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Tuning of Power System Stabilizers in a Multi-
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Abstract—The main objective of this paper is to investigiue
enhancement of power system stability via coorehatuning of
Power System Stabilizers (PSSs) in a multi-macpiower system.
The design problem of the proposed controlleroimtilated as an
optimization problem. Chaotic catfish particle smaoptimization
(C-Catfish PSO) algorithm is used to minimize tAAE objective
function. The proposed algorithm is evaluated otwa-area, 4-
machines system. The robustness of the proposeatithty is
verified on this system under different operatingnditions and
applying a three-phase fault. The nonlinear timmaio simulation
results and some performance indices show thetiefi@ess of the
proposed controller in damping power system osmles and this
novel optimization algorithm is compared with pelgi swarm
optimization (PSO).

Thus, maintaining reliable operation of the powgstesm
[2]. Several approaches based on modern controhtheave
been applied to power system stabilizer design lpnog.
These include optimal control, adaptive controlrialale
structure control and intelligent control [3]-[5]Novel
intelligent control design methods such as fuzzgido
controllers [6] and artificial neural network couiters [7]
have been used as the PSSs. Unlike other classicetol
methods, fuzzy logic and neural network controllene
model-free controllers; i.e. they do not require exact
mathematical model of the controlled system. Moegpspeed
and robustness are the most significant properiies
comparison to other classical schemds, optimization

Keywords—Power system stabilizer, C-Catfish PSO, ITAEtechniques [8] have been also applied to the roB8S design

objective function, Power system control, Multi-thae power
system

I. INTRODUCTION

regulators (AVRs). As the number of power planthvwiVRs
grew, it became apparent that the high performarichese
voltage regulators had a destabilizing effect oa gower
system. Power oscillations of small magnitude aoe |
frequency often persisted for long periods of tirBsce the
development of interconnected large electric posystems,
there have been spontaneous system oscillationsrgatiow
frequencies in order of 0.2-3.0 Hz. Once startedy would
continue for a long period of time. In some casé®y
continue to grow, causing system separation if degaate
damping is available. Moreover, low frequency datibns
present limitations on the power-transfer capabilih some
cases, this presented a limitation on the amouttteopower to
be transmitted within the system [1]. Power sysgtatbilizers
(PSSs) are auxiliary control devices on synchrono
generators, used in conjunction with their exatatystems to
provide control signals toward enhancing the sysieamping
and extending power transfer limits.
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I N 1950s and to 1960s, many power-generating plante we

equipped with continuously acting automatic voltagé

problem. However, the importance and difficulties the
selection of weighting functions of the , optimization have

been reported. Recently, intelligent optimizati@chniques
like genetic algorithms (GA) [9]-[12], Tabu sear¢h3],
simulated annealing [14], evolutionary programmijihg] and
rule based bacteria foraging [16] have been apgbedSS
parameter optimization. These evolutionary algarghare
heuristic population-based search procedures titatrporate
random variation and selection operators. Althoutitese
methods seem to be good methods for the solutioRS$
parameter optimization problerowever, when the system
has a highly epistatic objective function (veéhere parameters
being optimized are highly correlated), and numbmdr
parameters to be optimized is large, then they magarded
efficiency to obtain global optimum solution andsal
simulation process use a lot of computing time.aigorithm
for computerized automatic tuning of power systéabitizers
has been presented in [1'Rarticle swarm optimization [18]
has been applied for PSSs parameter optimizatior8-in

assessment of the effects of the coordinated desfighSSs
stabilizers on power system stability enhancemerst lbeen
carried out in multi-machine power system. Chaatitfish
particle swarm optimization (C-Catfish PSO) aldumitis used
to minimize the ITAE objective function for a twoea, 4-
machines system under different operating conditiamd
applying a three-phase fault. Unlike the other Istior
techniques, C-Catfish PSO has a flexible and wadiiced

mechanism to enhance the global and local exptorati

abilities. The nonlinear time-domain simulation ules and

some performance indiceshow the effectiveness of the

proposed controller in damping power system ogizites.

urgachines power system. In this paper, a comprefensi
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Il. C-CATFISH PSOALGORITHM Where itefax is the maximum number of iterations and
PSO is one of the optimization techniques and fysido iteration is the_current number Qf ite_ration. (B@gents that the
evolutionary computation techniques [19]. The mdtinas Inertia weight is updated, considering m¥/and W, are the
been developed through a simulation of simplifiextial initial and final weights, respectively. The ungéry idea for

models. The features of the method are as follows: the development of Catfish PSO was derived fromcttéish
1) The method is based on researches on swarmsasuct@fféct observed when catfish were introduced indoge
fish schooling and bird flocking. holding tanks of sardines [22]. The catfish in cetitipn with

