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Abstract—The transient thermoelastic response of thick hollow 

cylinder made of functionally graded material under thermal loading 

is studied. The generalized coupled thermoelasticity based on the 

Green-Lindsay model is used. The thermal and mechanical properties 

of the functionally graded material are assumed to be varied in the 

radial direction according to a power law variation as a function of 

the volume fractions of the constituents. The thermal and elastic 

governing equations are solved by using Galerkin finite element 

method. All the finite element calculations were done by using 

commercial finite element program FlexPDE. The transient 

temperature, radial displacement, and thermal stresses distribution 

through the radial direction of the cylinder are plotted.  

 

Keywords—Finite element method; Thermal stresses; Green-

Lindsay theory; Functionally graded material. 

I. INTRODUCTION 

UNCTIONALLY graded material (FGM) is 

nonhomogeneous material classified by its graded 

structure. The thermal and mechanical properties of the 

FGM are spatially varying designed to optimize the 

performance under thermal and mechanical loading.  

FGM is designed to reduce the thermal stresses induced in 

the mechanical elements that are subjected to high 

temperatures. The FGM usually contains ceramic and metal 

constituents and the composition is varied as a function of the 

volume fractions of these constituents.  

Numerous theoretical studies investigated the thermoelastic 

behavior in different structural components made of FGMs. 

Fukui et al. [1] investigated the effect of the graded 

composition on the thermal stresses for thick – walled tubes of 

FGM under uniform thermal loading. Jin and Noda [2] 

investigated the transient thermal stress intensity factors of the 

functionally graded finite space with an internal crack. Obata 

and Noda [3] studied the thermal stresses in functionally 

graded hollow spheres and cylinders with uniformly heated 

boundaries by using a perturbation method. Zimmerman and 

Lutz [4] studied the thermal stresses inside a spherical body 

with uniformly heated boundary by assuming the Young’s 

modulus and the thermal expansion coefficients varying 

linearly in the radial direction. Ootao and Tanigawa [5] 
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obtained the 3-D thermal stresses inside a functionally graded 

rectangular plate subjected to a partial heating. Wang, et. al. 

[6] investigated the performance of a graded plate that has 

some nonparallel cracks due to dynamic thermal loading. 

Cheng and Batra [7] presented a closed form solution for the 

thermomechanical deformation of a functionally graded 

elliptic plate rigidly clamped at the edge. Tarn [8] obtained 

exact solutions for functionally graded anisotropic cylinders 

subjected to thermal and mechanical loads. Shabana and Noda 

[9] investigated the thermoelastoplastic stresses in a full 

functionally graded plate subjected to a thermal load.  

Fujimoto and Noda [10] discussed the growing of two cracks 

in a functionally graded plate subjected to thermal shock. 

Darabseh and Bani Salameh [11] used parabolic heat 

conduction model to investigate the transient thermal stresses 

in a functionally graded cylinder with different thermal 

boundary conditions.  

The objective of this paper is to study the dynamic 

thermoelastic response of FGM hollow circular cylinder 

considering the Green-Lindsay (GL) model. The thermal and 

mechanical properties of the FGM considered in this paper are 

assumed to be independent of temperature and varied in the 

radial direction using a power law variation as a function of 

the volume fractions of the material constituents. The coupled 

transient governing equations for the temperature and 

displacement fields in a FGM cylinder considering the GL 

theory are derived and solved. These equations are solved 

numerically by using Galerkin finite element method. 

II. GOVERNING EQUATIONS 

The transient heat conduction equation for FGM as deduced 

from the generalized thermoelastic theories [12] without heat 

generation is 
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where k  is the thermal conductivity, ρ  the density, Ec  the 

specific heat at constant strain, T the absolute temperature, 

ijε the strain tensor, λ and µ the Lame constants, α the 

thermal expansion coefficient, 0τ the thermal relaxation time 

for temperature gradient (heat flux), 2τ  the thermal retardation 

time for temperature gradient (heat flux), ∞T the initial 

temperature at which the cylinder is stress-free, and 
3τ the time 
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parameter that describes the effect of acceleration of strain on 

temperature. The comma denotes partial differentiation with 

respect to a variable, and a repeated subscript implies 

summation. The dot denotes differentiation with respect to 

time.  

