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Traveling wave solutions for shallow water wave
equation by

(
G′
G

)
-expansion method
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Abstract—This paper presents a new function expansion method
for finding traveling wave solution of a non-linear equation and calls
it the

(
G′
G

)
-expansion method. The shallow water wave equation

is reduced to a non linear ordinary differential equation by using
a simple transformation. As a result the traveling wave solutions of
shallow water wave equation are expressed in three forms: hyperbolic
solutions, trigonometric solutions and rational solutions.
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I. INTRODUCTION

THE general idea of dispersive waves originated from
problems of water waves. It is well known that searching

for exact solution of nonlinear evolution equation arising
in mathematical physics plays an important role in study
of nonlinear physical phenomena. The shallow water wave
equations describe the evolution of incompressible flow,
neglecting density change along the depth. Shallow water
wave equations are applicable to cases where the horizontal
scale of the flow is much bigger than the depth of fluid. An
important class of solution of non-linear evolution equation
is concerned with those of traveling waves that reduce the
guiding partial differential equation of two variable namely x
and t to an ordinary differential equation of one independent
variable u = x − ct where c ∈ (R − {0}) is a parameter
signifying the speed with which the wave travels either to the
right or to left. “The most incomprehensible thing about the
word is that it is at all comprehensible” (Albert Einstein), but
the question is how do we fully understand incomprehensible
things? There are number of methods to find exact and
numerical solutions of nonlinear equations have drawn a
lot of interest by a diverse group of scientists. Some of
these methods are the homogeneous balance method [10],
Differential quadrature method [1], the tanh method [12], the
Jacobi elliptic function expansion [4,6], the truncated Painlevé
expansion [3], Lie Classical method [7]. Recently, Wang et
al. [5,11] introduced a method called the

(
G′
G

)
-expansion

method and obtain traveling solution for the four well
established non-linear evolution equation. The performance
of this method is reliable, simple and gives many new solution.
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Our aim in this paper is to present an application of the(
G′
G

)
-expansion method to some non-linear problem to be

solved by this method for first time [2,8,9].
In this paper, we pay attention to the analytical method for

getting the exact solution of some NLEES. Among the possible
exact solutions of NLEEs, certain solutions for special form
may depend only on a single combination of variables such
as traveling wave variables. Our main goal in this study is
to present the

(
G′
G

)
-expansion method for constructing the

traveling wave solutions.(
G′
G

)
-expansion method is described in section II. In

section III, we applied this method to shallow water wave
equation of fifth order and various exact solutions are obtained
which included the hyperbolic functions, the trigonometric
functions and rational functions. Finally, some conclusions are
drawn.

II. DESCRIPTION OF THE
(
G′
G

)
-EXPANSION METHOD

In this section we describe the
(
G′
G

)
-Expansion Method

for finding shallow water wave solution of non linear evolu-
tion equation. Suppose that a nonlinear equation say in two
independent variable x and t is given by

P (u, ux, ut, uxx, utt, uxt, ...) = 0, (1)

where u = u(x, t) is an unknown function, P is a polynomial
in u = u(x, t) and its partial derivatives in which the highest
order derivatives and the nonlinear terms are involved.In
following we gives the main steps of improved

(
G′
G

)
-

Expansion Method.

Step 1. Suppose that u = u(x, t).The traveling wave
variable allows us reducing to an ODE for u=u(ξ)

P (u, u′, u′′, ...) = 0, (2)

where prime denotes the derivative with respect to ξ .

Step 2. Suppose the solution of equation can be expressed by
a polynomial in

(
G′
G

)
as follows.

u(ξ) =

N∑
i=0

ci

(
G′(ξ)
G(ξ)

)
, (3)

where ci are real constants with ci �= 0 to be determined, N is
a positive integer to be determined. The function G(ξ) is the
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solution of the auxiliary linear ordinary differential equation

G′′(ξ) + λG′(ξ) + μG(ξ) = 0, (4)

where λ and μ are real constants to be determined.

