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TS Fuzzy Controller to Stochastic Systems
Joabe Silva and Ginalber Serra

Abstract—This paper proposes the analysis and design of robust
fuzzy control to Stochastic Parametrics Uncertaint Linear systems.
This system type to be controlled is partitioned into several linear
sub-models, in terms of transfer function, forming a convex polytope,
similar to LPV (Linear Parameters Varying) system. Once defined the
linear sub-models of the plant, these are organized into fuzzy Takagi-
Sugeno (TS) structure. From the Parallel Distributed Compensation
(PDC) strategy, a mathematical formulation is defined in the fre-
quency domain, based on the gain and phase margins specifications,
to obtain robust PI sub-controllers in accordance to the Takagi-
Sugeno fuzzy model of the plant. The main results of the paper are
based on the robust stability conditions with the proposal of one
Axiom and two Theorems.

Keywords—Fuzzy Systems; Robust Stability, Stochastic Control,
Stochastic Process

I. INTRODUCTION

THE ultimate goal of a control-system is to build a system
that will work in the real environment. Since the real

environment may change with time (parametric variations and
nonlinearity) or operating conditions may vary (noise and
disturbance), the control system must be able to withstand
these variations [14]. This fact has motivated, since 1980′s,
the proposal of new methodologies for design of robust
controllers. In this context, fuzzy systems have been widely
used due to flexibility of its structure to incorporate linguistic
information (knowledge expert) with numerical information
(sensors and actuators measurements), as well as its functional
efficiency as universal approximator capable of treat ade-
quately uncertainties, parametric variations and nonlinearity
of the plant to be controlled ([8], [15], [21], [17]).

The Fuzzy Logic made a great advance in mid 1970s with
some successful results of laboratory experiments after it was
initially introduced by Zadeh in 1965 [22]. Mamdani and
Assilian [11], controlled a steam engine with fuzzy techniques
in 1975 that formed a fundamental frame for fuzzy controllers
of the future. In 1985, Takagi and Sugeno [18], brought out
a new rule-based modeling technique, which was named after
them. These works inspired researchers to develop many fuzzy
control applications. Among these, it has the following: Çetin
e Demir [2], proposed two input fuzzy PID controller structure
with coupled rules for two-degrees of freedom nonlinear
quarter car model. The aim of the controller is reduce vehicle
body motion and to ensure the comfort of passengers. Simu-
lation results showed that the two input fuzzy PID controller
structure is able to good tracking performance in the nonlinear
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quarter car model so that ride comfort can be guaranteed.
Park et al. [12], contributed experimental study on the attitude
control of spacecraft using a rotational simulator. For the
reaction wheel actuator test, the proposed fuzzy controller
was implemented and their performance was evaluated by
simulation and experiments. Experimental results revealed the
superiority of the proposed fuzzy controller in the presence
of unmodeled dynamics, disturbance and nonlinearities such
as bearing friction and payload vibration. Cheng et al. [4],
proposed a fuzzy PID controller with closed-loop optimal
fuzzy reasoning (COFR) for wind turbine, which is a strongly
nonlinear system that has multivariable and uncertainty. Sim-
ulation results showed that fuzzy PID controller with COFR
has better performances than PID controller when errors exist,
especially robustness performance. Ahmed Rubaai et al. [3],
implemented and demonstrated in the laboratory a fuzzy PID
controller, and its effectiveness in tracking application has
also been verified. Experimental results have shown excellent
tracking performance of the proposed fuzzy PID controller
and have demonstrated the usefulness of the proposed fuzzy
PID controller in motor drives with uncertainties. The efficacy
of the fuzzy PID controller has been demonstrated by its
positive results, when compared with those of the classical
PID controller.

