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Abstract—Discrete particle swarm optimization (DPSO) is a 

powerful stochastic evolutionary algorithm that is used to solve the 
large-scale, discrete and nonlinear optimization problems. However, 
it has been observed that standard DPSO algorithm has premature 
convergence when solving a complex optimization problem like 
transmission expansion planning (TEP). To resolve this problem an 
advanced discrete particle swarm optimization (ADPSO) is proposed 
in this paper. The simulation result shows that optimization of lines 
loading in transmission expansion planning with ADPSO is better 
than DPSO from precision view point. 
 

Keywords—ADPSO, TEP problem, Lines loading optimization.  

I.  INTRODUCTION 
ARTICLE swarm optimization (PSO) [1], is a novel 
population based metaheuristic which utilize the swarm 

intelligence generated by the cooperation and competition 
between the particles in a swarm and has emerged as a useful 
tool for engineering optimization. Unlike the other heuristic 
techniques, it has a flexible and well-balanced mechanism to 
enhance the global and local exploration abilities. By imitating 
the behaviors of biome, it is highly fit for parallel calculation, 
and has perfect performance on large-scale optimization 
problems [2-4]. 

Transmission expansion planning (TEP) is an essential 
component of power system planning. Its task is to minimize 
the network construction and operational cost, while meeting 
imposed technical, economical and reliability constraints [5, 
6]. Generally, the TEP should answer the following questions 
[5]: 

1)  Where to build a new transmission line?  
2)  When to build it? 
3)  What type of transmission line to build? 
TEP is a large-scale, discrete, nonlinear, integral 

optimization problem with lots of equal and unequal 
restrictions. To solve such a problem, a lot of methods such as 
GRASP [6], Bender decomposition [7], HIPER [8], sensitivity 
analysis [9], genetic algorithm (GA) [10-13], simulated 
annealing [14, 15], and Tabu search [16] have been proposed. 
Among them GA has been studied thoroughly in TEP, and 
many improved versions have got better performance [2]. 
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Since parameters of the TEP problem are discrete time type 
and the performance of standard PSO is based on real 
numbers, discrete PSO (DPSO) should be used for solution of 
this problem. Papers [2, 17] compared the DPSO with GA in 
TEP problem and concluded that DPSO is more exact, quicker 
and better in convergence. 

Loading rate of lines will assign overloading time and miss 
network adequacy after the end of planning horizon. The lines 
adequacy of network is necessary to provide load demands 
when the network is expanding because its lack (i.e. lines 
overloading) caused to load interrupting. Consequently, if 
expanded network is more reliable and therefore its lines 
overloaded later, will be more economic and caused to utilize 
favorably.  

The standard DPSO algorithm has also some disadvantages 
like premature convergence phenomenon similar to the (GA) 
[18]. Although some improved methods, such as augment the 
swarm scale and dynamic adjustment inertia weight factors, 
can improve the optimization performance to some extent but 
during the running of the algorithm, the swarm premature 
convergence around the local solution. Thus, in this paper, to 
overcome these drawbacks and considering lines loading rate, 
expansion planning has been investigated by including lines 
loading parameter in the TEP problem and investment cost in 
fitness function constraints using advanced discrete particle 
swarm optimization (ADPSO). This technique puts the 
adaptively changing terms in original constant terms, so that 
parameters of the original DPSO algorithm changes with the 
convergence rate which is presented by the fitness function. 
The proposed ADPSO method is tested on the Garver's 6-bus 
system in comparison with DPSO approach to demonstrate its 
effectiveness and robustness for solution of the desired TEP 
problem. The results evaluation reveals that the network 
adequacy is more increased in comparison with standard 
DPSO. In other words, expanded network will possess a 
maximum adequacy to support load demand and the 
transmission lines overloaded later. Finally, by comparing 
between the convergence curves of proposed ADPSO based 
method and DPSO, it can be concluded that the precision of 
proposed algorithm is more than DPSO method. So, ADPSO 
is indeed more efficient in improving searching capability.  

II.  THE PROBLEM FORMULATION 
Since economic value calculation of lines annual adequacy 

is very complex and affected by multiple parameters and its 
addition to network expansion investment cost is acquired 
with high determination, therefore, theses two parameters 
separate from each other, and correspondingly, fitness 
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function will be expanded lines adequacy rate. In a new 
approach, investment cost is inserted to problem constraints to 
control lines adequacy growing by entering maximum cost for 
the network expansion. Therefore, the fitness function could 
be defined as follows: 

oT
Fitness 1

=                                                                     (1) 

Where: 
To: Required time for missing the expanded network 
adequacy (year). 
It is assumed that if only a line of the network is overloaded 

in each year, network adequacy is missed. 
According to [12, 13] the problem constraints are: 