2) It is based on a simple concept. Therefore, ibe sardines, stimulatg renewed movement gmongst th
computation time is short and it requires few méesor sardines. Similarly, the introduced ca_tflsh paﬂn_;cistlmulaFe a
According to the research results for bird flockibgds are énewed search by the other “sardine” particlasQatfish
finding food by flocking (not by each individualy.leaded the PSO. In other words, the catfish particles can gydrticles
assumption that information is owned jointly in diing. trapped in a local optimum onto a new regions ef search

According to observation of behavior of human gsup SPace, and thus to potentially better particletmis.
behavior pattern on each individual is based onesgyv [N Catfish PSO, a population is randomly initiatizen a
behavior patterns authorized by the groups suchuatoms first step, and the particles are distributed oviae
and the experiences by each individual (agent). T@-d{mensmnal search space. The posmon and uglotieach
assumptions are basic concepts of PSO. particle are update_d by (1)_—(3). I_f the distancénben Best
The PSO starts with a population of random solstiorAnd the surrounding particles is small, each partis
"particles” in a D-dimension space. The particle is considered a pa_lrt of the_ cluster arougd;gnd _W|II onl;_/ moye
represented by ¥(Xi1, Xo, ..., o). Each particle keeps track @ Very small distance in the next generation. _T0|da\th|s
of its coordinates in hyperspace, which are astetiaith the Premature convergence, catfish particles are |utre.d and
fittest solution it has achieved so far. The vatfiehe fittest ePlace the 10% of original particles with the woiitness
for particle i (Res) is also stored asi®Pu, Py, ..., Rb). The values of the swarm.
global version of the PSO keeps track of the ovékdt value !N PSO, the parameters w;, and ¢ are the key factors
(Ghes), and its location, obtained thus far by any petin the affecting the convergence behavior. The |ner't|a ohvei
population. PSO consists of changing the velocityeach Ccontrols the balance between the global explorasiod the
particle toward its R and ges at each step according to (1)_Iocal searc_h ability. A Iarge |n_ert|a weight favdte global
The velocity of particle i is represented as(Vi, Vi, ..., \p). S€arch, while a small inertia weight favors thealaearch. For
Acceleration is weighted by a random term, with sate this reason, an inertia weight that linearly desesafrom 0.9
random numbers being generated for acceleratioartbRes,  t© 0.4 throughout the search process is usuallgf [22]. Since

and ges The position of theg particle is then updated Iogisti_c maps are frequently u_sed chaotic behariaps _and
according to (2) [20] and [21]. chaotic sequences can be quickly generated anly stsied,

(1) there is no need for storage of long sequences [24}-PSO,

V, =W XV +C P, -X,)+C P, -X, S
i Wig +Cyxr(Ry =) Zxrzx( o "‘) sequences generated by the logistic map substiteteandom

Xig = Xjg +CVq (2) parameters;rand  are modified by the logistic map based on
Where R and By are Ry and gesx Several modifications the following equation.
have been proposed in literature to improve the Big@rithm Cruy =k XCry, x (1-Cr,) 4)

speed and convergence toward the global minimume Of, (4) ¢y, is generated randomly for each independent run,
modification is to introduce a local-oriented pagad (lpes) with Cr, not being equal to {0, 0.25, 0.5, 0.75,1} and kiaiq
with different neighborhoods. _ to 4. The driving parameter k of the logistic mapntrols the

It is concluded that g version performs best in terms ofyonavior of C# (as t goes to infinity) [25]. The velocity
median number of iterations to converge. Howevej P update equation for C-PSO can be formulated as:
version with neighborhoods of two is most resistantocal =y xv,, +c,xCr x(P, =X ,) +
minima. The positive constantg &d G are the cognitive and ¢, x(1-Cr)x (P, -X.,)
social components that are the acceleration cotsstan’ R .
responsible for varying the particle velocity todgiR and In_ (5), Cr is a function based on the results efltgistic map
Obesi FE€SPeEctively. Variables and  are two random functions with values _between 0.0 an_d 10 i o
based on uniform probability distribution functioms the In C-Catfish P3O, a logistic map is embedded inaiigh
range [0,1]. The inertia weight w is responsibler foPSO, which updates the parameters and r, based on (4)
dynamically adjusting the velocity of the partigles it is [26]. The logistic map improves the search capghbitf
responsible for balancing between local and glaegirches Catfish PSO significantly. The particle velocitiase updated
and hence requiring less iteration for algorithmctmverge. according to (5).

