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Abstract—The contact resistance between source/drain electrodes 

and semiconductor layer is an important parameter affecting electron 
transporting performance in the thin film transistor (TFT). In this 
work, we introduced a transparent and the solution prossable 
single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle 
(AZO NP) bilayer electrodes showing low contact resistance with 
indium-oxide (In2O3) sol gel thin film. By inserting low work function 
AZO NPs into the interface between the SWCNTs and the In2O3 which 
has a high energy barrier, we could obtain an electrical Ohmic contact 
between them. Finally, with the SWCNT-AZO NP bilayer electrodes, 
we successfully fabricated a TFT showing a field effect mobility of 
5.38 cm2/V·s at 250°C. 
 
Keywords—Single-walled carbon nanotube (SWCNT), Al-doped 

ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor 
(TFT).  

I. INTRODUCTION 

LEXIBLE transparent electrode is an essential component 
for flexible displays, touch screens, smart windows, LCD, 

OLED and the solar cell. The material for application of 
transparent electrode should processes suitable electrical 
characteristics and high optical properties [1]-[4]. Generally, 
indium tin oxide (ITO) is widely used as transparent electrodes 
for electronic devices. ITO shows a high optical transmittance 
and electrical conductivity. Nevertheless, ITO requires high 
deposition temperature and its mechanical flexibility is limited 
for application of flexible electronics. Also, indium, one of 
material consisting ITO, is too expensive [5], [6]. Various 
materials like Ag metal nanowires network, CNTs, and 
graphene was considered as the alternative of ITO. These 
materials are considered to be cost-efficient due to their 
solution-processibility [7]-[9]. Among these materials, Ag 
nanowires are attracting substantial interest as a transparent 
conductor material due to their excellent electrical conductivity 
that is superior to other materials. However, it is a problem that 
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the Ag nanowires melt and aggregate when heated over 200 °C. 
Therefore, it causes degradation of the electrical characteristics 
of the transparent electrode [10]. On the contrary, the 
single-wall carbon nanotubes (SWCNTs) have excellent heat 
transfer characteristics and high oxidized temperature, 
mechanical, optical, and electrical properties [11], [12]. 
However, the high contact resistance between the SWCNTs 
and the semiconductor deteriorates the performance of 
electronic devices [13]. 

In order to solve this problem, we introduce a solution 
prossable single-walled carbon nanotube (SWCNT)/Al-doped 
ZnO nano particle (AZO NP) bilayer electrode. An Ohmic 
contact could be formed by the AZO NPs and then the contact 
resistance was significant reduced. We experimentally 
investigated the electrical properties of the SWCNT/AZO NP 
bilayer electrodes and its contact resistance with the 
indium-oxide (In2O3) channel layer. As a result, an Ohmic 
contact could be formed so that it is possible to reduce the 
contact resistance and high performance In2O3 TFT could be 
achieved. 

II. RESULT AND DISCUSSION 

Fig. 1 (a) illustrates a scheme of bottom gate type TFT with 
the SWCNTs electrodes and the SWCNT/AZO NP bilayer 
electrodes. A heavily doped p-type Si (100) substrate with a 
thermally oxidized 300 nm thick SiO2 layer was used. The 
substrate was washed using a piranha solution (H2SO4:H2O2 = 
3:1) to remove organic residues. The In2O3 aqueous solution for 
the channel layer was prepared using 0.1 M of indium nitrate 
hydrate [In(NO3)3·xH2O] in deionized (DI) water and then 
purified the polytetrafluoroethylene (PTFE) syringe filters with 
0.2 μm pores to filter out impurities before spin coating. The 
In2O3 channel layer was deposited by spin coating at 3000 rpm 
for 20 s and annealed at 250 °C for 2 h [14]. The source and 
drain electrodes were formed by using the SWCNT/AZO NP 
bilayer electrodes. 0.1 wt% AZO NPs (Sigma-Aldrich) was 
dispersed in ethanol by sonication for 1 h. 

AZO NPs solution was deposited by spin coating at 2000 
rpm for 30 s and annealed at 100 °C for 5 min. This coating 
procedure was repeated 3 times. The SWCNTs (SA-210, Nano 
Solution Co. Ltd.) were dispersed in DI water with using a 
surfactant as sodium dodecyl sulfate. The SWCNTs solution 
was sprayed at 115°C and then rinsing with DI water. The 
photo lithography and lift-off process were used to define the 
source and drain electrodes [15]. Finally, 7 nm In2O3 film and 
100 nm SWCNT/AZO NP bilayers were obtained. 
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