0=−+ dgSf                                                                    (2) 
0))(( 0 =−+− jiijijijij nnf θθγ                                              (3) 

ijij
0
ijij f)nn(f +≤                                                                (4) 

                                                                          (5)
ijij nn ≤≤0 

maxCC ≤                                                                              (6) 
 N-1 Safe Criterion                                                                                   (7) 

Where, Ω∈),( ji  and: 
S: Branch-node incidence matrix. 
 f: Active power matrix in each corridor.             
 g: Generation vector. 
 d: Demand vector. 
N: Number of network buses. 
θ: Phase angle of each bus. 

ijγ : Total susceptance of circuits in corridor i-j.   
0
ijn : Number of initial circuits in corridor i-j. 

ijn : Maximum number of constructible circuits in corridor 
i-j. 

ijf : Maximum of transmissible active power through 
corridor i-j which will have two different rates 
according to voltage level of candidate line. 

maxC : Maximum investment for expanding the network. 
Ω : Set of all corridors 
By defining the foregoing fitness function, a design for 

transmission network expansion could be acquired to represent 
a maximum probabilistic adequacy according to a maximum 
value of specified investment cost (Cmax). In this paper, the 
goal is obtaining number of required circuits for appending to 
the network until it is brought to a maximum adequacy with 
minimum cost during one specified horizon year. Thus, 
problem parameters are discrete time type and consequently 
the optimization problem is an integer programming problem. 
For the solution of this problem, there are various methods 
such as classic mathematical and heuristic methods. In this 
study, the advanced discrete particle swarm optimization is 
used to solve the TEP problem due to flexibility, fast 
convergence speed and simple implementation. 

III.  ADVANCED DISCRETE PSO  

A. Real-Number PSO 
The PSO algorithm was introduced by Eberhart and 

Kennedy in 1995 [1]. Original PSO was inspired by the 

behavior of a flock of birds or a school of fish during their 
food-searching activities. The PSO believed to be effective in 
multi dimensional, linear and nonlinear problems. The form of 
PSO has the position vector and the velocity vector term, and 
it is represented as Xi = (xi1, xi2, . . . ,xid) and Vi= (vi1, vi2. . . vid) 
for i-th particle in d-dimensional space. By the function, 
namely, the fitness function for optimization, the best 
positions of each particle and whole particle (group) are 
obtained at best fitness function. Each of them is represented 
as 1( ,..., )id i idPbest pbest pbest= , 1( ,..., )g g gdPbest pbest pbest=  
[18]. The following equations are used to calculate new 
velocities and positions of the particles for calculating the next 
fitness function value [20]: 

))(())(()()1( 2211 txPrctxPrctvtv idbestidbestidid gdid
−+−+×=+ ω   (8) 

)1()()1( ++=+ tcvtxtx ididid ,  1,2...,        d= 1,2...,Di n=     (9) 
Where n is the number of particle in a swarm, and D is the 

number of swarms, which is the dimension of the search 
space. t is the iteration number and c1, c2 are the acceleration 
constant. r1, r2 are the uniformly distributed random number 
between 0 and 1, and ω is the inertia weight factor. vid (t) is the 
current velocity, and xid (t) the current position of i-th particle 
in d-th swarm. pbestid is the best position of i-th particle, and 
pbestgd  is the best position of the group. The first term of (8), 
ωvid (t), provides particles' movements to roam in the search 
space. The second term, 1 1 ( ( ))

idbest idc r p x t× − , represents the 
individual movement. Third term, 2 2 ( ( ))gd idc r pbest x t× − , 
represents the social behavior in finding the global best 
solution. vid (t) is limited by max maxt

d id dv v v− ≤ ≤  , and max
dv  is 

proportional to the velocity of the convergence into the best 
solution. Usually, max

dv  is fixed in the range of the movement 
from the past c1 and c2, the lower value takes the movement 
from the past target region, but the higher value takes the 
movement toward the past target region. The results of past 
experiments about PSO show that ω was not considered at an 
early stage of PSO algorithm. However, ω affects the iteration 
number to find an optimal solution. If the value of ω is low, 
the convergence will be fast, but the solution will fall into the 
local minimum. On the other hand, if the value will increase, 
the iteration number will also increase and therefore the 
convergence will be slow. Usually, for running the PSO 
algorithm, value of inertia weight is adjusted in training 
process. It was shown that PSO algorithm is further improved 
via using a time decreasing inertia weight, which leads to a 
reduction in the number of iterations [19]. 