Step 3. Substituting (3) into (2) and using second order
LODE (4). Separate all terms with same order of

(
G′
G

)
together,the left hand side of (2) is converted into another
polynomial in

(
G′
G

)
. Equating each coefficient of polynomial

to zero .Then we get algebraic equation for ci,.....λ and μ.

Step 4. Since the following general solution of equation
(4) has been well known for us,then substituting ci, c and
general solution of equation (4) into (3). We have more
traveling wave solution of non linear partial differential
equation (1).

III. APPLICATIONS OF
(
G′
G

)
METHOD

In this section, we apply the
(
G′
G

)
-expansion method to

solve the Shallow water wave equation.

Shallow water wave (SWW) Equation
The Shallow water wave Equation (SWW) equation is

(ut+ux+c1uux+c2uxxx+c3uxuxx+c4uuxxx+c5uxxxxx = 0,
(5)

where u is function of x and t.
According to the method described above in section 2, we
make the transformation u(x, t) = u(ξ), ξ = x− ct. Then we
get

−cu′ + u′ + c1uu
′ + c2u

′′′ + c3u
′u′′ + c4u

′u′′′ + c5u
′′′′′′ = 0,

(6)
where prime denotes the derivative with respect to ξ.
Now, balancing uu′′′ with u′′′′′′ gives N = 2. Therefore, we
can write the solution of equation (6) in the form

u(ξ) = a0 + a1

(
G′

G

)
+ a2

(
G′

G

)2

, (7)

where a2 �= 0 and G = G(ξ). From equations (4) and (7),
we derive.

u′(ξ) = −2a2
(
G′
G

)3
− (a1 + 2a2λ)

(
G′
G

)2
−(a1λ+ 2a2μ)

(
G′
G

)
−a1μ,

(8)

u′′(ξ) = 6a2

(
G′
G

)4
+ (10a2λ+ 2a1)

(
G′
G

)3
+(4a2λ

2 + 8a2μ+ 3a1λ)
(
G′
G

)2
+(a1λ

2 + 2a1μ+ 6a2λμ)
(
G′
G

)
+a1λμ,

(9)

u′′′(ξ) = −24a2
(
G′
G

)5
− (6a1 + 54a2λ)

(
G′
G

)4
−(40a2μ+ 38a2λ

2 + 12a1λ)
(
G′
G

)3
−(52a2λμ+ 8a2λ

3 + 7a1λ
2 + 8a1μ)

(
G′
G

)2
−(8a1λμ+ 14a2λ

2μ+ 16a2μ
2 + a1λ

3)
(
G′
G

)
−6a2λμ2 − 2a1μ

2 − a1λ2μ,

(10)

u′′′′(ξ) = 120a2

(
G′
G

)6
+ (336a2λ+ 24a1)

(
G′
G

)5
+(330a2λ

2 + 240a2μ+ 60a1λ)
(
G′
G

)4
+(50a1λ

2 + 130a2λ
3 + 40a1μ+ 440a2λμ)

(
G′
G

)3
+(15a1λ

3 + 16a2λ
4 + 60a1λμ+ 232a2λ

2μ+ 136a2μ
2)
(
G′
G

)2
+(a1λ

4 + 22a1λ
2μ+ 120a2λμ

2 + 16a1μ
2 + 30a2λ

3μ)
(
G′
G

)
+16a2μ

3 + 14a2λ
2μ2 + a1λ

3μ+ 8a1λμ
2,

(11)

u′′′′′(ξ) = −720a2
(
G′
G

)7
−(2400a2λ+ 120a1)

(
G′
G

)6
−(360a1λ+ 1680a2μ+ 3000a2λ

2)
(
G′
G

)5
−(3960a2λμ+ 1710a2λ

3 + 390a1λ
2 + 240a1μ)

(
G′
G

)4
−(480a1λμ+ 180a1λ

3 + 3104a2λ
2μ+ 1232a2μ

2 + 422a2λ
4)
(
G′
G

)3
−(136a1μ2 + 32a2λ

5 + 884a2λ
3μ+ 1712a2λμ

2 + 292a1λμ

+31a1λ
4)
(
G′
G

)2
− (272a2μ

3 + a1λ
5 + 584a2λ

2 mu2 + 52a1λ
3μ

+62a2λ
4μ+ 136a1λμ

2)
(
G′
G

)1
− (22a1λ

2μ2 + 120a2λμ− a1λ4
mu− 30a2λ

3μ2 + 16a1μ
3).