(®)

The following inertia weight is used in (1): This new approach features many advantages; imgles,
W=W - Wina Wain oraiion (3)fast and easy to be coded. Also, its memory storage
max iter, ., requirement is minimal. Another advantage of C-8htPSO
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is that the initial population of the PSO is mainéa, and so
there is no need for applying operators to the [atjmn, a
process that is time and memory-storage-consuniings
shown in [26] that better solutions can be foundjbigding the
whole swarm to more promising regions in the seamdce.
C-Catfish PSO achieved far better performance #3860, C-
PSO, Catfish PSO and several other advanced P $0thigs.
The proposed algorithmwill proceed as follows:

01: Begin

02: Randomly initialize particles swarm

03: Randomly generate @gr

04: while (number of iterations, or the stoppinigezion is not
met)

05: Evaluate fithess of particle swarm

06: for n = 1 to number of particles

07: Find Rest

08: Find gest

09: for d = 1 to number of dimension of particle

10: update the Chaotic Cr value by (4)

11: update the position of particles by (5) and (2)

12: nextd

13: next n

14: if fitness of gesiS the same Seven times then

15: Sort the particle swarm via fithess from besworst

16: for n = number of Nine-tenths of particles tonber of
particles

17: for d = 1 to number of dimension of particle

18: Randomly select extreme points at Max or Mithef
search space

19: Reset the velocity to O

20: nextd

21: nextn

22: end if

23: update the inertia weight value by (3)

24: next generation until stopping criterion

25: end

Ill.  STUDY SYSTEM MODELING

A.Power system model

A four-machine, two-area study system, shown in Bigs
considered for the damping control design. Each amnsists
of two generator units. The rating of each gener&o900
MVA and 20 kV. Each of the units is connected tlylou
transformers to the 230 kV transmission line. Thisra power
transfer of 400MW from area 1 to area 2. Each symbus
generator of the multi-machine power system is kited
using a third-order model. The detailed bus date,data, and
the dynamic characteristics for the machines, erxitand
loads are given in [27]. The loads are modeled asstant
impedances. On the basis of participation fact@&],[two
PSSs are installed in generators 1 and 3. The dgeashthe
machines are given in the Appendix A.

B.PSSstructure

A first order model of a static type AVR was used dhe
structure of the AVR equipped with the PSS is pre in

Fig. 3. The operating function of a PSS is to pazda proper
torque on the rotor of the machine involved in sackay that
the phase lag between the exciter input and thehimac
electrical torque is compensated. The supplementary
stabilizing signal considered is one proportioralspeed. In
Fig.3, V; is the terminal bus voltage and.Ms the reference
voltage for the AVR. Limits of +5.0 p.u and -5.Qupfor the
field voltage were used in the simulations.

Whereis Ag the deviation in speed from the synchronous

speed. This type of stabilizer consists of a wasliiter, a
dynamic compensator. The output signal is fed as a
supplementary input signal, ;U to the regulator of the
excitation system. The washout filter, which essdlgtis a
high pass filter, is used to reset the steady sifitet in the
output of the PSS. The value of the time consfBpts usually
not critical and it can range from 0.5 to 20 stHis study, it is
fixed to 10 s The dynamic compensator is made up to two
lead—lag stages and an additional gain

Fig. 1 The computational flow chart of PSO algaritls

shown in

Specify the
parameters for
C-CatfishPS0

¥

Generate initial

population and
Ci;y, randomly

l Gran=1
Time-domain
simulation

+
Find the fitness
of each particle
in the current

position

Gen =Gen +1

Gen » MaxGen?

Update the C value,
particle position and
velocity using
equations (4, 2, §)

Fig. 1 Flowcharts of C-Catfish PSO algorithm
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3
AREA? E = Z\]| (8)
’ 1 ’ R i=1
| i | | I Where ¢, is the time range of the simulation. It is aimed t
i 1© minimize this objective function in order to impevthe

system response in terms of the settling time amdshoots.
To reduce the computational burden in this study values of

o) i X a Taipss Taipss Tozpss and Tyspss are kept constant at a
i ‘ reasonable value of 0.05 s. Thus, the design prololen be
° formulated as constrained optimization problem showtable
l.

