
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

469

Trust Management for an Authentication System in
Ubiquitous Computing

Malika Yaici, Anis Oussayah, Mohamed Ahmed Takerrabet

Abstract—Security of context-aware ubiquitous systems is
paramount, and authentication plays an important aspect in cloud
computing and ubiquitous computing. Trust management has been
identified as vital component for establishing and maintaining
successful relational exchanges between trading partners in cloud
and ubiquitous systems. Establishing trust is the way to build good
relationship with both client and provider which positive activates will
increase trust level, otherwise destroy trust immediately. We propose
a new context-aware authentication system using a trust management
system between client and server, and between servers, a trust which
induces partnership, thus to a close cooperation between these servers.
We defined the rules (algorithms), as well as the formulas to manage
and calculate the trusting degrees depending on context, in order to
uniquely authenticate a user, thus a single sign-on, and to provide
him better services.

Keywords—Ubiquitous computing, context-awareness,
authentication, trust management.

I. INTRODUCTION

COMPUTERS in general and data networks in particular

have evolved so fast that they have become essential in a

few years. They, thus, occupy an important part of the human

daily life, and are to be more and more present daily. Indeed,

they intervene in all areas, and are solicited continuously.

They are ubiquitous in providing different services in order to

facilitate and simplify tasks that should initially require more

time and effort. This is what Mark Weiser [1] had imagined in

his paradigm of ubiquitous computing for more than twenty

years now. Indeed, it is he who is the father of the ubiquitous

computing and who gave it that name and who imagined the

role it could play.

The concept of ubiquitous computing has long remained

in the laboratory boxes, first under this name, then under

the name of contextual informatics. Also, like all computer

networks, ubiquitous networks are subject to attacks and

threats that compromise the proper functioning of the entire

system. As a result, their security becomes paramount

and more than obvious. Currently, a lot of work goes

in this direction, which is why our work focuses on

securing these context-sensitive systems, and more precisely

on authentication, by introducing the notion of trust.

In this paper, we have developed a system that manages

authentication in a context-aware ubiquitous system based on

the notion of trust.

After this introduction, Section II deals with important

works on trust management in cloud and ubiquitous

M. Yaici is with the Laboratoire LTII, University of Bejaia, Algeria (e-mail:
yaici m@hotmail.com).

A. Oussayah and M. A. Takerrabet are with Computer Department,
University of Bejaia, Algeria.

computing. In Section III, Single Sign On mechanism and

Trust definitions are detailed. Section IV presents the main

contribution of this paper. Discussion of the results and a

validation of the proposed solutions are given in Section V. A

conclusion and future work finish the paper.

II. RELATED WORKS

Context-aware authentication systems have been proposed

in many research works.

The authors of [2] propose to enhance the Multi-factor

Authentication based on Multimodal Biometrics (MFA-MB)

for Cloud SaaS/PaaS scheme in order to improve the

User eXperience (UX). A function for UX measurement

is defined and a new algorithm based on a classification

approach called Class-Association Rules (CARs) which

integrate classification and association rules is proposed.

These may allow guaranteeing an improved UX in the Cloud

authentication process, considering the variables (Time, Place,

Device, etc.) which govern the Users’ authentication habits.

A secure biometric-based authentication scheme for

multi-server environment using smart card, where all the

servers need not to be trusted and the trusted third party is

no longer required in authentication, is proposed in [3]. The

proposed scheme supports two way authentication and session

key agreement without control server involvement.

In [4] the location-based risk is measured for mobile

authentication. The location is detected based on GSM

cell IDs and Wi-Fi access point MAC addresses, then

safe and non-safe locations are classified depending on

time and date. A safe location (home) does not need any

authentication, but a non safe location may require a more

performing scheme (biometrics). Users can have control

on these registered locations as well as the system. The

same approach is given in [5] where a location dependent

disclosure risk estimation is used as a decision support

mechanism (a) for persistent authentication of users and

(b) to make reliable authorizations to facilitate secure data

utilization in pervasive computing applications. Depending on

the measured risk value authentication may be needed or not.

Affiliations based multiplicative attribute graph model is used

as a computational tool to evaluate the location-dependent

disclosure risk variations when the users change locations

overtime and the location dependent disclosure risk estimates

is derived using search theory and entropy.

The paper [6] is a survey on geo-location authentication

techniques. Geodetic location authentication is continuous,

cannot be hijacked and can be considered as an electronic

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

470

notary. It provides context-aware services that associate

locations with user’s identities and content. The techniques

studied in this paper are on cyber-locator technology,

location-based authentication with active infrastructure

and through multiple authentication techniques, location

and authentication based encryption scheme and finally

proximity-based authentication.

Trust has been widely used in authentication. In [7] a review

on existing solutions for trusted mobile computing is given.

There are two classes of solutions: Hardware-based solutions

which consists on secure elements (smartcards), trusted

platform modules (controller and cryptography) and trusted

execution environment (Operating systems like SierraTEE,

Genode, etc.); and Software-based solutions which consists

on coexisting virtualization environments (Virtual operating

systems) on a Smartphone. A secure environment is defined

as an isolated execution, a secure storage and a secure

communications (provisioning).

Definitions of trust, trustworthiness, authentication and

trustworthy authentication in ubiquitous and pervasive

computing are given in [8]. Trustworthy authentication is

not establishing trust between the authentication entities, but

means that an entity not only authenticates him to another

entity, but also assures the other entity that he is trustworthy

in the following communications. The proposition given in

the paper would be a two-level trustworthiness certificate

associated to servers.