(12)

Substituting equations (8-12) into equation (6), set-

ting the coefficients of
(
G′
G

)i
, (i = 0, 1, 2, 3, 4, 5, 6, 7, )

to zero, we obtain a system of algebraic equations for
a0, a1, a2, c, c1, c2, c3, c4, c5, λ and μ as follows:

(
G′
G

)7
: 24c4a

2
2 + 720c5a2 + 12c3a

2
2,(

G′
G

)6
: 32c3a

2
2λ+ 10c3a2a1 + 2400c5a2λ+ 30c4a2a1

+120c5a1 + 54c4a
2
2λ,(

G′
G

)5
: 2c3a

2
1 + 40c4a

2
2μ+ 24c2a2 + 24c4a0a2

+1680c5a2μ+ 3000c5a2λ
2 + 6c4a

2
1 + 28c3a

2
2λ

2

+28c3a
2
2μ+ 2c1a

2
2 + 360c5a1λ+ 26c3a2a1λ

+66c4a2a1λ+ 38c4a
2
2λ

2,(
G′
G

)4
: 12c4a

2
1λ+ 8c4a

2
2λ

3 + 1710c5a2λ
3 + 240c5a1μ

+22c3a2a1μ+ 22c3a2a1λ
2 + 54c2a2λ+ 3960c5a2λμ

+8c3a
2
2λ

3 + 5c3a
2
1λ+ 390c5a1λ

2 + 6c4a0a1
+3c1a1a2 + 54c4a0a2λ+ 45c4a0a2λ

2 + 52c4a
2
2λμ

+48c3a
2
2λμ+ 48c4a2a1μ+ 6c2a1 + 2c1a

2
2λ,

(13)
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(
G′
G

)3
: 2a2 + 3104c5a

2
2λ

2μ+ 3c1a1a2λ+ 9c4a2a1λ
3

+20c3a
2
2λ

2μ+ 6c3a2a1λ
3 + 14c4a

2
2λ

2μ
+38c4a0a2λ

2 + 12c4a0a1λ+ 480c5a1λμ+ 40c4a0a2μ
+8c4a

2
1μ+ 2c1a0a2 + 7c4a

2
1λ

2 + 422c5a2λ
4

+4c3a
2
1λ

2 + 40c2a2μ+ 2c1a
2
2μ+ 1232c5a2μ

2

+16c4a
2
2μ

2 + 38c2a2λ
2 + 180c5a1λ

3 + 4c3a
2
1μ

+20c3a
2
2μ

2 + 12c2a1λ+ c1a
2
1λ− 2ca2 + 60c4a2a1λμ

+36c3a2a1λμ,(
G′
G

)2
: a1 + 2c1a0a2λ+ 3c1a1a2μ+ 52c2a2λμ

−2ca2λ+ c4a
2
1λ

3 + c3a
2
1λ

3 + c1a0a1
+7c2a1λ

2 + 31c5a1λ
4 + c1a

2
1λ+ 8c2a1μ

+8c2a2λ
3 + 32c5a2λ

5 + 136c5a1μ
2 + 52c4a0a2λμ

+15c4a2a1λ
2μ+ 14c3a2a1λ

2μ+ 2a2λ− ca1
+6c3a

2
1λμ+ 14c3a1a2μ

2 + 16c3a
2
2λμ

2 + 8c4a
2
1λμ

+18c4a1a2μ
2 + 6c4a

2
2λμ

2 + 8c4a0a1μ+ 7c4a0a1λ
2

+8c4a0a2λ
3 + 884c5a2λ

3μ+ 1712c5a2λμ
2 + 292c5a1λ

2μ,(
G′
G

)1
: −2ca2μ+ 16c2a2μ

2 + 4c3a
2
2μ

3 + c2a1λ
3

+c1a
2
1μ+ 10c3a1a2λμ

2 + 14c4a0a2λ
2μ+ 8c4a0a1λμ

+6c4a1a2λμ
2 + 2c4a

2
1μ

2 + c5a1λ
5 + 2c3a

2
1μ

2

−ca1λ+ 272c5a2μ
3 + c1a0a1λ+ c4a

2
1λ

2μ
+c4a0a1λ

3 + 2c1a0a2μ+ 8c2a1λμ+ 14c2a2λ
2μ

+2c3a
2
1λ

2μ+ 16c4a0a2μ
2 + 584c5a2λ

2μ2 + 52c5a1λ
3μ

