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Abstract—The winding hot-spot temperature is one of the most 

critical parameters that affect the useful life of the power 
transformers.  The winding hot-spot temperature can be calculated as 
function of the top-oil temperature that can estimated by using the 
ambient temperature and transformer loading measured data. This 
paper proposes the estimation of the top-oil temperature by using a 
method based on Least Squares Support Vector Machines approach. 
The estimated top-oil temperature is compared with measured data of 
a power transformer in operation. The results are also compared with 
methods based on the IEEE Standard C57.91-1995/2000 and 
Artificial Neural Networks. It is shown that the Least Squares 
Support Vector Machines approach presents better performance than 
the methods based in the IEEE Standard C57.91-1995/2000 and 
artificial neural networks. 
 

Keywords—Artificial Neural Networks, Hot-spot Temperature, 
Least Squares Support Vector, Top-oil Temperature. 

 
 

I.  INTRODUCTION 
OWER transformers are high cost important equipment 
used in the transmission and distribution of the electric 

energy. Its right performance is important for the electric 
systems operation, since the loss of a critical unit can generate 
great impact in safety, reliability and cost of the electric 
energy supply. One of the main factors adopted for monitoring 
transformers operation conditions are its internal temperatures, 
specially the winding hot-spot temperature (HST) and the top-
oil temperature (TOT), which affect the isolation aging and, 
consequently, the useful life of the equipment. The thermal 
modeling is considered as one of most important aspects for 
monitoring of the power transformer operation conditions. 
Calculated values of TOT and HST can be to provide a 
diagnostic of the equipment conditions, and to indicate 
possible abnormalities, reducing the risk of defects, and 
avoiding the problems generated by the emergency operations. 
There are several methods used for calculation of the 
transformer internal temperatures.  
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According to Jardini [1], the method of the IEEE Standard 

C57.91-1995/2000 [2] is the more widely used, and it 
provides reliable results over transformers in operation. In the 
IEEE Standard C57.91- 1995/2000, the thermal behavior of 
the transformers is represented by means of a first order 
model. In the G Annex of the IEEE Standard C57.91-
1995/2000 [2] the TOT and HST are determined from the 
characteristic data of the transformer. In addition to this 
technique, the estimation of HST and TOT can be obtained by 
means of other methods [3], [4], [5]. For this purpose 
Artificial Neural Networks (ANN) can be used due to its 
learning capacity in the modeling complex and nonlinear 
relations [6]. ANN is submitted to a training process from real 
cases, and then handling appropriately new supplied data. The 
most popular ANN configuration is the multi-layer 
feedforward network  that have been applied successfully to 
solve some difficult and assorted problems including 
nonlinear system identification and control, financial market 
analysis, signal modeling, power load forecasting etc. Several 
ANN structures have been proposed by researchers that can be 
classified as static (SNN), dynamic temporal processing 
(TPNN) and recurrent (RNN). Recently, the Support Vector 
Machine (SVM) has been proposed as a new and promising 
technique for classification and regression of the linear and 
nonlinear systems. The Least Squares Support Vector Machines 
(LS-SVM) is a learning machine proposed in [7] 
corresponding a modified version of the SVM. Like the SVM, 
LS-SVM can be used in classification problems and 
approximation functions. Its formulation is based on a 
problem of binary classification that can be extended to 
approximation problems that involve more than two classes 
[8], [9]. The main characteristic of   LS-SVM is smallest 
computational cost in relation to the SVM, without loss in the 
quality of the solutions. The LS-SVM training is based on 
solving a system of linear equations. In this paper, the TOT 
will be estimated using the ANN and LS-SVM, and also it 
will be calculated by Annex G of the IEEE Standard C57.91-
1995/2000 [2]. 
 