Fig. 2 Multi-machine power system

TABLE |
The transfer function of thg, PSS is: CONSTRAINS OFPSSS PARAMETERS
Kipss  Tiipss  Taipss  Kapss  Tispss  Taspss
=K, STu | A*STy)A*STo) ) ) (6) ~min 00001 0.0001 0.0001 0.0001 0.0001 0.0001
' "1+sT,, | (1+ST, )(1+sT, ) max 50 1 1 50 1 1

The adjustable PSS parameters are the gain ofSBe IR,

and the time constants,AT4. The lead—lag block present in The proposed approach employs C-Catfish PSO teg&niq
the system provides phase lead compensation fqutthse lag to solve this optimization problem and search fptiroal or
that is introduced in the circuit between the escihput and near optimal set of PSS parameters.

the electrical torque. The required phase leadbeaderived It is emphasized that with this procedure, robtsbikzer,
from the lead-lag block even if the denominatortipar €nable to operate satisfactorily over a wide raofethe
consisting of F and T, gives a fixed lag angle. Thus, tooperating conditions, are obtained. The flowchaft tine
reduce the computational burden in this studyytiees of ;  optimization based coordinated designing is degdiuteFig. 4.
and T, are kept constant at a reasonable value of 0@%ds The optimization of the PSSs controller parameigrsarried
tuning of T; and T; are undertaken to achieve the net phageut by evaluating the objective cost function agegiin (8)

lead required by the system. which considers a multiple of the operating cowdisi (OP).
The operating conditions are given ifiable II. In order to
Vit acquire better performance, number of particletigarsize,
. F number of iterations,;¢¢c,, and ¢ are chosen as 50, 6, 100, 2,
Vi | 1+"::T > E 2 and 1, respectively. It should be noted that Gh€atfish
* - J PSO algorithm is run several times and then optisel of

coordinated controller parameters is selected. fifla values
of the optimized parameters are given in TableAl$o, Fig. 5
shows the minimum fitness value evaluating process.

[
€

ST, 1+ 8T Y 1+ST,
K -
1+ ST, | 1+ ST, | 1+5T,

) . . . TABLE Il
Fig. 3 Block diagram of the AVR equipped with PSS THREE OPERATING CONDITION
CONDITION OP; OP, OP3
C.Simultaneous coordinated design using C-Catfish PSO Py 0.7778 0.5556 0.9911
Q1 0.2056 0.2056 0.1722
The proposed controller must be able to work weliler P, 0.2885 0.5556 0.6283
different operating conditions, while the improvarnéor the Q2 -0.1084 0.2611 0.5836
damping of the critical modes is necessary. Siheestlection 53 g'gggf 8232_‘ 8'83?:
. .. . 3 . | . | . "
of the PSS parameters is a complex optimizatiorblpro. Pa 0.888¢ 0.555¢ 1.111(
Thus, to acquire an optimal combination, this pagraploys Q4 0.224¢ 0.224¢ 0.222.
the C-Catfish PSO algorithm to improve the optirtiaa TABLE I

synthesis and find the global optimum value. A perfance OPTIMAL PSS PARAMETERS USINGPSOAND C-CATFISH PSOTECHNIQUE

|qdex based on the system. dynamics af.ter. an impulse PSO C-Catfish PSO
disturbance alternately occurs in the system ismumpd and K T T K T, T
used as the objective function for the design @wblin this Gy 10.6354 1.0000 0.0801 12.0528 0.0001 1.0000

study, an ITAE is taken as the objective functi&mce the Gs 12.457¢ 1000C 0.000: 14.042« 0.000: 1.0000

operating conditions in the power systems are ofemied, a

performance index for three different operating np®iis IV. NONLINEAR TIME-DOMAIN SIMULATION
defined as follows [30]: The effectiveness and robustness of the performahtiee
t. . e T
% proposed controller under transient conditions asified by
J= {t.(}wl —W |+, —w ] +Hw—w ) Hw w ) applying
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F=i

|

Operating condition

!

Initialize the PSSs damping
controller parameters hy taking into
account the constraints:

K™ <K <K™
min

;" =T,

Simulate the nonlinear case study

system and evaluate the ITAE
performance index according to Eq. (7)
L2
Evaluate the objective function
F=F+)

A

< T}mu

C-CatfishPSO
technique

Next operating

condition

Optimal value of the PSSs damping
controller

Fig. 4 Flowchart of optimization based coordinatedigning

a three-phase fault of 100 ms duration at the reiddllone of

0.45

Objective function

0.4

Objective function

0.1

0 5 10 15 20 25 30
Iterations

Fig. 5 Variations of objective function

of the chaos system. In PSO, each particle onlggean its
individual p,estvalue and the global best positiopsgo update
its position at each generation. If.gis trapped in a local
optimum, the particles cluster together and losé thbility to
explore the search space in later generationstderdo avoid
such a scenario, the worst 10% of the swarm araaceg by
Catfish particles when yg: has not changed for a certain
number of generations. After the catfish particlage
introduced, they initialize a renewed search frortresne
points of the search space, and thus find the rosttations by
guiding the entire swarm to promising new regicrsey also
improve the search efficiency of the swarm. Thefigtat
particles not only allow the swarm to discover &e#olutions
within the area of the swarm itself, but also tdairf better
solutions located outside the swarm area.