For plane strain model with radially symmetric deformation, 

the only nonzero component of the displacement is the radial 

displacement component u. The two nonzero strain 

components are 

r/ur/urr =∂∂= φφεε          (2) 

The temperature is assumed to be symmetrical about the 

axis and independent of the axial coordinate z. The material 

parameters k , ρ , and 
Ec are functions of  the radial position r. 

Then, the heat conduction equation (1) is reduced to  
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where ( ) r/)ru(r/r/ur/urrkk ∂∂=+∂∂=+= 1φφεεε . 

The equation of motion for an isotropic FGM without body 

forces is given by: 
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The stress-strain relations for an isotropic FGM is given by  
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where 
ijσ  is the stress tensor,

1τ the time parameter that 

describes the effect of temperature gradient on displacement 

and stress, and ijδ  the Kronecker’s delta. 

Combining (2) and (5) yields the following stress-

displacement relations: 
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The Von Mises stress in the FGM cylinder based on the 

plane strain assumption is given by 

zzrrzzrrzzrr.M.V σσσσσσσσσσ φφφφφφ −−−++= 222     (7) 

The material parameters λ , µ , and α are functions of  the 

radial position r. Substituting (6) into (4) leads to the 

following equation of motion 
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When 021 == ττ , the generalized thermoelastic model is 

reduced to Lord-Shulman (LS) theory. When ,01 =τ and 

03 ττ = , the generalized thermoelastic model is reduced to the 

extended LS theory. When 032 == ττ , the generalized 

thermoelastic model is reduced to Green-Lindsay (GL) theory 

in which 001 ≥≥ ττ . When 03210 ==== ττττ , the 

generalized thermoelastic model is reduced to the classical 

linear dynamic theory of thermoelasticity 

III. MATERIAL PROPERTIES 

The FGM compose of two different materials gradually 

spatially varying. One material is usually ceramic to resist the 

extreme thermal loading from the high-temperature 

environment due to its low thermal conductivity. The other 

material is a metal alloy to maintain the rigidity of the structure 

and to prevent damage due to thermal stresses initiated by high 

temperature gradient in a very short period of time.  

For a composite material consists of two phases, the 

effective value of a material property (P) of the composite is 

computed based on the rule of mixtures by: 

ccmm VPVPP +=                                      (9) 

where Vm, and Vc are the volume fractions of the metal and 

ceramic, respectively. The volume fractions satisfy the 

relation 1=+ cm VV . The volume fraction of the metal Vm 

using the power law is defined as  
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where ir  is the inner radius of the cylinder, or is the outer 

radius of the cylinder, 
i,mV and

o,mV are the volume fractions of 

the metal constituent on the inner and outer surfaces, 

respectively, and n is the power law exponent that represents 

the graded distribution along the radial direction. The cylinder 

has a linear variation for n = 1. As the parameter n increases, 

the cylinder becomes rich in ceramic when 0=i,mV  and 

becomes rich in metal when 1=i,mV . Conversely, as n 

decreases, the cylinder becomes rich in metal when 0=i,mV  

and becomes rich in ceramic when 1=i,mV . 

The FGM cylinder considered in this paper is made of 

Zirconia (ZrO2) and Titanium (Ti-6AL-4V) with negligible 

porosity. The mechanical and thermal properties of these 

materials at room temperature are shown in Table I [10]. The 

material properties are assumed to be independent of 

temperature. 

The properties of FGM are calculated by substituting the 

volume fractions of the material constituents into the rule of 

mixtures (9). These properties are expressed as follows: 
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Lame’s constants are function of Young’s modulus, E and 

Poisson’s ratio, ν, as follows: 
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TABLE I 

 MATERIAL PROPERTIES OF TITANIUM AND ZIRCONIA AT ROOM TEMPERATURE 

 k, 

W/(mK) 

E, 

GPa 

α 

1/K 

ν ρ, 

kg/m
3
 

cE , 

J/(kgK) 

Ti-

6AL-

4V 

18.1 66.2 10.3 

× 

10
-6

 

0.321 4.42 

× 

10
3
 

808.3 

ZrO2 2.036 117.0 7.11 

× 

10
-6

 

0.333 5.6 

× 

10
3
 

615.6 

IV. MATHEMATICAL MODEL 

Initially, the temperature of the cylinder is assumed to be 

uniform and equal to the ambient temperature, ∞T . To 

represent a thermal shock, temperature at the inner surface of 

the cylinder is suddenly elevated to a new value, iT , while the 

outer surface temperature, 0T  is maintained at the reference 

temperature, ∞T . Therefore, the initial and boundary 

conditions for the thermal field are written as 
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The thermal stresses are free, 0=ijσ , at the initial 

temperature ∞T . The traction free boundary conditions at the 

inner and outer surfaces of the cylinder are assumed. 

