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Abstract—The study of piezoelectric material in the past was in 

T-Domain form; however, no one has studied piezoelectric material 

in the S-Domain form. This paper will present the piezoelectric 

material in the transfer function or S-Domain model. S-Domain is a 

well known mathematical model, used for analyzing the stability of 

the material and determining the stability limits. By using S-Domain 

in testing stability of piezoelectric material, it will provide a new tool 

for the scientific world to study this material in various forms.  
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I. INTRODUCTION 

IEZOELECTRIC materials are widely used in 

electromechanical sensors and actuators, such as telephone 

handsets, transmitter and receiver insets, robotic sensors, 

ultrasonic transducers for medical imaging and nondestructive 

evaluation NDE, as well as transducers used in the upper MHz 

range. [1]  

As mentioned previously, the poling process is the critical 

element in being able to utilize the piezoelectric effect in a 

ferroelectric ceramic. Without poling, the ceramic is inactive, 

even though each one of the individual crystallites is 

piezoelectric in itself. With poling, however, the ceramic 

becomes extremely useful, provided that it is not heated above 

its Curie temperature (TC). If overheated, it loses its 

polarization and all of the orientation of the polarization 

produced by the poling process. Both two effects are operative 

in piezoelectric crystals in general, and particularly in 

ferroelectric ceramics. The direct effect (designated as a 

generator) is identified with the phenomenon where electrical 

charge (polarization) is generated from a mechanical stress, 

and the converse effect (designated as a motor) is associated 

with mechanical movement generated by the application of an 

electrical field. Both of these effects are illustrated. [8] 

Tiersten [6] presents Hamilton principle for linear 

piezoelectric media, in which Lagrangian can create a 

dynamic equation of piezoelectric continuum. Afterwards 

Reinhard Lerch [3], Allik, H. and their group [7], studied 

Piezoelectric by Finite Element Method, using data derived 

from T-Domain model. Vincent and his research team 

presented a General Finite Element Formulation for 

Piezoelectrically Coupled Systems. Piezoelectric finite 

elements were developed based on Mindlin shell elements and 
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integrated in the FE package Samcef. Volume elements have 

also been derived and integrated. [5] Vincent and his team 

used state space model for attaining analytical dynamic 

equations of the system. J Ajitsaria and his research team [9] 

focused on an analytical approach for voltage and power 

generation, based on Euler-Bernoulli beam theory and 

Timoshenko beam equations, which compared with two 

previously described models in literature; Electrical equivalent 

circuit and Energy method, the transfer function between input 

acceleration and output displacement can be obtained in the 

Laplace plane. 

So, this paper will present the piezoelectric material in the 

transfer function or S-Domain model, by utilizing a model of 

Piezoelectric Material in state space model. In the end, the S-

Domain model will produce characteristic polynomial and 

output/input ratio of piezoelectric material. 

II. PIEZOELECTRIC EQUATION 

A. Piezoelectricity Beam theory 

Piezoelectricity in Ferroelectric Ceramics, as mentioned 

previously, has the poling process as the critical element in 

being able to utilize piezoelectric effect in a ferroelectric 

ceramic. Without poling, the ceramic is inactive, even though 

each one of the individual crystallites is piezoelectric itself. 

With poling, however, the ceramic becomes extremely useful, 

provided that it is not heated above its Curie temperature (TC), 

where it loses its polarization and all of the orientation of the 

polarization produced by the poling process. [8]  

Two effects are operative in piezoelectric crystals, in 

general, and in ferroelectric ceramics, in particular. The direct 

effect (designated as a generator) is identified with the 

phenomenon where an electrical charge (polarization) is 

generated from a mechanical stress and a converse effect 

(designated as a motor) is associated with a mechanical 

movement generated by the application of an electrical field. 

Both of these effects are illustrated in Fig. 1 The easy grasp of 

the principles. [8] In longitudinal effect, deformations are 

produced parallel to the electric axis as in Fig. 1(a) and in 

transverse effect, deformations occur at right angles to the 

electric axis as in 1(b). [10] 

The static analysis of a piezoelectric cantilever sensor is 

typically performed by the use of calculations employed for 

deflection of a thermal bimorph. The principle is based on the 

strain compatibility between three cantilever beams joined 

along the bending axis. Due to forces applied by one or all of 

the layers, deflection of the three-layer structure is derived 

from a static equilibrium state. The structure considered is a 
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(a)           (b) 

 
Fig. 1 Piezoelectric effects: (a) longitudinal effects; (b) transverse 

effects [10] 

 

 

 

Fig. 2 Principles of producing flexion on a lever, using the transverse 

effect [10] 

 

piezoelectric heterogeneous bimorph, where two piezoelectric 

layers are bonded on both sides of a pure

brass. Fig. 2 shows a basic geometry of the three

morph. A brass with a pure elasticity is sandwiched between 

the upper and lower layers of the PZT material. The modeling 

of this structure neglects shear effects and igno

stress-induced curvature. In addition, the beam thickness is 

much less than the piezoelectric-induced curvature, so the 

second order effects such as electrostriction can be ignored.