Now it is clear from the figures (6-8) that tR&Ss which
are tuned by C-Catfish PSO, are more effective thanones
tuned by PSO in damping the low frequency osailadi and
improves the stability performance of the examptaver
system.

To demonstrate the performance and robustness eof th

proposed method, two performance indices: the I'BAH FD

the transmission lines between bus-7 and bus-100 P$3sed on the system performance characteristiasedireed as

algorithm has been also used in this paper to niieinthe
ITAE objective function and these two algorithmse ar
compared according to nonlinear tohoenain
simulation for different operating conditions. Th&er-area
and local mode of oscillations with coordinatedigef the
controllers using PSO and C-Catfish PSO algoritremns
shown in Figs (6-8) for different operating conalits In C-
Catfish PSO, a chaotic map was embedded to deterthi
PSO parameters and 5. The PSO parametersand p cannot
ensure optimal ergodicity in the search space tsecthey are
absolutely random i.e. the and  are generated by a linear

congruential generator (LCG) with a random seede TH i o
&Wustness for all system loading cases are shoWwigi 9.

generated sequence of LCG consists of pseudo-rand
numbers that have periodic characteristics.

Furthermore, the generated sequence of a logistjt aso
consists of pseudo-random numbers, but there aréxad
points, periodic orbits, or quasi-periodic orbiighe behavior

[31]:
1smt- (M’l _Wz‘ +M1_W4+
Oy —w | Hw-w ) o
FD =(CS x 5000 + (55 x 50003+T.2
Where w is the speed rotor, overshoot (OS), undetsh
(US) and settling time dfw,, of the system is considered for
the evaluation of the ITAE and FD indices. It is rtho
mentioning that the lower the value of these inglicg the

better the system response in
haracteristics. Numerical results of the perforoearand

ITAE =1 (9)

It can be seen that the application of the PSSspitgm
controller where the controllers are tuned
C-Catfish PSO, achieves better response than tes med
by PSO.

terms of time-domain

by
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Fig. 6 Inter-area and local mode of oscillations@¢;
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Fig. 7 Inter-area and local mode of oscillations@d,
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Fig. 9 Values of performance index; (a) FD andIT#E

V.CONCLUSION

Technigues such as PSO and C-Catfisho PSO areedspi
by nature, and have proved themselves to be eféecti
solutions to optimization problems. The objective of this
research is to compare thperformance of these two
optimization techniques for PSSs controller design.this
paper, the enhancement of power system stability is
investigated via coordinated tuning of PSSs. F&g thason,
the PSSs parameters are tuned according to optiamizef
ITAE Objective function by PSO and C-Catfish PSO
algorithms. The proposed C-Catfish PSO algorithmtdiaing
PSSs is easy to implement without additional coemmnal
complexity. Thereby experiments this algorithm givguite
promising results. The ability to jump out the Iboptima, the
convergence precision and speed are remarkablyeatiand
thus the high precision and efficiency are achievéte
effectiveness of the proposed method is tested @raesea 4
machines power system for three different operatomgitions
and applying a three-phase fault of 100 ms durasibithe
middle of one of the transmission lines between®basd bus
10. Compared with PSO technique in terms of damjomg
frequency oscillations, ITAE and FD indices, theC&tish
PSO technique demonstrates its superiority in cdatipnal
complexity, success rate and solution qual@yCatfish PSO
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has a flexible and well-balanced mechanism to er#nahe
global and local exploration abilitiesThe nonlinear time
simulation results confirm that the proposed C-6atiPSO
based tuned PSSs can work effectively over thréferent
operating conditions and is superior to the PSCe $ystem
performance characteristics in terms of ‘ITAE afEeD’
indices reveal that this control strategy is a psimy control
scheme for PSS design in the real world power syste

APPENDIXA

The dynamics of each synchronous machine is giyd2aj
and [29]:

3 =q@-1) (A1)
: 1
w :W(Pmi =Py -Di(w -1) 0
E‘q’i = i,(Efdi = (Xg = X§)ig —Eg) (A3)
Tdoi
Efdl :i(KAi (Vreﬂ -V, +ui)_Efdi) (A4)
Tai
Tei = EL;iiqi _(Xqi _X('ii )idiiqi (A5)
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