II.  FUNDAMENTAL MODEL 
The methodology proposed in Annex G of the IEEE 

Standard C57.91-1995/2000 [2], based on Pierce’s researches 
[10], suggests an alternative method for the calculation of 
temperatures, and it depends on the transformers project or 
construction characteristics (winding constant time, oil time 
constant, oil volume, weight of the tank, core and winding), 
and also it depends of the ambient temperature (TA) and of 
the transformer loading. The errors, in the calculation of TOT 
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and consequently in the calculation of HST, can be caused by 
the poor data, because in practice, many variables required for 
the calculation of these temperatures are not measured: the 
wind speed and direction, the solar radiation, the 
rain/evaporative cooling, cloud clover, humidity, transformer 
internal oil flows and the state and the ventilation type and 
also the formulation of thermal model of the transformer. 
Another source of error in the estimate of the top-oil 
temperature comes from erroneous data, for example, the 
estimate of the top-oil temperature is dependent of TA 
measurements, and Tylavsky [11] point out that in practice, 
the average TA is evaluated or merely measured at places that 
do not correspond to actual operation condition of the 
transformer. Depending on the place chosen for measuring the 
ambient temperature, errors up to 10 ºC are found. The 
assumptions considered in this model also may   produce 
errors in the determination of the transformers internal 
temperatures, and therefore becomes necessary to employ 
more precise methods. For this reason, the objective of this 
paper is to use alternative methods (ANN and LS-SVM) for 
obtaining more precise values of TOT, and consequently of 
HST. The estimated values are then compared with measured 
temperature for an actual transformer. 
 
 

III.   ARTIFICIAL NEURAL NETWORK 
ANN has been established as a useful tool for regression 

problems, mainly for pattern recognitions and function 
approximations. An important characteristic of the ANN is 
that is not necessary to obtain a complete knowledge about the 
relations among the variables involved in the problem. 

The static neural network (SNN) is implemented as one 
nonlinear function of the following form: 
  
 ( )ˆk snn ky f x=  (1) 
 

The temporal neural networks are classified in two basic 
types: non recurrent neural network (TPNN) and recurrent 
neural network (RNN). The inputs and outputs relationships 
of TPNN and RNN can be written as nonlinear functions 
given by (2) and (3), respectively: 
  
 ( )1 1 2ˆ , , ,...,k rnn k k k k dy f x x x x+ − − −=  (2) 
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where ˆky  = kth training output, kx  = kth training input 
vector, d and q are the number of input and output temporal 
delay  lines. 
 
 

IV.  LEAST SQUARES SUPPORT VECTOR MACHINES 
Least Squares Support Vector Machines (LS-SVM) is a 

method used for solving non-linear classification or modeling 

problems and has been applied to classification, function 
estimation and nonlinear system optimal control problems. 
The basis of the method is the mapping of all available data 
points to a feature space, thus transforming the problem into a 
simple linear problem. LS- SVM expresses the training in 
terms of solving a linear set of equations. 
 

A. Estimation Function 

Given a training set of N points { } 1
, N

K K K
x y

=
, with input 

data n
Kx R∈ , and output data Ky R∈ , the LS-SVM model 

for estimation function has the following representation, 
  

 ( ) ( )
1

ˆ ,
N

K K
K

y x K x x bα
=

= +∑  (4) 

 
where iα  are positive real constants and b  is a real constant 
and comprise the solution to the linear system. K (.,.) is called 
the kernel function that is used for the realization of an 
implicit mapping of the input data into a high-dimension 
feature space. In this paper the Radial Basis Function (RBF) 
kernel has been chosen since it tends to give good 
performance under general smoothness assumptions. The RBF 
function Kernel is given by: 
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x x
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                    (5) 

 
 
 where σ  is a parameter specifying the width of the kernel.  

In order to make an LS-SVM model with the RBF Kernel, 
it is necessary to calculate the γ  regularization parameter in 
the algorithm, determining the trade-off between the fitting 
error minimization and smoothness of the estimated function, 
and also to calculate the σ   kernel function parameter. 