In [9] trust and reputation is used to qualify cloud services

using enhanced mutual trusted and reputed access control

algorithms. Trust is estimated based on user’s behavior (history

of communications and friends recommendations) and the

cloud’s service provider’s reputation. The access control is

granted if the user’s trust value is above a trust threshold

associated to each service and the user has a sorted list of

services depending on their reputation.

In [10], the first contribution is identifying a set of categories

for credentials and adapts them to the cloud context. The

categories are useful to define what kind of information has

to be represented in terms of credentials for a specific system

or service, and how this information can be grouped and

organized. The second contribution is the identification of

important elements that have to be considered when adopting

or developing a solution for authentication and authorization.

A trust model that is used to evaluate cloud service security

strength is proposed in [11]. It consists of a trust value

which can be evaluated by a list of parameters that covers

almost all relevant aspects of security. These parameters

are: identity management, authentication authorization, data

protection, confidentiality, communication, isolation (avoid

security breaks and restrict user access area), virtualization,

and compliance (cloud service grated by an external authority).

Cloud service features and specifications are used to evaluate

the trust value and termed as static trust. Value of trust is

affected, based on user experience and transactions over a

period of time. A refined set of parameters are formulated

to evaluate the trust dynamically. Static and dynamic trust

altogether determines security of the cloud services.

Physical trust is also studied in [12], where a context of

physical trust relationship is built between users by visual

contact. The i-contact is to visually confirm the user’s identity

by the surrounding user’s eyes, and the k-contact, dynamically,

changes the authentication level using information collected

through i-contact. The method is mainly used to unlock a

mobile device and use resources accessed by the mobile.
Applications where context-aware authentication and

security systems based on trust have also been proposed.
In [13] Vehicular Adhoc Networks (Vanets) are considered

and their challenges. A VANET is a network where

each node represents a vehicle equipped with wireless

communication technology. This type of network can improve

road safety, traffic efficiency, and many other traffic-related

applications, minimizing their environmental impact and

maximizing the benefits of road users. A cloud based

security and privacy-aware information dissemination system

through ciphertext-policy attribute-based encryption for access

mechanism with batch verification is proposed. The proposed

approach relies on a traffic management Bureau to manage

the key generation, and a trusted authority for credentials

management using bilinear mapping is proposed to detect

malicious vehicles.
The authors of [14] proposed a multilevel authentication

methods for Vanets based on trust. To access internet, the

vehicles are authenticated using a direct trust evaluation

based on a historical security records from an authority unit,

and to communicate between vehicles, in order to add or

delete a node, an indirect trust evaluation based on nodes

recommendations is used. A method to detect malicious nodes

is also proposed.

III. PRELIMINARIES

Nowadays, the use of distributed systems is almost universal

in all areas. That’s why the security of these systems is crucial.

For example, a successful attack on large-scale distributed

systems gives a hacker access to thousands of machines in

one go. More importantly, distributed systems often have

privileged access between them, and after successfully getting

into one of them, a hacker will be able to bounce back to other

networks.

A. Authentication
Authentication is the procedure that consists, for a computer

system, to verify the identity of an entity (person, computer ...),

in order to allow the access of this entity to resources (systems,

networks, applications, etc.). Authentication thus validates the

authenticity of the entity in question.
There are four classic authentication factors that can be used

to confirm the identity of a principal [8]:

• Use information that only the principal knows (password,

personal identification number).

• Use unique information that only the principal has

(birth certificate, identity card, identity card, smart card,

property rights, electronic certificate, diploma, passport,

health card, mobile phone, etc.).

• Use information that characterizes the client in a given

context (photo, physical characteristics, fingerprints, iris

recognition, etc.).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

471

• Use information that only the principal can produce

(signature).

Different authentication systems exist, among them we

distinguish the Single Sign-On (SSO).

B. Single Sign-On

Single sign-on (or unique identification) is a method that

allows a user to perform only one authentication to access

multiple computer applications (or secure web sites). It

reduces the risk of centrally managing user identities by an

administrator, increases user mobility and productivity. This

doesn’t mean that the SSO system unifies account information

for all services, applications and systems, rather it hides such

a multiplicity of account information into a single account

that the user needs to login [15]. Once the user login, the

SSO system generates authentication information accepted by

the various applications and systems. The implementation of

a single account (login / password) for each user is a progress

that should become widespread in the coming years to ensure

better services to users of different applications.

A classification of SSO techniques is given in [15].

There are three main approaches for implementing single

sign-on systems: the centralized approach, the federative

approach, and the cooperative approach [16].

• Centralized approach: The basic principle here is to have

a global and centralized directory or database of all users.

It also helps to centralize the management of the security

policy. This approach is mainly intended for services all

dependent on the same entity, for example within the

middleware management of a company.

• Federative approach: In this approach, each service

manages a part of the user’s data (the user can therefore

have several accounts), but shares the information he has

on the user with the partner services. This approach has

been developed to respond to a need for decentralized

user management, where each partner service wishes to

maintain control of its own security policy, such as a set

of commercial and organizational independent shopping

sites.

• Cooperative approach: The cooperative approach assumes

that each user depends on one of the partner entities.

Thus, when seeking access to a network service, the user

is authenticated by the partner on whom he depends. As

in the federative approach, however, each network service

independently manages its own security policy.

C. Trust

Trust is a basic fact of human life that does not know a

consensual definition. Its introduction in computer science was

intended to facilitate authentication between machines when

they are required to often communicate so that they do not

authenticate at each connection.

The great interest in trust is the guarantee of fault

and intrusions tolerance, and to avoid classical security

deficiencies. Trust is typically used to enrich exchanges; an

entity may decide to interact only with others it trusts.