In this paper a theoretical approach of robust fuzzy con-
trol design based on gain and phase margins specifications
for linear systems with stochastic variations in the param-
eters, as a LPV system, in the continuous time domain,
is proposed. A mathematical formulation based on Takagi-
Sugeno fuzzy model structure as well as the PDC strategy
is presented. Analytical formulas are deduced for the sub-
controllers parameters, in the robust fuzzy controller rules
base, according to the fuzzy model parameters of the LPV
plant to be controlled. Results for the necessary and sufficient
conditions for the fuzzy controller design, from the proposed
robust methodology, with one axiom and two theorems are
presented. The paper is organized as follows: In section II, it
is introduced firstly the Linear Parameters Varying Systems
in terms of transfer function; secondly the Parallel Distributed
Compesation (PDC) Strategy is presented; thirdly the Takagi-
Sugeno Fuzzy Systems is presented. In section III, the robust
fuzzy PI control design and tuning formulas, based on gain
and phase margins specifications, as well as the robust stability
analysis of the fuzzy controller, are proposed. In section IV,
the robust fuzzy control design and tuning formulas, based on
gain and phase margins specifications, as well as the robust
stability analysis of the fuzzy controller, are proposed. Finally,
conclusions are drawn in section V.
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A. Problem Formulation

This section presents some concepts for the formulation and
development of the proposal methodology.

1) Linear Parameters Varying Systems: The notion of LPV
systems was first introduced by Shamma and Athans [16],
and have gained some attention during the last decade. This
class of systems is different from standard linear time-varying
counterpart due to the causal dependence of its controller gains
on the variations of the plant dynamics. LPV systems are
characterized as linear systems that depend on time-varying
real parameters. These parameters are assumed to be a priori
unknown exogenous signal. However, it can be measured or
estimated upon operation of the system [2]. The study of LPV
systems is motivated by the gain-scheduling control design
methodology. This strategy is a popular engineering method
used to design controllers for systems with widely varying
nonlinear and-or parameter dependent dynamics, i.e. systems
for which a single linear time-invariant model is insufficient.
However, in spite of numerous successful applications, the
construction of the overall control structure invariably calls for
the engineering insights of the designer and, more critically,
the resulting control laws do not provide any guarantees in
the face of rapid changes in the scheduled variables. These
difficulties have been the main motivation for the development
of modern gain-scheduling control techniques, and have led
to some challenging research in the area of the analysis and
synthesis of LPV systems [9]. The main advantages brought
about by LPV techniques are that the stability and performance
of the controlled system are guaranteed, and the interpolation
and realization problems associated with conventional gain-
scheduling methods are simplified [6]. The application of LPV
techniques can be found in wide range of physical systems,
such as Missile [13], Aircraft Control [10], Underwater Vehi-
cle [6], Suspension Systems [7], etc.

In this paper, the general form of a LPV system, in terms
of transfer function, is described as

G (s, θ) =
bm (θ) sm + bm−1 (θ) s

m−1 + · · ·+ b1 (θ) s+ b0 (θ)

an (θ) sn + an−1 (θ) sn−1 + · · ·+ a1 (θ) s+ a0 (θ)
(1)

where n ≥ m and θ = (θ1, · · · , θk) is a parameters
set that evolves continuously over time and its range is
limited to a compact subset Θ ∈ �k. In addition, its time
derivative is bounded and satisfies the constraint νi ≤ θ̇i ≤
νi, i = 1, 2, · · · , k. For notational purpose, denote Ω =
{υ : νi ≤ υ ≤ νi, i = 1, 2, · · · , k}, where Ω is a given convex
polytope in �k that contains the origin. Given the sets Θ and
Ω, we define the parameter ν-variation set as

FΩ
Θ =

{

θ ∈ �1
(�+,�k

)

: θ (t) ∈ Θ, θ̇ ∈ Ω, ∀t ≥ 0
}

(2)

In this paper, this formulation is very efficient to find a LPV
control law, which guarantees robust stability to the LPV plant,
G (s, θ), to be controlled.

2) Parallel Distributed Compesation (PDC) Strategy: The
history of the so-called parallel distributed compensation
(PDC) began with a model-based design procedure proposed

by Wang et al. [20]. The PDC offers a procedure to design
a fuzzy controller from a given T-S fuzzy model. To realize
the PDC, a controlled plant is first represented by a T-S fuzzy
model. In the PDC design, each control rule is designed from
the corresponding rule of a T-S fuzzy model. The designed
fuzzy controller shares the same fuzzy sets with the fuzzy
model in the premise parts. The figure 2 shows the concept of
PDC design.