+62c5a2λ
4μ+ 136c5a1λμ

2 + 2a2μ+ a1λ,(
G′
G

)0
: 120c5a2λμ

3 + c5a1λ
4μ+ 30c5a2λ

3μ2 + a1μ

+6c4a0a2λμ
2 + c2a1λ

2μ+ 2c2a1μ
2 − ca1μ

+2c4a0a1μ
2 + 22c5a1λ

2μ2 + 6c2a2λμ
2 + c1a0a1μ

+c4a0a1λ
2μ+ 16c5a1μ

3 + c3a
2
1λμ

2 + 2c3a1a2μ
3.

(14)
Solving these systems of algebraic equations by Maple gives
Case 1.

a0 = a0, a1 = a1, a2 = a2, λ = a1
a2
, μ = μ,

c1 =
c4a

2
1+8c4a

2
2μ−12c2a2−12c4a0a2

a22
,

c2 = c2, c3 = −2(c4a2+30a5)
a2

, c4 = c4, c5 = c5,

c = α
a24

(15)

where

α = −2a32a21c4μ− 2a21a0a
2
2c4 + 8a22a

2
1c5μ− a21c2a22

−16a22a0c4μ− a41c5 − a42 + 12a0a
3
2c2 + 12a0a

3
2c4

−8a42c2μ+ 4a52c4μ
2 − 16c5a

4
2μ

2,
(16)

and μ, λ and a0, a1, a2, c, c1, c2, c3, c4, c5 are arbitrary con-
stants.

Case 2.

a0 = a0, a1 = a1, a2 = a2, c1 =
−3c4(a

2
1−2a2a1λ+a

2
2λ

2)

2a22
,

c2 =
−c4(a21−26a2a1λ+48a0a2+13a22λ

2)
48a2

,

c3 = −13c4
4 , c4 = c4, c5 = c4a2

48 ,
λ = λ,

c = β
4a22

,

μ = −a1(a1−2a2λ)
a32

(17)

where

β = −24a32a1c4λ3 + 33a22a
2
1c4λ− 18a2a

2
1c4λ+ 12a32c4a0λ

+6a42c4λ
4 + 3a41c4 − 8a32 − 24a22c4a0λ+ 12a2a

2
1c4a0,

(18)
and μ, λ and a0, a1, a2, c, c1, c2, c3, c4, c5 are arbitrary con-

stants.
Case 3.

a0 = a0, a1 = a1, a2 = a2, λ = λ, μ =
a21−2a2a1λ+10a2λ

2

36a22
,

c1 =
c4(a

2
1−2a2a1λ+a

2
2λ)

9a22
,

c2 =
−c4(−13a21−190a2a1λ+432a0a2+95a22λ

2)
432a2

, c3 = −13c4
4 ,

c4 = c4, c5 = c4a2
48 ,

c = γ
324a32

,

(19)
where

γ = −32a32a1c4λ+ 39a22a
2
1c4λ

2 − 14a2a
3
1c4λ+ 36a32c4a0λ

2

−8a42c4λ4 − a41c4 + 32a32 − 72a22a1c4a0λ+ 36a2a
2
1c4a0

(20)
and μ, λ and a0, a1, a2, c, c1, c2, c3, c4, c5 are arbitrary con-
stants.
For Case 1, Substituting the solution set (15) and the corre-
sponding solutions of (4) into (7), we have the solutions of
equation (6) as follows:
When λ2−4μ > 0, we obtain the hyperbolic function shallow
water wave solutions

u11(ξ) = 1 + 4⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+

⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

2

.