Cryptography and firewalls are examples of hard security

mechanisms; their general properties are to allow full access

or no access at all, so it assumes complete certainty. But the

notion of trust implies some uncertainty, so an alternative

of ”soft security” will be more appropriate to the trust

management. Flexible security is the term used by Rasmussen

et al. [17] to describe the social control model that recognizes

that malicious agents can exist among benevolent ones,

and tries to recognize them. Trusted authorities are not an

adequate approach for a large distributed system. Trust as

defined by some designers of trusted systems is misleading

because absolute trust does not exist. For that a dynamic trust

management is necessary.

A trust relationship between A and B exists when A believes

in the reliability of B, however the inverse relationship may not

exist. characteristics of a trust relationship are the following

[18]:

• Relativity: Absolute trust does not exist, it is relative.

Thus, one server can trust another server in one context

and be suspicious of it in another.

• Asymmetry: A server A can trust a server B, but the

opposite is not necessarily true.

• Transitivity: A server trusts a server B, and the server B

trusts a server C, so A can trust the server C. However,

this relation is to handle with care not to fall on errors

of trust level estimation.

• Arity: The trust relationship can be between two entities

one to one, one to many, several to one or several to

many.

• Dynamism: Trust increases or decreases depending on

experience (direct interaction). It also evolves with time.

Memory is an important factor in the area of trust, different

question may arise: should trust be accorded taking into

account all previous interactions? Or should it only take into

account the last n interactions? Some models have established

a threshold that takes into account only the last n interactions

while others have introduced a forgetting factor.

The concept of cooperation is linked to the concept of trust,

to cooperate with someone we need to trust him, to know that

he will not betray us or that he has the necessary skills.

Some models uses a cooperation threshold; to cooperate

with an agent, trust in this agent in a particular situation must

reach that threshold of cooperation.

Other models base their assessment of the trust degree

on the fact that two agents can cooperate, compete or be

in transaction. Thus we can deduce that the concepts of

cooperation, reciprocity and reputation are interrelated.

IV. PROPOSITION OF A CONTEXT-AWARE

AUTHENTICATION SYSTEM

Our proposition concerns authentication and more

specifically the Single-Sign-On. In order to adapt this model

to context-aware systems, we propose a fusion of federative

and cooperative approaches and introduce the notion of

cooperation between servers. A user would depend on a

server, to have access to a service provided by another server,

it would be enough that he authenticates to the server on

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

472

which it depends provided that the two servers are partners.

This concept of partnership should be based on trust. Thus,

the trust of one server towards another would depend on

several factors such as the degree of security of the server, the

security policy used by the server, etc. The servers in question

communicate with each other securely and transparently with

the client.

A. Modelling

In what follows, we will define the assumptions and the

terminology used in our proposal.

Terminology

• SPi: set of servers partners of server i.

• IdS: an integer to uniquely identify the server.

• IdC: an integer to identify the client from the server on

which it depends.

• TLSi−Sj : the trust level of server i in server j. It is a real

number in the range]0, 1[.
• TLSi−Cj : the trust level of server i in the client j. This

level is stored at the server i permanently but its value

is, nevertheless, variable. It is a real number in the range

]0, 1[.
• CTLSi−Cj : the current trust level of the server i in the

client j. This trust level is calculated at each session and

varies primarily according to context-related parameters.

It is a real number in the interval]0, 1[.
• TTSi: Each server i has a minimum trust threshold TTSi

from which it becomes a partner with another server j if

TLSi−Sj is greater than or equal to TTSi. It is a real

number in the interval]0, 1[.
• TTSi−sj : Each server i has a minimum trust threshold

TTSi−sj for a service j from which it will or will not

provide the service to the client if TLSi−Cj is greater

than or equal to TTSi−sj . It is a real number in the

interval]0, 1[.
• KPRCA: the client-side private key of the server A.

• KPBCA: the client-side public key of the server A.

• KPRSA: the server-side private key of the server A.

• KPBSA: the server-side public key of the server A.

• KPRC: the private key of client C.

• KPBC: the public key of client C.

• Ks: the session key shared between two entities. This key

is used to encrypt communications for a single session.

• Ts: the time duration of a session.

• Iv: the internal clock instant value of the client C.

• login/psw: the client login information and password.

Hypotheses

• Since the client depends on a server, it is assumed that

the client has full trust in this server.

• We assume that the minimum level of a TLSi−Sj is equal

to 0.1.

• If the trust level TLSi−Sj is zero, the server j is

malicious. And if the trust level TLSi−Cj is zero then

the client j is malicious.

• Trust networks are established beforehand.

1) Description of Messages:
1) Authentication-request: Auth-request(((H (login,

psw))KPRC, idC) KPBCi): This is the message sent by

a client C to the server i in order to be authenticated.

2) Authentication-response: Auth-response((TLSA−CC ,

Ks, idC)KPBSA, (Ks)KPBC): This is the response of

the server A for the authentication request of a client

C.

3) Service-request((Ks, Ts, idC, TLSA−CC) KPBSi, (idC,

Iv) Ks): This is the message sent by the client C to the

server i in order to access a service

4) Service-response(Bool): This is the response of the

server to the client C service request. The response is

represented by a Boolean variable that is true if the

service is granted to the client, or false otherwise.

B. Operation

First we will assume the following:

• A Server A has a pair of private key / public key (KPRCA

and KPBCA). This pair of keys is used to encrypt a

communication between the client and this server. The

public key is known by the client.

• A Server A also has another pair of private / public

keys (KPRCA and KPBSA). This pair of keys is used

to encrypt communications between the server and its

partners (the servers that belong to SPA). The public key

is only known by these, and is not known by users.

