: Find pbest 
08: Find gbest 

09: for d = 1 to number of dimension of particle 
10: update the Chaotic Cr value by (4) 
11: update the position of particles by (5) and (2) 
12: next d 
13: next n 
14: if fitness of gbest is the same Seven times then 
15: Sort the particle swarm via fitness from best to worst 
16: for n = number of Nine-tenths of particles to number of 
particles 
17: for d = 1 to number of dimension of particle 
18: Randomly select extreme points at Max or Min of the 
search space 
19: Reset the velocity to 0 
20: next d 
21: next n 
22: end if 
23: update the inertia weight value by (3) 
24: next generation until stopping criterion 
25: end 

III.  STUDY SYSTEM MODELING 

A. Power system model 

A four-machine, two-area study system, shown in Fig. 2, is 
considered for the damping control design. Each area consists 
of two generator units. The rating of each generator is 900 
MVA and 20 kV. Each of the units is connected through 
transformers to the 230 kV transmission line. There is a power 
transfer of 400MW from area 1 to area 2. Each synchronous 
generator of the multi-machine power system is simulated 
using a third-order model. The detailed bus data, line data, and 
the dynamic characteristics for the machines, exciters and 
loads are given in [27]. The loads are modeled as constant 
impedances. On the basis of participation factors [28], two 
PSSs are installed in generators 1 and 3. The dynamics of the 
machines are given in the Appendix A. 

 
B. PSS structure 

A first order model of a static type AVR was used and the 
structure of the AVR equipped with the PSS is presented in 

Fig. 3. The operating function of a PSS is to produce a proper 
torque on the rotor of the machine involved in such a way that 
the phase lag between the exciter input and the machine 
electrical torque is compensated. The supplementary 
stabilizing signal considered is one proportional to speed. In 
Fig.3, Vt is the terminal bus voltage and Vref is the reference 
voltage for the AVR. Limits of +5.0 p.u and -5.0 p.u, for the 
field voltage were used in the simulations.  

Whereis 
iω∆ the deviation in speed from the synchronous 

speed. This type of stabilizer consists of a washout filter, a 
dynamic compensator. The output signal is fed as a 
supplementary input signal, Ui , to the regulator of the 
excitation system. The washout filter, which essentially is a 
high pass filter, is used to reset the steady state offset in the 
output of the PSS. The value of the time constant, Tw is usually 
not critical and it can range from 0.5 to 20 s. In this study, it is 
fixed to 10 s. The dynamic compensator is made up to two 
lead–lag stages and an additional gain 

Fig. 1 The computational flow chart of PSO algorithm is 
shown in 

 

 
Fig. 1 Flowcharts of C-Catfish PSO algorithm 
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Fig. 2 Multi-machine power system 

 

The transfer function of the ith PSS is: 

1 3

2 4

(1 ) (1 )
( )

1 (1 ) (1 )
w i i

i i i
w i i

sT sT sT
U K s

sT sT sT
ω + += ∆ + + + 

                          (6) 

The adjustable PSS parameters are the gain of the PSS, Ki , 
and the time constants, T1i-T4i. The lead–lag block present in 
the system provides phase lead compensation for the phase lag 
that is introduced in the circuit between the exciter input and 
the electrical torque. The required phase lead can be derived 
from the lead–lag block even if the denominator portion 
consisting of T2i and T4i gives a fixed lag angle. Thus, to 
reduce the computational burden in this study, the values of T2i 
and T4i are kept constant at a reasonable value of 0.05 s and 
tuning of T1i and T3i 

are undertaken to achieve the net phase 
lead required by the system. 

 

 
Fig. 3 Block diagram of the AVR equipped with PSS 

C. Simultaneous coordinated design using C-Catfish PSO 

The proposed controller must be able to work well under 
different operating conditions, while the improvement for the 
damping of the critical modes is necessary. Since the selection 
of the PSS parameters is a complex optimization problem. 
Thus, to acquire an optimal combination, this paper employs 
the C-Catfish PSO algorithm to improve the optimization 
synthesis and find the global optimum value. A performance 
index based on the system dynamics after an impulse 
disturbance alternately occurs in the system is organized and 
used as the objective function for the design problem. In this 
study, an ITAE is taken as the objective function. Since the 
operating conditions in the power systems are often varied, a 
performance index for three different operating points is 
defined as follows [30]: 

 
1 2 1 3 1 4 3 4

0

. ( )
simt

J t w w w w w w w w dt= − + − + − + −∫               (7)  

3

1
i

i
F J

=
= ∑                                                                                (8) 

Where tsim is the time range of the simulation. It is aimed to 
minimize this objective function in order to improve the 
system response in terms of the settling time and overshoots. 
To reduce the computational burden in this study, the values of 
T21PSS, T41PSS, T23PSS and T43PSS are kept constant at a 
reasonable value of 0.05 s. Thus, the design problem can be 
formulated as constrained optimization problem shown in table 
I. 
 