3) Takagi-Sugeno Fuzzy Systems: The TS fuzzy model,
originally proposed by Takagi and Sugeno [18], is composed
of a fuzzy IF-THEN rule base that partitions a space - usually
called the universe of discourse - into fuzzy regions described
by the rule antecedents. The consequent of each rule i is
a simple functional expression of model inputs and that all
fuzzy terms are monotonic functions. In this case, specifically,
the TS fuzzy model can be regarded as a mapping from the
antecedent (input) space to a convex region (polytope) in the
local sub-models space into the consequent, defined by the
variants consequents parameters of the plant to be controlled.
This property simplifies the analysis of the TS fuzzy model in
a context of robust time-variant and linear system for design
of controllers with desired characteristics of the closed loop
control system or stability analysis.

The i|[i=1,2,...,l]-th TS rule, without loss of generality, the
following structure:

R(i) : IF x̃1 is F i
j|x̃1

AND · · · AND x̃n is F i
j|x̃n

(3)
THEN ỹi = fi (x̃)

where

x̃T = [x̃1, x̃2, · · · , x̃n],
ỹT = [ỹ1, ỹ2, · · · , ỹn],

l is the number of fuzzy IF-THEN rules. The vector x̃ ∈ �n

contains the antecedent linguistic variables. Each linguistic
variable has its own universe of discourse Ux̃1

, · · · , Ux̃n
parti-

tioned by fuzzy sets representing the linguistic terms. The vari-
able x̃t|[t=1,2,...,n] belongs to the fuzzy set F i

j|x̃t
with a value

μi
Fj|x̃t

defined by a membership function μi
x̃t

: � → [0, 1],
with μi

F
j|x̃t

∈ μi
F

1|x̃t

,μi
F

2|x̃t

,μi
F

3|x̃t

,. . .,μi
F

px̃t
|x̃t

, where px̃t
is

the number of partitions of the universe of discourse associated
to the linguistic variable x̃. The activation degree of hi for the
rule i, is given by:

hi (x̃) = μi
Fj|x̃∗

1

⊗ μi
Fj|x̃∗

2

⊗ · · ·μi
Fj|x̃∗

n
(4)

where x̃∗t is some point in Ux̃t . The normalized activation
degree for the rule i, is given by:

γi (x̃) =
hi (x̃)
l
∑

λ=1

hλ (x̃)

(5)

where it is assumed that
l
∑

λ=1

hλ (x̃) > 0,

hλ (x̃) ≥ 0, i = 1, 2, · · · , l
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And, this normalization implies that

l
∑

i=1

γi (x̃) = 1 (6)

The TS fuzzy model response is a weighted sum of the
consequent parameters, i.e., a convex linear combination of
the local functions (models) fi, which reads

y (x̃) =
l
∑

i=1

γi (x̃) fi (x̃) (7)

Each linear component fi (x̃) is called a subsystem. This
model can be seen as a Linear Parameters Varying (LPV)
System, as defined previously. This property simplifies the
analysis of the TS fuzzy model in a context of robust time-
variant and linear system for design of controllers with desired
characteristics of the closed loop control system or stability
analysis.

In this paper is presented an fuzzy robust model based
control scheme from the TS fuzzy model structure, the PDC
strategy and gain and phase margins robust specifications. In
the proposed methodology, the fuzzy controller parameters,
with TS structure, are obtained through analytical formulas
from the definition of gain and phase margins specifications.
The robust fuzzy controller designed and the TS fuzzy model
of the LPV plant, with stochastic variations, to be controlled
shares the same fuzzy sets, in the antecedents. In the fuzzy
inference engine the sub-controller is selected based on the
plant dynamic behavior and the gain and phase margins robust
specifications. The dynamic system class under analysis for the
fuzzy control design, is defined as linear parameters varying,
and the structure of the robust control is proposed with the
objective to obtain the above robustness characteristics, from
generalized analytical formulas.