Therefore, the initial and boundary conditions for the 

thermoelastic field are written as 
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The governing equations can be written in a more suitable 

form by using the following dimensionless variables 
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where 1δ represents the non-dimensional thermoelastic 

coupling constant.  

By using these dimensionless variables, the following non-

dimensional governing equations obtained 
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Then the dimensionless initial and boundary conditions are 

given by: 
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V.  NUMERICAL RESULTS AND DISCUSSION 

The FGM hollow cylinder considered in this paper has an 

outer radius of ro =150 mm and inner radius of ri =50 mm. The 

inner surface temperature is suddenly increased to Ti = 1800 K 

and then kept constant, while the outer surface temperature is 

maintained at the reference temperature, that is, To = 300 K. 

Also, the cylinder is assumed to be traction free at the inner 

and outer surfaces. The generalized coupled thermoelasticity 

based on the Green-Lindsay (GL) model is considered in this 

paper.  

When 032 == ττ , the generalized thermoelastic model is 

reduced to Green-Lindsay (GL) theory in which 001 ≥≥ ττ . 

The numerical values of the relaxation times (
01 ττ = ) are 

assumed to be 10-10 s. 

The solution of the heat conduction equation (20) and the 

equation of motion (21) are obtained by implementing the 

Galerkin finite element method. All the finite element 

calculations were done with a commercial finite element 

package FlexPDE. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:11, 2011

2350

 

 

Figures 1-5 show the variations at different times of the 

temperature, radial displacement, radial stress, hoop stress and 

axial stress, respectively, along the radial direction of the 

cylinder, for the case of 0=i,mV , 1=o,mV and n = 1. This 

means that the inner and outer surfaces of the cylinder are fully 

ceramic and fully metal, respectively. The axial and hoop 

stresses are compressive at the inner surface of the cylinder 

and are tensile at the outer surface as shown in Figs. 4-5. The 

compressive stress has a maximum value on the inner surface 

at the beginning of the heating process and then decreases 

suddenly with distance from the inner surface. As shown from 

the figures, the extreme stress gradients occur at the heated 

inner surface. The thermal stress distributions approach the 

steady state distribution as the time increases. 

 
Fig. 1 Transient distribution of the dimensionless temperature along 

the dimensionless radius for 0=i,mV , 1=o,mV and n = 1. 

 
Fig. 2 Transient distribution of the dimensionless radial displacement 

along the dimensionless radius for 0=i,mV , 1=o,mV and n = 1. 

 
Fig. 3 Transient distribution of the dimensionless radial stress along 

the dimensionless radius for 0=i,mV , 1=o,mV and n = 1. 

 
Fig. 4 Transient distribution of the dimensionless hoop stress along 

the dimensionless radius for 0=i,mV , 1=o,mV and n = 1. 

 
Fig. 5 Transient distribution of the dimensionless axial stress along 

the dimensionless radius for 0=i,mV , 1=o,mV and n = 1. 
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VI. CONCLUSION 

The dynamic thermoelastic response of a hollow thick 

cylinder made of functionally graded material subjected to 

thermal loading is investigated.  The generalized coupled 

thermoelasticity theory based on the Green-Lindsay model is 

considered. The material composition of the cylinder is graded 

through the radial direction of the cylinder. The thermal and 

mechanical properties of the FGM cylinder are obtained by 

using the rule of mixtures scheme, where a power law 

distribution is assumed for the volume fraction of the material 

constituents. 

The FG cylinder is assumed to be symmetrically loaded and 

one-dimensional transient analysis of isotropic linear 

thermoelastic FG cylinder under thermal loading is 

investigated. The heat conduction equation and the equation of 

motion are solved numerically by using the Galerkin finite 

element method. The transient temperature, radial 

displacement, radial stress, hoop stress and axial stress 

distributions through the radial direction of the cylinder are 

shown.  
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