TABLE I 
CONSTRAINS OF PSSS PARAMETERS  

 K1PSS T11PSS T31PSS K3PSS T13PSS T33PSS 
min 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
max 50 1 1 50 1 1 

 
The proposed approach employs C-Catfish PSO technique 

to solve this optimization problem and search for optimal or 
near optimal set of PSS parameters. 

It is emphasized that with this procedure, robust stabilizer, 
enable to operate satisfactorily over a wide range of the 
operating conditions, are obtained. The flowchart of the 
optimization based coordinated designing is depicted in Fig. 4. 
The optimization of the PSSs controller parameters is carried 
out by evaluating the objective cost function as given in (8) 
which considers a multiple of the operating conditions (OP). 
The operating conditions are given in  Table II. In order to 
acquire better performance, number of particle, particle size, 
number of iterations, c1, c2, and c are chosen  as 50, 6, 100, 2, 
2 and 1, respectively. It should be noted that the C-Catfish 
PSO algorithm is run several times and then optimal set of 
coordinated controller parameters is selected. The final values 
of the optimized parameters are given in Table III. Also, Fig. 5 
shows the minimum fitness value evaluating process. 

 
TABLE II 

THREE OPERATING CONDITION 

     CONDITION OP1 OP2 OP3 

P1 0.7778 0.5556 0.9911 
Q1 0.2056 0.2056 0.1722 
P2 0.2885 0.5556 0.6283 
Q2 -0.1084 0.2611 0.5836 
P3 0.8020 0.5597 0.0095 
Q3 0.0697 0.2217 0.0712 
P4 0.8889 0.5556 1.1110 
Q4 0.2244 0.2244 0.2222 

 
TABLE III 

OPTIMAL PSSS PARAMETERS USING PSO AND C-CATFISH PSO TECHNIQUE 
 PSO C-Catfish PSO 
 K T1 T3 K T1 T3 

G1 10.6354 1.0000 0.0801 12.0528 0.0001 1.0000 
G3 12.4578 1.0000 0.0001 14.0424 0.0001 1.0000   

 

IV. NONLINEAR TIME-DOMAIN SIMULATION  

The effectiveness and robustness of the performance of the 
proposed controller under transient conditions is verified by 
applying 
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Fig. 4 Flowchart of optimization based coordinated designing 

 

a three-phase fault of 100 ms duration at the middle of one of 
the transmission lines between bus-7 and bus-10. PSO 
algorithm has been also used in this paper to minimize the 
ITAE objective function and these two algorithms are 
compared according to nonlinear                time-domain 
simulation for different operating conditions. The inter-area 
and local mode of oscillations with coordinated design of the 
controllers using PSO and C-Catfish PSO algorithms are 
shown in Figs (6-8) for different operating conditions. In C-
Catfish PSO, a chaotic map was embedded to determine the 
PSO parameters r1 and r2. The PSO parameters r1 and r2 cannot 
ensure optimal ergodicity in the search space because they are 
absolutely random i.e. the r1 and r2 are generated by a linear 
congruential generator (LCG) with a random seed. The 
generated sequence of LCG consists of pseudo-random 
numbers that have periodic characteristics.  

Furthermore, the generated sequence of a logistic map also 
consists of pseudo-random numbers, but there are no fixed 
points, periodic orbits, or quasi-periodic orbits in the behavior  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Variations of objective function 
 
of the chaos system. In PSO, each particle only relies on its 
individual pbest value and the global best position gbest to update 
its position at each generation. If gbest is trapped in a local 
optimum, the particles cluster together and lose their ability to 
explore the search space in later generations. In order to avoid 
such a scenario, the worst 10% of the swarm are replaced by 
Catfish particles when gbest has not changed for a certain 
number of generations. After the catfish particles are 
introduced, they initialize a renewed search from extreme 
points of the search space, and thus find the better solutions by 
guiding the entire swarm to promising new regions. They also 
improve the search efficiency of the swarm. The catfish 
particles not only allow the swarm to discover better solutions 
within the area of the swarm itself, but also to obtain better 
solutions located outside the swarm area. 
    Now it is clear from the figures (6-8) that the PSSs which 
are tuned by C-Catfish PSO, are more effective than the ones 
tuned by PSO in damping the low frequency oscillations and 
improves the stability performance of the example power 
system. 