(21)
When λ2 − 4μ < 0, we obtain the trigonometric function
shallow water wave solutions

u12(ξ) = 1 + 2⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
4μ−λ2

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+

⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
λ2−4μ

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

2

.

(22)
When λ2 − 4μ = 0, we obtain the rational function solutions

u13(ξ) =
C2

C1 + C2ξ
− λ

2
, (23)

where ξ = x− ct, where c is given by equation (15).
For Case 2, Substituting the solution set (17) and the

corresponding solutions of (4) into (7), we have the solutions
of equation (6) as follows:
When λ2−4μ > 0, we obtain the hyperbolic function shallow
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Fig. 1. Graphical representation of solution (21), when λ = 4, μ = 2, a0 =
1, a1 = 4, a2 = 1, c = 175, c1 = 8, c2 = 1, c3 = −62, c4 = 1, c5 = 1

Fig. 2. Graphical representation of solution (22), when λ = 2, μ = 2, a0 =
1, a1 = 2, a2 = 1, c = −123, c1 = −4, c2 = 1, c3 = −62, c4 = 1, c5 =
1

water wave solutions

u21(ξ) = 1

+2

⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+1

⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

2

.

(24)
When λ2 − 4μ < 0, we obtain the trigonometric function

Fig. 3. Graphical representation of solution (23), when λ = 2, μ = 1, a0 =
1, a1 = 2, a2 = 1, c = −1, c1 = −12, c2 = 1, c3 = −62, c4 = 1, c5 = 1

shallow water wave solutions

u22(ξ) = a0

+a1

⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
4μ−λ2

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+a2

⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
λ2−4μ

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

2

.

(25)
When λ2 − 4μ = 0, we obtain the rational function solutions

u23(ξ) =
C2

C1 + C2ξ
− λ

2
, (26)

where λ = λ, μ = −a1(a1−2a2λ)
4a22

,
ξ = x− ct, where c is given by equation (17).

For Case 3, Substituting the solution set (19) and the
corresponding solutions of (4) into (7), we have the solutions
of equation (6) as follows:
When λ2−4μ > 0, we obtain the hyperbolic function shallow
water wave solutions

u31(ξ) = a0+

a1

⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+a2⎛
⎝√λ2−4μ

2

⎛
⎝C1 sinh

(√
λ2−4μ

2 ξ

)
+C2 cosh

(√
λ2−4μ

2 ξ

)

C1 cosh

(√
λ2−4μ

2 ξ

)
+C2 sinh

(√
λ2−4μ

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

2

.

(27)
When λ2 − 4μ < 0, we obtain the trigonometric function
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shallow water wave solutions

u32(ξ) = a0

+a1

⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
4μ−λ2

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠

+a2

⎛
⎝√4μ−λ2

2

⎛
⎝−C1 sin

(√
4μ−λ2

2 ξ

)
+C2 cos

(√
λ2−4μ

2 ξ

)

C1 cos

(√
4μ−λ2

2 ξ

)
+C2 sin

(√
4μ−λ2

2 ξ

) − λ
2

⎞
⎠
⎞
⎠2.

(28)
When λ2 − 4μ = 0, we obtain the rational function solutions

u33(ξ) =
C2

C1 + C2ξ
− λ

2
, (29)

where λ = λ, μ =
a21−2a22a

2
1λ+10a22λ

2

36a22
,

ξ = x− ct, where c is derived in equation (19).

IV. DISCUSSION AND CONCLUDING REMARKS

On comparing between the
(
G′
G

)
-expansion method and

the other methods, we come to the conclusion that
(
G′
G

)
-

expansion method is more powerful, effective and convenient.
We have shown graphical representation of solution (21),
(22) and (23) in figure1, figure2, figure3 respectively. In the
similar way we can represent graphically the behaviour of
other derived solutions. As a result exact shallow water wave
solution hyperbolic function solution, trigonometric function
and rational solutions. As we can use the MATHEMATICA or
MAPLE to find out a useful solution of the algebraic equation,
so we can avoids difficult calculations. The authenticity of
solutions has been checked by aid of software MAPLE.
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