• A server A has in his databases user’s accounts (login

and password hashes, and other personal information) that

depend on him and trust levels TLSA−Cj assigned to

them. These are not known to users.

• Each client also has a couple of private / public key

(KPRC and KPBC) to encrypt communications between

the client and the different servers.

In the following scenarios, we will consider the client C, the

server A on which the client C depends, the server B which

is a partner server of A, the server D which is partner with B

but not with A.

1) Scenario 1. Where Server A Is Nearest: A client C wants

to authenticate to a server A on which it depends as shown

on Fig. 1. To do so, it sends an authentication request to A

containing its hashed login and password (using hash function

MD5 [19] for example), all encrypted with its private key

KPRC. Then, add its identifier to the message and then encrypt

the whole by the public key of A KPBCA.

When the server receives the request (Algorithm 1), it

decrypts it with its private key KPRCA, then with the user’s

public key. He compares the hash of the login and the

password with those stored in his database if they correspond.

If this is the case, the server responds to the client with a

positive response, a session key Ks, a session validity Ts

and its identifier and its trust level TLSA−CC encrypted with

the server-side public key KPBSB, plus the session key Ks

encrypted with the client’s public key KPBC.

The client wants to access a service provided by the

server B partner of A, so he sends the session key Ks, the

session validity Ts, its identifier and its trust level TLSA−CC

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

473

encrypted with the sever-side public key of the server (as sent

by the server A) plus the client identifier and the clock all

encrypted with the session key Ks it has recovered. Then the

server B recovers the trust level TLSA−CC . Then, calculate

the trust level TLSB−CC using (1).

TLSB−CC = TLSB−SA ∗ TLSA−CC (1)

TLSB−SA being the trust level of the server B towards

the server A. It retrieves the session key Ks with which it

decrypts the second message to thus recover the identifier of

the client as well as the clock instant value Iv to compare

them with the identifier and the session validity Ts in order to

verify respectively the identity of the client and the possible

expiration of the session. Once these tests are validated, the

server B checks whether or not the trust level TLSB−CC

allows the user to access the service (Algorithm 2).

Fig. 1 Scenario 1 authentication diagram

Algorithm 1 Request-Authentication processing algorithm:

When server A receives an authentication request from a C client:
Receive Auth-request ((H(login, psw)) KPRC,
idC) KPBCA;
Extract (idC, H(login, psw)) KPRC;
Verifier (idC);
Recover (KPRC); //from its database
Recover (H(login, psw)); // from the received message
if ((H(login) == stored login) and (psw ==
stored psw)) then
Generate (Ks, Ts); // Generate the session key and its
time-out
Send ((TLSA−CC, Ks, Ts, idC1) KPRSA, (Ks))
KPBCA) to the client C;

else
Send (incorrect login or password);

end if

2) Scenario 2. Where Server B Is Nearest: In the case

where B (which is partner with the server A on which the

client C depends) is the nearest server (see Fig. 2). The client

C sends an authentication request to B containing its hashed

login and password (using MD5) all encrypted with its private

key KPRC, adds its identifier to the query and then encrypts

the whole by the public key of A KPBCA. The server identifier

A is also added.

Algorithm 2 Service-request processing

When server B receives a service request from client C:
Receive Service-request((TLSA−CC, Ks, Ts,
idC1) KPBSB, (idC, Iv) Ks);
Extract (TLSA−CC, Ks, Ts, idC1);
Extract ((idC, Iv);
TLSB−CC = TLSB−SA ∗ TLSA−CC;
if ((Iv≤Ts) ∧ (idC1 == idC) ∧ (TLSB−SA ≥
TLmin)) then
Send Service-response(1); // Service granted

else
Send Service-response(0); // Service refused

end if

When the server B receives the request, it transmits it to the

server A, which decrypts it with its private key KPRCA. Then

he decrypts it with the user’s public key. Then, he compares

the hash of the login and the password with those stored in

his database if they correspond. If this is the case, the server

A sends to the server B a positive response with a session

key Ks, a session validity Ts, its identifier and its trust level

TLSA−CC encrypted with the server-side public key of the

server B KPBSB. Plus the session key Ks encrypted with the

client’s public key KPBC.

When the server B receives the message, it retransmits it

with the session key Ks, the TLSA−CC , the user’s identifier,

and the session validity Ts, as well as the other message which

contains the key session Ks encrypted with the client’s public

key KPBC (Algorithm 3).

The client wants to access a service provided by the server

B, so he sends his identifier idC and the clock Iv all encrypted

with the session key Ks, he has recovered, and the first

message as received. Then the server B recovers the trust

level TLSA−CC . Then, he calculates the trust level TLSB−CC

using (2):

TLSB−CC = TLSB−SA ∗ TLSA−CC (2)

where TLSB−SA is the trust level of the server B towards

the server A. It retrieves the session key Ks with which

it decrypts the second message to thus recover the client

identifier as well as the clock time Iv to compare them

with the identifier and the session validity Ts in order to

verify respectively the identity of the client and the possible

expiration of the session. Once these tests are validated, the

server B checks whether or not the trust level TLSB−CC

allows the user to access the service.

3) Scenario 3. Where Server B Is Nearest and Server D
Provides Service: A client wants to authenticate to the server

B (which is partner with the server A on which the client

depends). This in the case where B is the nearest server, in

order to benefit from a service of the server D (partner with

B) as shown in Fig. 3. The client sends an authentication

request to B containing its login and password hashed with the

function hash MD5, all encrypted with its private key KPRC,

adds its identifier to the request and then encrypts the whole

by the public key of A KPBCA, adding the server A identifier.