To demonstrate the performance and robustness of the 
proposed method, two performance indices: the ITAE and FD 
based on the system performance characteristics are defined as 
[31]: 

1 2 1 3

0
1 4 3 4

2 2 2

. (
1000

)

( 5000 ) ( 5000 )

simt

s

t w w w w
ITAE

w w w w dt

FD OS us T

− + − +
=

− + −

= × + × +

∫                                  (9) 

Where w is the speed rotor, overshoot (OS), undershoot 

(US) and settling time of 13w∆  of the system is considered for 

the evaluation of the ITAE and FD indices. It is worth 
mentioning that the lower the value of these indices is, the 
better the system response in terms of time-domain 
characteristics. Numerical results of the performance and 
robustness for all system loading cases are shown in Fig. 9. 

It can be seen that the application of the PSSs damping 
controller where the controllers are tuned by                          
C-Catfish PSO, achieves better response than the ones tuned 
by PSO. 
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Fig. 6 Inter-area and local mode of oscillations for OP1 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Inter-area and local mode of oscillations for OP2 

 

 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:6, No:1, 2012

134

 

 

OP1                 OP2                 OP3 
 

0 5 10 15
-10

-5

0

5
x 10

-3

Time (s)

W
1-

W
2 

(R
ad

/s
)

 

 
PSSs PSO

PSSs C-Catfish PSO

0 5 10 15
-0.015

-0.01

-0.005

0

0.005

0.01

Time (s)

W
1-

W
3 

(R
ad

/s
)

 

 

PSSs PSO

PSSs C-Catfish PSO

0 5 10 15
-0.01

-0.005

0

0.005

0.01

0.015

Time (s)

W
3-

W
4 

(R
ad

/s
)

 

 

PSSs PSO

PSSs C-Catfish PSO

0 5 10 15
-0.015

-0.01

-0.005

0

0.005

0.01

Time (s)

W
1-

W
4 

(R
ad

/s
)

 

 

PSSs PSO

PSSs C-Catfish PSO

OP1                  OP2                  OP3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Inter-area and local mode of oscillations for OP3 
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Fig. 9 Values of performance index; (a) FD and (b) ITAE 

V. CONCLUSION 

Techniques such as PSO and C-Catfisho PSO are inspired 
by nature, and have proved themselves to be effective 
solutions to optimization problems. The objective of this 
research is to compare the performance of these two 
optimization techniques for PSSs controller design. In this 
paper, the enhancement of power system stability is 
investigated via coordinated tuning of PSSs. For this reason, 
the PSSs parameters are tuned according to optimization of 
ITAE Objective function by PSO and C-Catfish PSO 
algorithms. The proposed C-Catfish PSO algorithm for tuning 
PSSs is easy to implement without additional computational 
complexity. Thereby experiments this algorithm gives quite 
promising results. The ability to jump out the local optima, the 
convergence precision and speed are remarkably enhanced and 
thus the high precision and efficiency are achieved. The 
effectiveness of the proposed method is tested on a 2-area 4 
machines power system for three different operating conditions 
and applying a three-phase fault of 100 ms duration at the 
middle of one of the transmission lines between bus 7 and bus 
10. Compared with PSO technique in terms of damping low 
frequency oscillations, ITAE and FD indices, the C-Catfish 
PSO technique demonstrates its superiority in computational 
complexity, success rate and solution quality. C-Catfish PSO 
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has a flexible and well-balanced mechanism to enhance the 
global and local exploration abilities. The nonlinear time 
simulation results confirm that the proposed C-Catfish PSO 
based tuned PSSs can work effectively over three different 
operating conditions and is superior to the PSO. The system 
performance characteristics in terms of ‘ITAE’ and ‘FD’ 
indices reveal that this control strategy is a promising control 
scheme for PSS design in the real world power systems. 

APPENDIX A 

The dynamics of each synchronous machine is given by [28] 
and [29]: 

.

( 1)i b iδ ω ω= −                                                                                 (A1) 
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