B. Discrete PSO  
Regarding the fact that parameters of the TEP problem are 

discrete time type and the performance of standard PSO is 
based on real numbers, this algorithm can not be used directly 
for solution of the TEP problem. There are two methods for 
solving the transmission expansion planning problem based on 
the PSO technique [2]: 

1) Binary particle swarm optimization (BPSO). 
2) Discrete particle swarm optimization (DPSO) 
Here, the second method has been used due to avoid 

difficulties which are happened at coding and decoding 
problem, increasing convergence speed and simplification. In 
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this approach, the each particle is represented by three arrays: 
start bus ID, end bus ID and number of transmission circuits 
(the both of constructed and new circuits) at each corridor. In 
the DPSO iteration procedure, only number of transmission 
circuits needs to be changed while start bus ID and end bus ID 
are unchanged in calculation, so the particle can omit the start 
and end bus ID. Thus, particle can be represented by one 
array. A typical particle with 12 corridors is shown in Fig. 1. 

 
Xtypical = (1, 2, 3, 1, 0, 2, 1, 0, 0, 1, 1, 2) 

Fig. 1. A typical particle 
 
In Fig. 1, in the first, second, third corridor and finally 12th 

corridor, one, two, three and two transmission circuits have 
been predicted, respectively. Also, the particle’s velocity is 
represented by circuit’s change of each corridor. ω is 
considered as a time decreasing inertia weight that its value is 
determined by (10). 

tln
1

=ω                                                                             (10) 

Finally, position and velocity of each particle is updated by 
the following equations [17]: 

))](())(()([)1( 2211 txPrctxPrctvFixtv idgdidididid −+−+×=+ ω  (11) 

)1()()1( ++=+ tvtxtx ididid                                                     (12) 
Where, Pid and Pgd are pbestid and gbestgd, and fix (.) is 

getting the integer part of f. When vid is bigger and smaller 
than max

dv  and - max
dv , make vid  = max

dv  and vid  = - max
dv , 

respectively. While, xid is bigger than upper bound of circuit 
number allowed to be added to a candidate corridor for 
expansion, then make xid equal the upper bound. While xid < 0, 
make xid  = 0. The other variables are the same to (8) and (9). 

C. Advanced Discrete PSO  
High searching speed is essential in determining the proper 

parameters when much iteration is involved. Consequently, 
the advanced discrete PSO (ADPSO) algorithm was proposed 
in this study. This technique puts the adaptively changing 
terms so that the parameters of the original DPSO algorithm 
can change according to the convergence rate which is 
presented by the fitness function. The original DPSO is 
change like this: 

rand
f

fbest
r

rand
f

fbestr

id

gd

id

id

+−=

+−=

1

1

2

1                                                         (13) 

Where fbestid and fbestgd are the fitness function values at 
the best position of each particle and whole particle, 
respectively. fid is the fitness function value at the present 
position, and rand is the random value between 0 and 1. r1 can 
influence the movement of the second term (individual term) 
as  a weight factor. In early searching stage, the difference of 
between fbestid and fbestgd are the fitness function values at the 
best position of between fbestid and fid is relatively bigger than 
that in the last stage. Accordingly, the value of 1 idbest

id

f
f

⎛ ⎞
−⎜ ⎟

⎝ ⎠
,is also 

bigger than that in the last stage. As an individual particle 
approaches near the individual best position, the movement of 

individual particle becomes gradually slow. So we can expect 
faster convergence than the original. r2 has an effect on the 
movement of the third term (group). Likewise, it is interpreted 
as follows: 

gd idbest best idf f f≤ ≤                                                   (14) 

0 1- 1 1gdid bestbest

id id

ff
f f

≤ ≤ − ≤                                         (15) 

Because fbestgd is supposed as optimal and lowest value in 
entire particles' fitness values, (11) can be derived. Equation 
(12) can be easily derived from (11). If the particles converge 
to the optimal value, fbestid and fid will have the same value, 

fbestgd. Therefore, the replaced 1 idbest

id

f
f

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, 1 gdbest

id

f

f
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

 will 

become zero, so that the second and third terms will move 
slowly. It can derive the fast searching.  

max max

max

max

  lim  f lim  f

lim(1 ) lim (1 ) 0 

id gdi

id id

best id bestt t t t

best best

t t
id id

t t

if f

f f
f f

→ →

→

→

= =

− = − =                                (16) 

The flowchart of the proposed ADPSO algorithm is shown 
in Fig. 2. 

 

 
Fig. 2.  Flowchart of the advanced DPSO algorithm 

 
In this study, in order to acquire better performance and 

fast convergence of the proposed algorithm, parameters which 
are used in advanced DPSO algorithm have been initialized 
according to Table 1. 

Start 

The fitness function is defined and related 
variables of ADPSO are selected. 

Positions and velocities of particles 
are generated randomly. 