[9] 

Moreover, the radius of curvature for all the layers is 

assumed to be approximately the same 

structure, because of the assumption that the thickness is much 

less than the overall beam curvature. The total strain at the 

surface of each layer is the sum of the strains caused by the 

piezoelectric effect, the axial force, and the bending. It is 

noted that the sign of the surface strain depends on the 

bending of either the top or bottom surface of the layer. 

This theory is the foundation of the equation

section, which will provide the basis to the Space State Model.

 

 

effects; (b) transverse 

 

Principles of producing flexion on a lever, using the transverse 

piezoelectric heterogeneous bimorph, where two piezoelectric 

layers are bonded on both sides of a purely elastic layer, i.e., 

brass. Fig. 2 shows a basic geometry of the three-layer multi-

morph. A brass with a pure elasticity is sandwiched between 

the upper and lower layers of the PZT material. The modeling 

of this structure neglects shear effects and ignores residual 

induced curvature. In addition, the beam thickness is 

induced curvature, so the 

second order effects such as electrostriction can be ignored. 

Moreover, the radius of curvature for all the layers is 

the same as those of the 

structure, because of the assumption that the thickness is much 

The total strain at the 

surface of each layer is the sum of the strains caused by the 

fect, the axial force, and the bending. It is 

noted that the sign of the surface strain depends on the 

or bottom surface of the layer. [9] 

equations under the next 

he basis to the Space State Model. 

B. Basic Piezoelectric Equation

The matrix equations in (1)

piezoelectric, which relate mechanical and electrical quantities 

in piezoelectric media [1]-[4]. It express

between the stress, strain, electric field, and electric 

displacement field in a stress-

 

{ } { }ET c S e E = − 

{ } [ ]{D e S E= +

 

Where  

{ } { }11 22 33 23 13 12, , , , ,T T T T T T T=

 

{ } { 11 22 33 23 13 12, , , 2 ,2 ,2S S S S S S S=

  

{ } { }1 2 3E E E E=  is  the electric field, 

 

{ } { }1 2 3D D D D=  is the electric displacement, 

 
E

c    is the elasticity matrix for constant electric, 

 
Sε    is the dielectric matrix for constant mechanical strain, 

 

[ ]e  is the piezoelectric coupling coefficients matrix. [5] 

  

The electric field { }E  is related to the electrical potential 

by : 

 

{ }E u u uφ
 ∂ ∂ ∂

= −∇ = − + + 
 

 

And the mechanical strain 

displacement { }u  by: 

 

{ } [ ]{ }, ,x y zS B u=

 

Where [ ]B  is the Cartesian coordin

 

[ ]

0 0

0 0

0

x

B
y x

z x

∂ ∂ 
 
 
 

=  
∂ ∂ ∂ ∂ 

 
 
∂ ∂ ∂ ∂  

 

 

 

Piezoelectric Equation 

The matrix equations in (1)-(2) are the basis of 

tric, which relate mechanical and electrical quantities 

[4]. It expresses the relationship 

ain, electric field, and electric 

-charge form. 

} [ ] { }t
T c S e E= −         (1) 

 

} { }SD e S Eε = +          (2) 

11 22 33 23 13 12, , , , ,
t
  is the stress vector, 

}11 22 33 23 13 12, , , 2 ,2 ,2
t

S S S S S S S  is the deformation vector, 

is  the electric field,  

is the electric displacement,  

is the elasticity matrix for constant electric,  

electric matrix for constant mechanical strain,  

the piezoelectric coupling coefficients matrix. [5]  

is related to the electrical potential φ

x y zE u u u
x y z

φ φ φ ∂ ∂ ∂
= −∇ = − + + 

∂ ∂ ∂ 
   (3)  

nd the mechanical strain { }S  to the mechanical 

, ,              (4) 

is the Cartesian coordinates 

0 0

0 0

0 0

0

0

0

x

y

z

y x

z y

z x

∂ ∂ 
 ∂ ∂ 
 ∂ ∂
 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂  

       (5) 
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The elastic behavior of piezoelectric media is governed by  

Newton’s law. 

 

{ }
2

2

yx z
TT T u

DIV T u
x y z t

ρ ρ
∂∂ ∂ ∂

= + + = =
∂ ∂ ∂ ∂

ɺɺ      (6) 

 

Where 

 

 DIV  is divergence of a dyadic. 

 

ρ  is density of the piezoelectric medium. 
 

Whereas the electric behavior is described by Maxwell’s 

Equation considering that piezoelectric media are insulating 

(no free volume charge). 