When the server B receives the request, it transmits it to the

server A. When A receives the request, he decrypts it with his

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

474

Fig. 2 Scenario 2 authentication diagram

Algorithm 3 Authentication-request processing

When server B receives an authentication request from a client C:
Receive Auth-request((H (login, psw)) KPRC,
idC) KPBCA;
Recover (idA);
Send (((H (login, psw)) KPRC, idC) KPBCA) to
the server A;

When server A receives a request from server B:
Receive Auth-request(H (login, psw)) KPRC,
idC) KPBCA);
Decrypt(H (login, psw)) KPRC, idC) KPBCA);
Check (idC);
Recover (KPRC);
Recover (H (login, psw));
if ((H(login) == stored H(login)) and (H(psw)
== stored H(psw)) then

Generate (Ks, Ts);
Send (TLSA−CC, Ks, Ts, idC1) KPBSB, Ks)
to the server B;

else
Send (incorrect login or password)

end if

When Server B receives the response from Server A:
Receive Auth-response(TLSA−CC, Ks, Ts, idC)
KPBSB, (Ks) KPBC);
Send Auth-response (TLSA−CC, Ks, Ts, idC)
KPBSB, (Ks) KPBC) to client C;

When client C receives the response from server B:
Receive (Ks) KPBC;
Extract (Ks);
Send Service-request((TLSA−CC, Ks, Ts, idC)
KPBSB, (idC, Iv) Ks) to server B;

private key KPRCA. Then he decrypts it with the user’s public

key. Then, he compares the hash of the login and the password

with those stored in his database if they correspond. If this is

the case, the server A sends to the server B a positive response

with a session key Ks, a session validity Ts and its identifier

and its trust level TLSA−CC encrypted with the server-side

public key of the server KPBSA. Plus the session key Ks

encrypted with the client’s public key KPBC.

When the server B receives the message, it decrypts

the message with its server-side private key KPRSB which

contains the session key Ks, the TLSA−CC , the user’s

identifier, and the session validity Ts, then calculates his trust

in the user with (3):

TLSB−CC = TLSB−SA ∗ TLSA−CC (3)

Then, it transmits the message that contains the session key

Ks encrypted with the client’s public key KPBC and another

message that contains the session key Ks, the calculated trust

level of B in C TLSB−CC , the identifier of C IdC and the

session duration Ts all encrypted with the server-side public

key of D KPBSD to the client D (Algorithm 4).

The client wishes to access a service provided by the

server D, then he sends its identifier idC and the clock Iv

all encrypted with the session key Ks he has recovered, and

the message that contains the session key the session duration,

the identifier of C and the trust level of B in C, as received

by B

Then the server D recovers the trust level TLSB−CC , and

calculates the trust level TLSD−CC using (4).

TLSD−CC = TLSB−CC ∗ TLSD−SB (4)

where TLSD−SB is the trust level of the server D

towards the server B. It retrieves the session key Ks with

which it decrypts the second message to thus recover the

client identifier and the clock time H to compare them

with the identifier and the session validity Ts in order to

verify respectively the identity of the client and the possible

expiration of the session. Once these tests are validated, the

server D checks whether or not the trust level TLSD−CC

allows the user to access the service.

Fig. 3 Scenario 3 authentication diagram

C. Trust Management

Since a ubiquitous system usually consists of several

elements of different hardware and software composition that

are in constant interaction with each other and with the

mobility of some, it becomes essential to manage the variations

in the levels of trust between all these elements.

1) Server/Client Trust: First, we are interested in the

server’s trust in a client. Indeed, it is very important that a

server can judge the level of trust to be granted to a client. To

manage this trust, the server has in our system two metrics of

trust towards a client C. The first is permanent but nevertheless

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

475

Algorithm 4 Authentication-request processing algorithm:

When server B receives an authentication request from a client C:
Receive Auth-request((H (login, psw)) KPRC,
idC) KPBCA, idA);
Extract (idA);
Send Auth-request (((H (login, psw)) KPRC,
idC) KPBCA) to server A;

When server A receives an authentication request from server B:
Receive Auth-request(((H (login, psw)) KPRC,
idC) KPBCA);
Decrypt Auth-request(((H (login, psw)) KPRC,
idC) KPBCA);
Check(idC);
Recover(KPBC);
Recover(H (login, psw));
if (H (login) == stored H (login)) and (H
(psw) == stored H (psw)) then
Generate (Ks, Ts);
Send ((TLSA−CC, Ks, Ts, idC1) KPBSB, (Ks)
KPBC) to the server B;

else
Send (incorrect login or password);

end if

When Server B receives the authentication response from Server
A:
Receive Auth-response (TLSA−CC, Ks, Ts,
idC1) KPBSB, (Ks) KPBC);
Compute TLSB−CC = TLSA−CC ∗ TLSB−SA;
Send Auth-response (TLSB−CC, Ks, Ts, idC1)
KPBSD, (Ks) KPBC) to client C;

variable, and the second is temporary and not stored. Both

vary according to different parameters; the first is stored at the

server, it is designated by TLSA−CC . The second is calculated

at each authentication of the client and is stored only the time

of a single session, it is designated by CTLSA−CC .

Trust increases in the following cases:

1. The trust of a server A in a client C is dynamic. The

context has a strong influence on trust, several elements of

this context can consolidate or reduce the trust of a client

C. The most obvious being the geographical position: each

time the client connects to the server it records the geographic

position of the client. If the client connects n times from the

same geographic position, the server registers it as its familiar

position. If the client connects from this position, the instant

trust level CTLSA−CC will be increased comparatively to

TLSA−CC as given in (5).