II. ROBUST FUZZY PI CONTROL

A. TS fuzzy model for a first-order LPV plant

The TS fuzzy inference system for a first-order LPV plant,
Gp(s),presents in the i|[i=1,2,...,l]-th rule, without loss of
generality, the following structure:

R(i) : IF τ̃ is F i
k|τ̃ AND K̃p is Gi

k|K̃p
(8)

THEN Gi
p(s) =

Kp
i

1 + sτ i
e−sL

where time constant τ̃ and the gain K̃p represent the linguistic
variables of the antecedents of the fuzzy model. The activation
degree of hi for the rule i, is given by:

hi

(

τ̃ , K̃p

)

= μi
Fk|τ̃∗ ⊗ μi

G
k|K̃∗

p
(9)

The normalized activation degree for the rule i, is given by:

γi
(

τ̃ , K̃p

)

=
hi

(

τ̃ , K̃p

)

l
∑

λ=1

hλ

(

τ̃ , K̃p

)

(10)

And, this normalization implies

l
∑

i=1

γi
(

τ̃ , K̃p

)

= 1 (11)

Therefore, the TS fuzzy model, Gp

(

τ̃ , K̃p, s
)

, of the LPV
plant is a weighted sum of first order linear sub-models, as
follow:

Gp

(

τ̃ , K̃p, s
)

=

l
∑

i=1

γi
(

τ̃ , K̃p

)

· Ki
p

1 + sτ i
e−sL (12)

B. TS fuzzy model for a PI-LPV Controller

The TS fuzzy inference system proposed for the PI-LPV
controller, Gc (s), whereas the definition of parallel distributed
compensation, presents in the j|[j=1,2,...,l] -th rule, without loss
of generality, is given by:

R(j) : IF τ̃ is F j
k|τ̃ AND K̃p is Gj

k|K̃p
(13)

THEN Gj
c(s) = Kj

c

(

1 +
1

sT j
I

)

The activation degree hj for the rule j, is given by:

hj

(

τ̃ , K̃p

)

= μj
Fk|τ̃∗ ⊗ μj

G
k|K̃∗

p

(14)

where τ̃∗ and K̃∗
p are some point in Uτ̃ and UK̃p

, respectively.
The normalized activation degree for the rule j, is given by:

γj
(

τ̃ , K̃p

)

=
hj

(

τ̃ , K̃p

)

l
∑

λ=1

hλ

(

τ̃ , K̃p

)

(15)

And, this normalization implies

l
∑

j=1

γj
(

τ̃ , K̃p

)

= 1 (16)

Therefore, the TS fuzzy model for the fuzzy PI-LPV con-
troller, Gc

(

τ̃ , K̃p, s
)

, is a weighted sum of the local PI sub-
controllers, as follows:

Gc

(

τ̃ , K̃p, s
)

=

l
∑

j=1

γj
(

τ̃ , K̃p

)

·Kj
c

(

1 +
1

sT j
I

)

(17)

The compensated open-loop fuzzy model, according to the
PDC strategy, with the controller and the plant, from the
equations 12 and 17, respectively, is

Gc(τ̃ , K̃p, s)Gp(τ̃ , K̃p, s) =
l
∑

j=1

l
∑

i=1

γj

(

τ̃ , K̃p

)

γi

(

τ̃ , K̃p

)

× (18)

×
Kj

cK
i
p

(

1 + sT j
I

)

sT j
I (1 + sτ i)

e−sL
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C. Robust Stability Based on Gain and Phase Margins

Gain and phase margins have always served as important
measures of robustness. It is known that phase margin is
related to the damping of the control system, and the gain
margin is related to how the control system is stable, this is,
how many the gain of the plant to be controlled can vary so
that the control system goes to instability ([1],[19]). Denote
the process and the controller transfer function by Gp (s) and
Gc (s), and the specified gain and phase margins by Am and
φm, respectively, The formulas for gain margin and phase
margin are as follows::

arg
[

Gc(τ̃ , K̃p, jωp)Gp(τ̃ , K̃p, jωp)
]

= −π (19)

Am =
1

∣

∣Gc(τ̃ , K̃p, jωp)Gp(τ̃ , K̃p, jωp)
∣

∣

(20)