New velocities and positions of the particles 
for calculating the next fitness function value 

are calculated from (11) and (12).

 

Fitness function is calculated. 

End

Is end condition 
satisfied? 

No 

Yes

pbestid and gbestid are determined. 

ω is specified according to (10). 

r1 and r2 are obtained from (13). 
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TABLE I 
VALUE OF PARAMETERS FOR ADPSO 

Parameter Value 

Problem dimension 15 
Number of particles 20 
Number of iterations 100 

C1 1.7 
C2 2.3 

max
dv  2 

 

V.  NUMERICAL EXAMPLE AND ANALYSIS   
To prove the validity of the proposed planning technique, it 

was applied to the Garver's 6-bus system. The configuration of 
the test system before expansion is given in Fig. 3. In this 
network, existed lines are 230 kV with capacity 400 MW. The 
configuration of network and construction cost of 230 kV lines 
have been given in [17]. Resistance and leakage reactance per 
kilometer of each line are 0.00012 and 0.0004, respectively. 
The generation and loads data have also given in [12]. Finally 
the planning horizon year is 2014 (5 years ahead).  

 
Fig. 3.  Garver's 6-bus network 

 
After testing the proposed DPSO method on the network 

for different values of Cmax (million dollars), the optimal 
planning networks are shown in Figs. 4 to 8 (the dash lines 
into figures are number of required circuits for adding to the 
network until planning horizon year).  

 

Fig. 4.  Proposed configuration by ADPSO for Cmax=30 M$ 

 
Fig. 5.  Proposed configuration by ADPSO for Cmax=40 M$ 

 
Fig. 6.  Proposed configuration by ADPSO for Cmax=50 M$ 

 
Fig. 7.  Proposed configuration by ADPSO for Cmax=60 M$ 

 
Fig. 8.  Proposed configuration by ADPSO for Cmax=70 M$ 

 

Also, expansion cost and To for the above mentioned 
configurations with both methods (ADPSO and DPSO) are 
given in Tables 2 and 3. 
 

TABLE II 
EXPANSION COSTS AND TO FOR DIFFERENT VALUES OF CMAX BY DPSO 

To Expansion cost 
(M$US) Cmax 

7 years after planning horizon 28.69 30 

9 years after planning horizon 39.97 40 

11 years after planning horizon 46.49 50 

13 years after planning horizon 56.04 60 

15 years after planning horizon 69.9 70 

 

TABLE III 
EXPANSION COSTS AND TO FOR DIFFERENT VALUES OF CMAX BY ADPSO  

To Expansion cost 
(M$US) Cmax 

9 years after planning horizon 24.85 30 

11 years after planning horizon 39.8 40 

12 years after planning horizon 47.52 50 

14 years after planning horizon 56.66 60 

15 years after planning horizon 65.7 70 
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Moreover, fitness function values of both methods for 
different iterations are illustrated in Figs. 9-11 to compare 
precision of the ADPSO with DPSO algorithm. Only three 
typical cases for Cmax are selected to exhibit.  

 

2 4 6 8 10 12 14 16 18 20

9.98

10

10.02

10.04

10.06

10.08

10.1

10.12

10.14

iteration

Fi
tn

es
s

 

 

DPSO
ADPSO

 
Fig. 9.  Convergence curves of ADPSO and DPSO for Cmax=30 
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Fig. 10.  Convergence curves of ADPSO and DPSO for Cmax=40 
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Fig. 11.  Convergence curves of ADPSO and DPSO for Cmax=60 
 
Generally, due to results evaluation of case study systems, 

it can be said that solution of the lines loading optimization 
problem by ADPSO is caused that the network adequacy is 
more increased in comparison with DPSO. Also, it is clear that 
convergence curves of ADPSO method for different cases 
show the fitness function is optimized more than DPSO one. 
Thus, it can be concluded that optimization of lines loading in 
TEP by advanced discrete PSO is more precise than DPSO 
method. 

V.  CONCLUSION  
By including the line adequacy parameter in the fitness 

function of TEP problem, an optimized arrangement is 
acquired for the network expansion that is proportional to a 
specified investment cost value. This arrangement possesses a 
maximum adequacy for feeding the load. By comparing the 
results of the proposed method with DPSO one, it can be 
concluded that precision of proposed ADPSO based method is 
more than DPSO. Moreover, it can be seen that optimization 
of lines loading in transmission expansion planning using 
advanced DPSO is caused that the network adequacy is more 
increased in comparison with discrete PSO. Therefore, it can 
be said that although the DPSO is more conventional for 
solving the TEP problem but improved intelligence method 
such as ADPSO is caused the amount of fitness function is 
calculated more precisely and therefore more optimal solutions 
could be obtained.  
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