TLSA−CC = TLSA−CC ∗ α+ (1− α) (5)

α is a reel in interval]0, 1[and it is taken according to

criteria specific to each server.

2. After each successful authentication, the trust of the client

TLSA−CC increases minimally according to (5). Only in this

case, α is in the range]0.9, 1[and it is taken according to

criteria specific to each server.

Trust decreases following equation (6):

TLSA−CC = TLSA−CC ∗ α (6)

With α a reel that varies according to the following cases:

1) If the client connects from a position very far from

where he usually connects, α is in the interval]0.8, 1[
and left to the discretion of the server according to its

own security policies.

2) If in a short time the client moves considerably away

from the last recorded point, α is in the interval]0.5, 1[
and decreases proportionally to the increase in distance

and reduction of the time interval between the two

connections.

3) The client can also be on the move. Thus, if during a

single session it moves enormously, α is in the range

]0.8, 1[and left to the discretion of the server according

to its own security policies.

Trust becomes null if a server excludes a client when the

latter tries to usurp the identity of another client, or tries to

break into the server, or tries to retrieve stored information

that it does not have the right to access in the database. Then

he will be classified as malicious.

2) Server/Server Trust: Cooperation and partnership

depend on the inter-server trust, which is the main concept

in our approach.

We will begin by describing the procedure to follow if an

unknown server would like to become a partner with server

A:

The server D wishing to become a partner with A, adds it to

the list of pretenders to become partners and sends it a request

(PartRequest). As soon as A receives it, it sends (Explore)

requests to all its partners SP to send him their opinions on the

server D. Each time a server in the set receives this request,

it checks whether the server is one of his partners. If so, it

sends back to the server A a message containing its trust in D.

Otherwise, he sends back a message stating that he is unknown

to him.

If the server A receives recommendations from its partners

(the server D is partner with one of its partners), it calculates

the trust level. First, each time it receives a recommendation

from server i, it calculates the trust level (TLi
SA−SD) using

(7).

TLi
SA−SD = TLSA−Si ∗ TLSi−SD (7)

Then calculate TLSA−SD by averaging TLiSA−SD for i

from 1 to n, n being the number of recommendations received.

Thus, TLSA−SD will be the trust level that A will assign to

the new server D. If TLSA−SD is greater than the threshold

(TTSA), then it adds it to its list of partners and informs

D by sending a response. Otherwise, he adds him to a list

of pretenders where he can be promoted to a partner if his

trust level increases and also informs him by sending him a

response.

In case no recommendation emanates from all the partners

of A (the server D is not partner with any of them) then

A sends a request to its partners (DeepExplore). When the

partners of server A receive it, they send a request (Explore)

to their partners and treat the responses in the same way A

would handle the responses. Then return the results to A.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

476

If A receives one or more recommendations (D is a partner

with one of his partners) then A calculates TLi
SA−CC and

computes the average to reduce TLSA−SD. Then inform the

server D that they are now partners if TLSA−SD is greater

than the threshold (TTSA). If not, he adds it to the list of

pretenders and also informs him by sending him a response.
If all the responses are negative, the server A gives a

minimum trust level to D TLSA−SD = 0.1, adds him to

the list of pretenders and then informs him by sending him

a response.
When the server D receives the response from A, if it is

positive, then the server D adds A to its list of partners, and

assigns him a trust level TLSD−SA = TTSD. Otherwise, he

gives him a minimum trust level TLSD−SA = 0.1 and adds

him to the list of pretenders.
Procedure for adding a new partner is given in Algorithms

5-7.

Algorithm 5 When server A receives PartRequest (idD, idA)

from server D:

SP := set of partners of A;
N := Card (SP);
Cp: = 0; // Counter
Receive PartRequest(idD, idA);
Send Explore(idD) to SP;
Wait for all responses;
if (at least one response is positive) then

for i = 1 to N do
if (TLSi−SD �= Null) then

TLi
SA−SD = TLSi−SD ∗ TLSA−Si;

TLSA−SD = TLSA−SD + TLi
SA−SD;

Cp: = Cp + 1;
end if

end for
TLSA−SD := TLSA−SD/Cp;

else
Send DeepExplore(idD) to SP;
Wait for all responses;
if (at least one response is positive) then

for i = 1 to N do
if (TLSi−SDneqNull) then

TLi
SA−SD := TLSi−SD ∗ TLSA−Si;

TLSA−SD := TLSA−SD + TLi
SA−SD;

Cp = Cp + 1;
end if

end for
TLSA−SD := TLSA−SD/Cp;

else
TLSA−SD := 0.1;

end if
end if
if (TLSA−SD > TLSA) then

Add D to SP;
Send response(1) to D;

else
Add D to the list of pretenders;
Send response(0) to D;

end if

Trust increases in the following cases:

1) If a server B, partner with A and with D, recommends

D to A, then A calculates TLN
SA−SD using (8):

TLN
SA−SD = TLSA−SD ∗ TLSB−SD (8)

Algorithm 6 When server B partner of server A receives

Explore(idD) from server A:

SP: = set of partners of B;
N: = Card (SP);
Receive Explore(idD);
i: = 1;
while i > N do

if (idD == idi) then
Send response(TLSB−SD) to A;

end if
i: = i + 1;

end while
if (i> N) then

Send response (0) to A;
end if

Algorithm 7 When server B partner of server A receives

DeepExplore(idD) from server A:

SP: = set of partners of B;
N: = Card (SP);
Receive DeepExplore(idD);
Send Explore(idD) to SP;
Wait for all responses;
if all responses are negative then

Send response (0) to A;
else

for i =1 to N do
if TLSi−SDneqNull then

TLi
SB−SD := TLSi−SD ∗ TLSB−Si;

TLSB−SD := TLSB−SD + TLi
SB−SD;

Cp: = Cp + 1;
end if

end for
TLSB−SD := TLSB−SD/Cp;
Send response (idD, TLSB−SD) to A;

end if

Then, make the comparison with his own trust level in

D TLSA−SD, and his trust level in B.⎧⎨
⎩

If ((TLSA−SD < TLSA−SB) ∧ (TLSA−SD < TLN
SA−SD)

then TLSA−SD = TLN
SA−SD

EndIf

2) Trust can also vary according to (9):

TLSA−SD = TLSA−SD ∗ α+ (1− α) (9)

Such as α in the interval]0.8, 1[and left to the discretion

of the server according to its own security policies, and this

in the following cases:

• If the last collaboration between the two servers A and

D is satisfactory

• If the server is available on the last attempt A solicits D.

• If the number of partners in common between A and D

is large.

• If during the last session the ping is short (the response

time).

Trust decreases using (10), where α is as defined previously,

and in the following cases:

TLSA−SD = TLSA−SD ∗ α (10)

• If server D is not available during the last five attempts.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

477

• If the Ping is high (the response time is large).

• If the server D recommends a user C and that the latter

is revealed to be malicious (in this case the trust will

decrease considerably).

V. ANALYSIS AND COMPARISON

Our proposal is based on the integration of trust between

the entities of the system as well as the concept of partnership

between servers to facilitate the authentication of the user and

thus facilitate access to different services. This also allows

better availability as the user authenticates to the nearest server

and therefore the most available. The communications between

the servers will be transparent to the user thus making the

process easier. This will also allow the user to access services

provided by servers other than the one on which he depends.

In our approach, the notion of partnership between servers is

essential because it is the basis of cooperation between servers

whether to provide services or to recommend or warn a third

party. It is the trust between these servers that determines

the degree of their cooperation, going as far as partnership.

Knowing that two partner servers are complicit to the highest

point, each server has its trusted network which is made up

of servers to which it has high confidence. This network is

obviously dynamic; some servers can find themselves outside

this circle when others can make their entry according to

predefined criteria that manage this trust.
Our work has similarities to both certificate-based and

identity-based trust models. Trust between two servers

or between a server and a user can be done on the

recommendation of another server, it is a kind of certificate; in

certificate-based models, these are issued by a trusted central

authority. In our model, not being practical to set up a central

authority that would be solicited all the time in a ubiquitous

system, we have opted for a certification of another kind that

comes from a trustworthy entity (a partner server).
In addition, the servers in our model have directories on

other servers they trust with of course their identities. So, as in

identity-based models, these entities (servers) can be uniquely

identified by their identifier, and therefore assigned a dynamic

trust metric.
On the other hand, our model is based on public key

management to encrypt and secure communications between

servers and between clients and servers. For this, the

proposed model is inspired by Kerberos [20]. Indeed, the key

management is entrusted to a trusted entity that is common

between the server and the client. This entity is partner with

the server and the client depends on it. But, we introduce

a simplification of Kerberos, because it is this (trusted) entity

that delivers directly the ticket that allows access to the service,

without having to use two servers as in Kerberos, where two

servers (the authentication server and the server issuing tickets)

share the tasks. In our model, the procedure is not centralized,

indeed each server has a set of clients that depend on it, so

we will have several authorities that can certify the identity of

their users to a number of servers (their partners).
Our model has the following advantages:

• Promotes mobility: in a ubiquitous environment where

entities are supposed to move freely, mobility is

paramount. As a result, the user has the choice to

authenticate with several servers and thus access different

services that he needs.

• Adapted to Ubiquitous systems: the proposed approach

does not dependent on a central authority that is always

requested.

• Flexibility: Since the user does not have to always

authenticate with the same server.

• Transparency: The communications between the

servers are completely transparent to the client which

considerably contributes to simplify the process.

• Distributed and dynamic Trust.

• Context-awareness: Takes into account the distance to

increase or decrease the trust level.

For authentication and access to the service by the client,

it is only point-to-point communications, so the number of

messages exchanged at each session has a constant complexity

of O(1).
For trust management, the worst case scenario is adding a

new partner. In this case, the propagation of the request to the

partners (and possibly the partner’s partners) of the requested

server will require a number of messages of the order of O(n),
it is the same complexity as for the response, whether it is

positive or negative. Here, ”n” represents the number of nodes

of the entire concerned network.
Nevertheless, our model remains simple and is still at a

primitive stage of its design. In addition, the criteria and

conditions for managing trust can be enriched. Our proposal

does not, yet, include mechanisms for detection of a malicious

server and its exclusion.

VI. CONCLUSION AND PERSPECTIVES

The main purpose of computers being to facilitate the tasks

of everyday life, the ubiquitous systems come to contribute a

little more. Indeed, the principle of ubiquitous computing is to

be present everywhere and to continually adapt to the user’s

context and needs. Securing these systems is evident, even

though tremendous progress has been made in this direction,

there is still much to be done because it is a vast field and the

challenges remain multiple.
Our proposal develops an authentication model adapted

to context-aware systems based on trust. We defined this

notion of trust and that of partnership as well as the rules

of their management making them dynamic and distributed.

Each server within our system maintains its own levels of

trust relative to and dependent on other servers. Our proposal

is based on the principle of a trusted third party but with a

distributed and more flexible approach.
As a perspective, future work will focus on:

• Include other situations for trust management such as

excluding a server from a trusted network.