The temporal LS-SVM model is: 
 
 ( )1 1 2ˆ , , ,...k lssvm k k k k dy f x x x x+ − − −=    (6) 
 
 

The recurrent LS-SVM model is:  
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where the outputs (estimated values) are reinserted in the 
input vector. 
 

V.  SIMULATION RESULTS 
This section presents the estimation results of TOT using 

ANN, LS-SVM and the IEEE method. It is also presented the 
effect of the TOT in the calculation of HST.  
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In order to implement the methods it was used the 
experimental data set illustrated in Fig. 1, and the transformer 
data presented in the Table I.  

The experimental data illustrated in Fig. 1 corresponds to 
the measured values for thirty days operation of the 
transformer. 

 
TABLE I 

CHARACTERISTICS OF THE TRANSFORMER 
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Fig. 1 Experimental Data: Load pu, Ambient Temperature ºC, Top-
oil Temperature ºC, Hot-spot Temperature ºC 

 
 

A. TOT Calculation using G Annex of the IEEE Standard 
In Fig. 2, it is illustrated estimated values of TOT calculated 

from the IEEE model with the actual values of TOT and the 
testing errors (that is defined as the difference between the 
estimated and actual values of TOT). 

The effect of TOT in the calculation of HST is analyzed 
below. HST will be calculated of two way; firstly will be used 
the equations of the G Annex and the measured TOT (Fig. 1), 
and next the equations of the G Annex and the calculated TOT 
(G Annex).  
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Fig. 2 Actual and estimated values of TOT using IEEE model with 

prediction error 
 
 

Fig. 3 shows the estimated HST using the measured value 
of TOT. 
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Fig. 3 Actual and estimated HST with prediction error (measured   

TOT) 
 

Fig. 4 shows the estimated HST obtained from the 
calculated value of TOT. 

Table II presents the obtained results of the MSE (mean 
square error) and Emax (maximum difference between 
estimated and measured temperatures in Celsius degrees), 
showing that a more accurate value of TOT results in better 
estimate of HST. 
 

B.  TOT Calculation using ANN 
In this section, it is used a two layers feedforward structure 

for the ANN, using the ambient temperature and the loading 
as the input   while TOT is considered as output.   The 
hyperbolic tangent function   is used as activation function for 
both layers.   

Nameplate Rating 30/40 MVA 
Vprimary/Vsecondary 138/13.8 kV 

Iron Losses  17.8 kW 
Cooper Losses 244.9 kW 

Type of Cooling ONAN/ONAF 
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Fig. 4 Actual and estimated HST with prediction error (calculated   

TOT) 
 

TABLE II 
EFFECT OF TOT IN HST 

TOT HST (MSE) HST (EMAX) 
Calculated 5.75 -14.7 
Measured 2.37 -6.1 

 
The algorithm used for ANN training is the Levenberg- 

Marquardt (LM), considering 100 epochs and assuming a 
MSE goal as 0.001. The Levenberg-Marquardt algorithm was 
chosen since it takes less CPU time and it is more stable in all 
the training tasks when compared to other algorithms. The 
number of hidden nodes (nh) is varied from 2 to 20, choosing 
the result that provides better training and testing errors. To 
eliminate the random effects of arbitrary initialization of 
network weights, ten training process were executed, and 
therefore the error performance was averaged over ten runs 
for a given network. The data was normalized into the range 
of    [-1, +1]. The experimental data were separated in two 
groups, first 40% data samples for model building/training 
and the remaining 60% samples for testing. The TOT was 
estimated using routines in the Neural Toolbox of Matlab 
[12]. The best results for TOT obtained from the ANN are 
summarized in Table III. 
 