∣

∣Gc(τ̃ , K̃p, jωg)Gp(τ̃ , K̃p, jωg)
∣

∣ = 1 (21)

φm = arg
[

Gc(τ̃ , K̃p, jωg)Gp(τ̃ , K̃p, jωg)
]

+ π (22)

where the gain margin is given by equations 19 and 20, and
the phase margin is given by equations 21 and 22, respectively.
The frequency ωp, in which the Nyquist curve has a phase
−π is the phase crossover frequency, and the frequency ωg ,
in which the curve Nyquist has a amplitude of 1 is the gain
crossover frequency. Replacing the equation 18 in 19-22, it
has:

l

[

l
∑

i=1

(

arctan
(

ωpT
i
I

)

− arctan
(

ωpτ
i
))

− π

2
− ωgL ] = −π

(23)

Am =
1

l
∑

i=1

l
∑

j=1

γi
(

τ̃ , K̃p

)

γj
(

τ̃ , K̃p

)

(

Kj
cK

i
p

ωpT
j
I

)

⎛

⎝

√

(

ωpT
j
I

)

2

+ 1

(ωpτ i)2 + 1

⎞

⎠

(24)
l
∑

i=1

l
∑

j=1

γi
(

τ̃ , K̃p

)

γj
(

τ̃ , K̃p

)

(

Kj
cK

i
p

ωgT
j
I

)

⎛

⎝

√

(

ωgT
j
I

)

2

+ 1

(ωgτ i)2 + 1

⎞

⎠ = 1

(25)

φm = l

[

l
∑

i=1

(

arctan
(

ωgT
i
I

)− arctan
(

ωgτ
i
))− π

2
− ωgL ] + π (26)

For a given linear sub-model, Gi
p(s, K̃

i
p, τ̃

i), and gain and
phase margins specifications (Am, φm), the equations 23-
26 can be used to determine the parameters of the PI sub-
controllers, Gj

c(s,K
j
c , T

j
I ), in the crossover frequency (ωp, ωg)

numerically, but not analytically, due to presence of the
nonlinear arctan function. However, an analytical solution can
be obtained approximating the arctan function, as follows:

arctanx ≈

⎧

⎪

⎨

⎪

⎩

1

4
πx (|x| ≤ 1) ,

1

2
π − π

4x
(|x| > 1)

(27)

The numerical solution of the equations 23-26 shows that
for τ i > 3L, x 	 1 where x is one of the ωpT

j
I , ωpτ

i,
ωgT

j
I or ωgτ

i. Therefore, using the approximation of arctan

function in the case |x| > 1, the equations 24 and 25 are given
by

l
∑

i=1

l
∑

j=1

γi
(

τ̃ , K̃p

)

γj
(

τ̃ , K̃p

)

× Am

ωp

(

Kj
cK

i
p

τ i

)

= 1 (28)

l
∑

i=1

l
∑

j=1

γi
(

τ̃ , K̃p

)

γj
(

τ̃ , K̃p

)

×
(

Kj
cK

i
p

ωgτ i

)

= 1 (29)

respectively. Using the same approach, the equations 23 and
26 are given by:

l

[

l
∑

i=1

(

π

4ωpτ i
− π

ωpT i
I

− π

2

)

− ωpL

]

= −π (30)

φm = l

[

l
∑

i=1

(

π

4ωgτ i
− π

ωgT i
I

− π

2

)

− ωgL

]

+ π (31)

respectively. The dimensionless quantity L/τ , which is
useful for characterizing processes, is defined in [1] as the
normalized dead time. Therefore, the analytical solution for the
tuning of the PI sub-controllers parameters, Gi

c(s)
∣

∣

[i=1,2,...,l] ,
according to equations 23 - 26, is given by:
⎡

⎢

⎢

⎣

∑l

i=1
γi
(

τ̃ , K̃p

)

(

Ki
p

τi

)

. . .
∑l

i=1
γi
(

τ̃ , K̃p

)

(

Ki
p

τi

)

∑l

i=1
γi
(

τ̃ , K̃p

)

(

Ki
p

τi

)

. . .
∑l

i=1
γi
(

τ̃ , K̃p

)

(

Ki
p

τi

)

⎤

⎥

⎥

⎦

×

×

⎡

⎢

⎣

γ1
(

τ̃ , K̃p

)

0 0

0
. . . 0

0 0 γi
(

τ̃ , K̃p

)

⎤

⎥

⎦
× (32)

×

⎡

⎢

⎣

K1
c
...