• Improve the formula for the assessment of trust because

it is simple and does not take into account certain

parameters.

• Allow servers that detect a threat to be able to warn their

partners and manage the reaction of the latter.

• Realize an algorithm that would launch a vote to make a

collective decision to exclude a server.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:12, No:6, 2018

478

• Adapt our system for better directory management when

this system is applied on a large scale.

REFERENCES

[1] M. Weiser, ”Ubiquitous Computing ”, 1996, http://www.ubiq.com/
hypertext/weiser/ UbiHome.html, (06/12/2017).

[2] A. Mansour, M. Sadik, E. Sabir, and M. Azmiy, ”A Context-Aware
Multimodal Biometric Authentication for Cloud-Empowered Systems,”
in Proc. of International Conference on Wireless Networks and Mobile
Communications (WINCOM), 26-29 Oct., Fez, Morocco, 2016.

[3] A. Chaturvedi, A. K. Das, D. Mishra, and S. Mukhopadhyay, ”Design of
a secure smart card-based multi-server authentication scheme,” Journal of
Information Security and Applications, Volume 30, Issue C, pp. 64-80,
October 2016.

[4] D. Hintze, S. Scholz, E. Koch, and R. Mayrhofer, ”Location-based
Risk Assessment for Mobile Authentication,” UBICOMP/ISWC-16
ADJUNCT, pp. 85-88, Heidelberg, Germany, September 12-16, 2016.

[5] U. S. Premarathnea, I. Khalil, and M. Atiquzzaman, ”Location-dependent
disclosure risk based decision support framework for persistent
authentication in pervasive computing applications,” Computer Networks,
Vol. 88, pp.161-177, 2015.

[6] B. Shivhare, G. Sharma, and S. P. S. Kushwah, ”A Study On
Geo-Location Authentication Techniques,” 2014 Sixth International
Conference on Computational Intelligence and Communication Networks,
CICN 2014, Bhopal, India, pp. 744-748, 14-16 November 2014.

[7] M. A. Bouazzouni, E. Conchon, and F. Peyrard, ”Trusted mobile
computing: An overview of existing solutions,” Future Generation
Computer Systems, Volume 80, pp.596-612, March 2018.

[8] H. Xiao, J. Malcolm, B. Christianson, and Y. Zhang, ”Trustworthiness
and Authentication in Ubiquitous Computing,” in Proceedings of
MobiWac-12, Paphos, Cyprus, pp.135-138, October 21-22, 2012.

[9] G. Sarojini, A. Vijayakumar, and K. Selvamani, ”Trusted and
Reputed Services using Enhanced Mutual Trusted and Reputed
Access Control Algorithm in Cloud,” 2nd International Conference on
Intelligent Computing, Communication and Convergence (ICCC-2016),
Bhubaneswar, Odisha, India, Procedia Computer Science, Vol.92,
pp.506-512, 2016.

[10] K. Selvamani and P. K. Arya, ”Credential Based Authentication
Approach for Dynamic Group in Cloud Environment,” International
Conference on Intelligent Computing, Communication and Convergence
(ICCC-2014), Bhubaneswar, Odisha, India,Procedia Computer Science,
Vol.48, pp.166-172, 2015.

[11] R. Shaikh and M. Sasikumar, ”Trust Model for Measuring Security
Strength of Cloud Computing Service,” International Conference on
Advanced Computing Technologies and Applications (ICACTA- 2015),
Procedia Computer Science, Vol. 45, pp. 380-389, 2015.

[12] S. Arimura, M. Fujita, S. Kobayashi, J. Kani, M. Nishigaki, and A.
Shiba, ”i/k-Contact: a context-aware user authentication using physical
social trust,” Twelfth Annual Conference on Privacy, Security and Trust
(PST), Toronto, Canada, pp. 407-413, 23-24 Jul 2014.

[13] Q. G. K. Safi, S. Luo, C. Wei, L. Pan, and G. Yan, ”Cloud-based security
and privacy-aware information dissemination over ubiquitous VANETs,”
Computer Standards and Interfaces, Vol. 56, pp. 107-115, February 2018.

[14] S. Jain and A. Ranjan, ”A Review Study on Vehicular Ad-Hoc Networks
Trust and Authentication Mechanisms,” International Journal of Technical
Research (IJTR) Vol. 5, Issue 1, pp. 101-106, 2016.

[15] V. Radhaa and D. Hitha Reddya, ”A Survey on Single Sign-On
Techniques,” Procedia Technology, Vol.4, pp. 134-139, 2012.

[16] R. Saadi, The Chameleon: Un Système de Sécurit17 pour Utilisateurs
Nomades en Environnements Pervasifs et Collaboratifs. PhD thesis,
Institut National des Sciences Appliquées (INSA) de Lyon - France, 2009.

[17] L. Rasmussen, A. Rasmussen, and S. Janson, ”Reactive Security and
Social Control,” 19th National Information Systems Security Conference,
Baltimore - USA, 1996.

[18] Y. Wang and J. Vassileva, ”Trust and Reputation Model in Peer-to-Peer
Networks,” in proceedings of Third International Conference on
Peer-to-Peer Computing, (P2P 2003). Linkoping, Sweden 1-3 Sept. 2003.

[19] X. Wang, D. Feng, X. Lai, and H. Yu, ”Collisions for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD,” Shanghai Jiaotong University,
Shanghai - Chine, 2004.

[20] J. Garman, Kerberos, The Definitive Guide. Edition O’Reilly, 2010.