TABLE III 
MSE AND EMAX OF THE TOT FOR THE ANN 

TOT MSE EMAX 
SNN (nh = 2) 6.62 -6.6 
SNN (nh = 3) 6.60 6.9 
SNN (nh = 4) 5.34 6.4 
SNN (nh = 5) 5.24 6.1 
SNN (nh = 6) 5.62 -6.5 
TPNN (d = 1, nh = 5) 4.91 6.5 
TPNN (d = 2, nh = 4) 4.41 6.3 
TPNN (d = 3, nh = 3) 3.87 -7.8 
RNN (d = q = 1, nh = 5) 2.76 -4.7 
RNN (d = q = 2, nh = 2) 3.58 -5.9 
RNN (d = q = 3, nh = 3) 3.64 -5.8 
RNN (d = q = 4, nh = 4) 2.76 -4.7 

For SNN it was observed that better training and testing 
performance with 5 hidden nodes, obtaining MSE = 5.24 and 
Emax = 6.1 ºC. For TPNN it was compared the results by 
using the numbers of tapped delay lines as d = 1, 2, 3. It was 
verified that the MSE error decreases reasonably compared to 
that obtained by SNN. It was observed better training and 
testing performance with 3 hidden nodes and d = 3, obtaining 
MSE = 3.87 and Emax = - 7.8 ºC. For RNN the results was 
also compared by using the numbers of tapped delay lines as   
d = q = 1, 2, 3, 4, and it was observed that better training and 
testing performance was obtained with d = q. The results 
indicate that the better training and testing performance was 
obtained with 5 hidden nodes and d = q = 1, resulting in    
MSE = 2.76 and Emax = - 4.7 ºC.  

Table IV presents the results of the implemented ANN, 
showing that RNN gives better results than SNN and TPNN.  

 
TABLE IV 

COMPARISON BETWEEN THE MSE AND EMAX OF THE BETTER RESULTS FOR 
THE IMPLEMENTED ANN 

ANN MSE EMAX 
SNN (nh = 5)  5.24 6.1 
TPNN (d = 3, nh = 3)  3.87 -7.8 
RNN (d = q = 1, nh = 5) 2.76 -4.7 

 
 

In the Fig. 5 shows the performance of the RNN with 5 
hidden nodes, d = q = 1 and the prediction error. 
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Fig. 5 Actual and estimated TOT with prediction error using RNN 

 
 

C. TOT Calculation using LS-SVM 
The implementation of LS-SVM is performed by routines 

of the LS-SVMlab Toolbox version 1.5 [13]. In this toolbox is 
used an optimization algorithm for tuning the hyperparameters 
σ  and γ   of the model with respect to the given performance 
measure. Using the default values the optimization algorithm 
was shown efficient but, relatively slow. Then, the design of 
LS- SVM model of the transformer consists of the following 
steps: 
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• The experimental data were separate in two groups, 
first 40% samples will be used for model building/training 
and remaining 60% samples will be reserved for testing. 

• The regularization parameter γ  and the parameter σ  
specifying the width of the kernel are determined using 96 
points (24 hours of operation of the transformer), reducing the 
computational time and avoiding the overfitting of the 
network. In the simulations was noticed, that a larger number 
of points in the determination of the hiperparameters results 
in overfitting of the network, and besides the optimization 
algorithm used is slow.  

• The LS-SVM model is trained maintaining the 
hiperparameters γ  and σ , determined previously. For 
training it was used 1152 points, corresponding to 288 hours 
of the transformer operation. The LS-SVM recurrent is 
trained as one feedforward network as follows: 
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To calculate the p-step ahead prediction, it is used: 
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and gradually has to include more previous estimates for the 
output ŷ , until arrives at the p-th sample prediction ˆk py + . In 
fact the LS-SVM is used as a recurrent model to generate the 
prediction. 

• The LS- SVM model can be retrained using the same 
data set, but with the new estimated outputs shifted through 
the input vector and old inputs are discarded. The retrained 
model is simulated using one validation algorithm until small 
testing error is reached. 
 

The results of the performance of the LS-SVM are 
summarized in Table V. 
 