Ki
c

⎤

⎥

⎦
=

[ ωp

Am

ωg

]

and

⎡

⎣

l π
ωp

. . . l π
ωp

l π
ωg

. . . l π
ωg

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

T 1
I

)−1

(

T 2
I

)−1

...
(

T l
I

)−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= (33)

=

⎡

⎢

⎢

⎣

l
{

∑l
i=1

(

π
4ωpτ i

)

− π
2 − ωpL

}

+ π

l
{

∑l
i=1

(

π
4ωgτ i

)

− π
2 − ωgL

}

− φm + π

⎤

⎥

⎥

⎦

where ωp is given by

ωp =
Amφm +

1

2
πAm(Am − 1)

(A2
m − 1)L

(34)
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1) Robustness and Stability Analysis: For the design of
fuzzy PI controller, from equations 32-34, respectively, based
on the gain and phase margins specifications, the following
Axiom and Theorems are proposed:

The linear sub-models, Gi
p(s)

∣

∣

[i=1,2,...,l] , of the LPV plant,
are necessarily of minimum phase, i.e., all poles of the
characteristic equation are placed in the left half-plane of the
complex plane.

Theorem 1: Each robust PI sub-controller,
Gj

c(s)
∣

∣

[j=1,2,...,l] , guarantee the gain and phase margins
specifications for the linear sub-model, Gi

p(s)
∣

∣

[i=1,2,...,l] with
i = j, of the LPV plant to be controlled.

Proof: The normalized activation degree, in a given operat-
ing point, on the rules base of the robust PI fuzzy controller,
satisfies the following condition:

l
∑

i=1

γj
(

τ̃ , K̃p

)

= 1 (35)

The total normalized activation degree, for a simple p-th
rule activated , where 1 ≤ p ≤ l, is given by

0 + . . .+ γp
(

τ̃ , K̃p

)

+ 0 + . . .+ 0 = 1 (36)

γp

(

τ̃ , K̃p

)

= 1 (37)

Based on the Parallel Distributed Compensation strategy, in
which the robust fuzzy PI controller and the fuzzy model of
the plant to be controlled have the same antecedent, it has

⎡

⎢

⎣

γp
(

τ̃ , K̃p

)

(

K
p
p

τp

)

. . . γp
(

τ̃ , K̃p

)

(

K
p
p

τp

)

γp
(

τ̃ , K̃p

)

(

K
p
p

τp

)

. . . γp
(

τ̃ , K̃p

)

(

K
p
p

τp

)

⎤

⎥

⎦
×

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0

0 γ1

(

τ̃ , K̃p

)

. . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
Kp

c

0
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎣

ωp

Am

ωg

⎤

⎦ (38)

Solving the equation 38 for Kc, it has

γp

(

τ̃ , K̃p

)

(

Kp
p

τp

)

γp

(

τ̃ , K̃p

)

(Kp
c ) =

ωp

Am
(39)

and

γp

(

τ̃ , K̃p

)

(

Kp
p

τp

)

γp

(

τ̃ , K̃p

)

(Kp
c ) = ωg (40)

Isolating Kp
c , the equation 39, is given by:

Kp
c =

(

τp

Kp
p

)(

ωp

Am

)

⎛

⎜

⎝

1

γp

(

τ̃ , K̃p

)2

⎞

⎟

⎠
(41)

To obtain the parameter T p
I , in a given time, as defined

previously, it has:

⎡

⎣

l π
ωp

. . . l π
ωp

l π
ωg

. . . l π
ωg

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0
(T p

I )
−1

0
...
0

⎤

⎥

⎥

⎥

⎥

⎦

= (42)

=

⎡

⎢

⎢

⎣

l
(

π
4ωpτp − π

2 − ωpL
)