TABLE V 
MSE AND EMAX OF THE TOT BY LS-SVM 
LS-SVM MSE EMAX 

Temporal (d = 1, q = 0) 6.06 8.9 
Temporal (d = 2, q = 0) 4.89 -9.7 
Recurrent (d = 1, q = 1) 0.07 -1.4 
Recurrent (d = 2, q = 2) 0.06 -1.1 
Recurrent (d = 3, q = 3) 0.10 1.5 
Recurrent (d = 4, q = 4) 0.08 1.3 
Recurrent (d = 5, q = 5) 0.63 3.7 

 
It is observed that better testing performance is obtained 

with d = 2 and q = 2.  
Fig. 6 shows the performed by the recurrent LS-SVM. 
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Fig. 6 Actual and estimated TOT with prediction error using 

recurrent LS-SVM 
 

D. Comments on the Results 
Better results of the TOT estimation for each implemented 

method is summarized in Table VI with tabulated the 
performance values of MSE and Emax. 

 
TABLE VI 

MSE AND EMAX OF THE MODELS   
METHOD MSE EMAX 

G ANNEX 7.93 -13.0 
SNN (nh = 5)  5.24 6.1 
TPNN (d = 3, nh = 3)  3.87 -7.8 
RNN (d = q = 1, nh = 5) 2.76 -4.7 
Recurrent LS-SVM 0.06 -1.1 

 
It is important to remark that Recurrent LS- SVM 

outperforms the other four models considering MSE and 
Emax. It is also observed that the result achieved with the 
recurrent LS- SVM was done with one only training of the 
network. In the following, it will be shown in the Fig. 7 the 
calculated HST with the better result of the TOT estimated by 
recurrent LS- SVM. 
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Fig. 7 Actual and estimated HST with prediction error using 

estimated TOT by recurrent LS-SVM 
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In the Table VII it is summarized the performance values 
(MSE and Emax) of HST, using the estimated TOT by 
recurrent LS-SVM and the calculated TOT by G Annex. 

 
TABLE VII 

CALCULATION OF HST 
Calculated TOT HST 

 (MSE) 
HST 

 (EMAX) 
G Annex G 5.75 -14.7 

Recurrent LS-SVM 2.61 -6.6 
 

With the results shown in the Table VII, it is observed the 
increase of the MSE, when the calculated TOT is used for 
estimating HST. Therefore, a more precise estimate of the 
TOT results in a more precise estimate of the HST. 
Comparing errors obtained in the estimative of HST, using 
recurrent  LS-SVM with the errors tabulated in table II (MSE 
= 2.37 and Emax = - 6.1 ºC), it is verified that on-line 
monitoring of TOT can be substituted by Recurrent LS-SVM, 
in a straightforward manner and maintaining the same 
accuracy in estimating HST.  

 
VI.  CONCLUSION 

The IEEE model, ANN and recurrent LS-SVM are used to 
estimate TOT of power transformers. Of the five models, the 
recurrent LS-SVM provided the best performance in terms the 
MSE and Emax. The superior results obtained with LS-SVM 
justify its application in the estimate of TOT. It is also 
recognized that LS-SVM holds a high generalization 
capability in relation to multilayer feedforward network such 
as multilayer perceptron trained com backpropagation or other 
more efficient variation of this algorithm. This is due to the 
fact that the LS-SVM network is more robust and efficient in 
identification of complex dynamic plants [7]. Since the         
LS-SVM training is equivalent to solving a set of linear 
equations, the solution of the LS-SVM is always unique and 
globally optimal [7]. For the implementation of the networks 
it was used the Neural Toolbox [12] and LS-SVMlab Toolbox 
version 1.5 [13], both of MATLAB, and it was verified that 
with the default parameters of the respective algorithms the 
implementation of the LS-VM model is easier than the ANN 
model. ANN involves more experience for modeling and 
training of the network, mainly for the definition of the 
number of hidden layers. Therefore, recurrent LS-SVM can be 
used as an important alternative to ANN and IEEE method in 
the estimate of the TOT. The results obtained in this work 
point out that Recurrent LS-SVM Model may be used to 
replace the on-line measuring of TOT, and to constitute a tool 
for on-line diagnosis of power transformers. 
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