+ π

l
(

π
4ωgτp − π

2 − ωgL
)

+ π − φm

⎤

⎥

⎥

⎦

which results in

l
π

ωp

1

T p
I

= l

(

π

4ωpτp
− π

2
− ωpL

)

+ π (43)

and

l
π

ωg

1

T p
I

= l

(

π

4ωgτp
− π

2
− ωgL

)

+ π − φm (44)

Isolating φm, the equation 44, is given by:

φm = l

(

π

4ωgτp
− π

ωg

1

T p
I

− π

2
− ωgL

)

+ π (45)

Substituting the equation 39 in 18, it has:

γp

(

τ̃ , K̃p

)

γp

(

τ̃ , K̃p

)

(

Kp
pAm

τpωp

)(

τpωp

Kp
pAm

)

× (46)

×
⎛

⎝

1

γp

(

τ̃ , K̃p

)

γp

(

τ̃ , K̃p

)

⎞

⎠ = 1

therefore

Am = Am (47)

Assuming, in a given time, the total activation of a simple
rule p, as defined previously, in equation 36, we have:

φm = l

(

π

4ωgτp
− π

ωgT
p
I

− π

2
− ωgL

)

+ π (48)

Comparing the equation 48 with 45, it has

φm = φm (49)

Theorem 2: Each robust PI sub-controller,
Gj

c(s)
∣

∣

[j=1,2,...,l] , guarantee the stability for all linear
sub-models, Gi

p(s)
∣

∣

[i=1,2,...,l] , of the LPV plant to be
controlled.

Proof: The closed-loop transfer function is given by:

GMF

(

s, τ̃ , K̃p

)

=
l
∑

j=1

l
∑

i=1

γj

(

τ̃ , K̃p

)

γi

(

τ̃ , K̃p

)

× (50)

×
Kj

cK
i
p

(

1 + sT j
I

)

[

sT j
I (1 + sτ i) +Kj

cKi
p

(

1 + sT j
I

)]e−sL
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For the stability condition, the characteristic equation of
the closed-loop transfer function, given in equation 50, must
have roots (poles) in the left half-plane of the complex plane
(negative real part). Therefore, it has

l
∑

i=1

l
∑

j=1

γi

(

τ̃ , K̃p

)

γj

(

τ̃ , K̃p

)

× (51)

×
[

τ iT j
I s

2 +
(

T j
I +Ki

pK
j
cT

j
I

)

s+
(

Ki
pK

j
c

)

]

= 0

By application of the Routh Stability Criterion [5] in 51, it
has

s2

s1

s0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

τ iT j
I Ki

pK
j
c

(T j
I +Ki

pK
j
cT

j
I ) 0

Ki
pK

j
c

(52)

And, it is necessary that all terms of the first column are
positive:

τ iT j
I > 0 (53)

(T j
I +Ki

pK
j
cT

j
I ) > 0 (54)

Ki
pK

j
c > 0 (55)

Since the parameters of the stable sub-models of the LPV
plant to be controlled (τ i e Ki

p), according to Axiom 1, are
positive as well as the gain and phase margins specifications
(Am e φm), from Equations 32-34, the values of the robust
gain scheduled fuzzy PI controller parameters (Kj

c e T j
I )

are positive. Therefore, the inequalities, in equations 53-55,
are satisfied, and each robust PI sub-controller guarantee the
stability for all sub-models of the LPV plant to be controlled.

III. CONCLUSION

This paper presented a proposal for analysis and design
of robust fuzzy control, with PI structure, based on robust
gain and phase margins specifications for linear systems with
stochastic variations in the parameters, as a LPV plant. From
the proposed analysis and design, it has the following final
remarks: A mathematical formulation from the Takagi-Sugeno
fuzzy model structure, based on parallel distributed compen-
sation strategy was presented; the TS fuzzy model, due to the
flexibility to incorporate in its structure the linear sub-models
of the LPV plant made possible, via PDC strategy, the design
of robust PI and PID sub-controllers; the proposed Axiom and
Theorems guaranteed the robust stability, since all formulation
and analysis were made in the frequency domain, based on
gain and phase margins specifications.
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