 

{ } 0DIV D =                (7) 

 

 Equations (1)-(7) constitute a complete set of differential 

equations which can be solved with appropriate mechanical 

(displacements and forces) and electrical (potential and 

charge) boundary conditions. [1] 

 The dynamic equations of a piezoelectric continuum can be 

derived from the Hamilton principle, in which the Lagrangian 

and the virtual work are properly adapted to include the 

electrical contributions, as well as the mechanical ones. The 

potential energy density of a piezoelectric material includes 

contributions from the strain energy and from the electrostatic 

energy. [5], [6] 

 

{ } { } { } { }1

2

T T
H S T E D = −          (8) 

 

Similarly, the virtual work density  

 

{ } { }t
W u Fδ δ δφσ= −            (9) 

 

Where { }F  is the external force and σ  is the electric 

charge. From (8), (9), into the Hamilton principle. [7] 

 

{ } { } { } { }

{ } [ ] { } { } [ ]{ }

{ } { } { } { }

{ } { }

{ } { }
1

2

0

t t E

tt t

V

t tS

b

t

S
S

t

c
S

u u S c S

S e E E e S dV

E E u P

u P dS

u P dS Q

ρ δ δ

δ δ

δ ε δ

δ

δ δφσ δφ

  −   
 = − + +
 
  + +   

+

+ − −

∫

∫

∫

ɺɺ

 (10) 

 

 In the finite element formulation, the displacement field  

{ }u  and the electric potential  φ  over an element are related 

to the corresponding node values { }iu  and { }iφ  by the mean 

of the shape functions { }uN , { }Nφ . 

 

{ } [ ]{ }u iu N u=             (11) 

 

          { }iNφφ φ =               (12) 

 

And therefore, the strain field { }S  and the electric field  

{ }E  are related to the nodal displacements and potential by 

the shape functions derivatives [ ]uB  and Bφ    defined by: 

 

{ } [ ]{ } [ ][ ]{ } [ ]{ }u i u iS D u D N u B u= = =    (13) 

 

{ } { } { }i iE N Bφ φφ φ φ   = −∇ = −∇ = −       (14) 

 

Substituting expressions (11) – (14), into the variation 

principle (10), yields: 

 

{ } [ ] [ ] { }

{ } [ ] [ ] { }

{ } [ ] [ ] { }

{ } [ ] [ ] { }

{ } { }

{ } [ ] { }

{ } [ ] { } { } [ ] { }

{ } { }
1

2

0
t t

i u u
V

t t E
i u u i

V

t t

i u i
V

tt t

i u i
V

tt S
i i

V

t t

i u b
V

t t t t

i u S i u c
S

t tt t

i i
S

u N N dV u

u B c B dV u

u B e B dV

B e B dV u

B B dV

u N P dV

u N P dS u N P

N dS N Q

φ

φ

φ φ

φ φ

δ ρ

δ

δ φ

δφ

δφ ε φ

δ

δ δ

δφ σ δφ

= −

 −  

 −  

 −  

    +     

+

+ +

   − −   

∫

∫

∫

∫

∫

∫

∫

∫

ɺɺ

 (15) 

   

Which must be verified for any arbitrary variation of the 

displacements { }iuδ  and electrical potential { }iδφ  

compatible with the essential boundary conditions. For an 

element, (15), can be written under the form: 

 

[ ]{ } [ ]{ } { } { }i uu i u i iM u K u K fφ φ + + = ɺɺ    (16) 

 

{ } { } { }u i i iK u K gφ φφ φ   + =          (17) 

 

With 

[ ] [ ] [ ]t

u u
V

M N N dVρ= ∫         (18) 

 

[ ] [ ] [ ]t E

uu u u
V

K B c B dV =  ∫        (19) 

 

[ ] [ ]t t

u u
V

K B e B dVφ φ   =   ∫        (20) 

 
t S

V
K B B dVφφ φ φε      = −      ∫       (21) 
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t

u uK Kφ φ   =                (22) 

 

The matrixes above are element mass, stiffness, 

piezoelectric coupling and capacitance matrix respectively. 

The models below showed the external mechanical force and 

electric charge vectors.  

 

{ } [ ] { } [ ] { } [ ] { }
1

t t t

i u b u S u c
V S

f N P dV N P dS N P= + +∫ ∫   (23) 

 

{ }
2

t t

i
S

g N dS N Qφ φσ   = −   ∫           (24) 

 

Each element k  of the mesh is connected to its 

neighbouring elements at the global nodes and the 

displacement is continuous from one element to the next. 

Based on that formulation, piezoelectric finite elements of 

type multilayered Mindlin shell and volume has been derived. 

For shell elements, it is assumed that the electric field and 

displacement are uniform across the thickness and aligned on 

the normal to the mid-plane. The electrical degrees of freedom 

are the voltages 
kφ  across the piezoelectric layers; it is 

assumed that the voltage is constant over each element (this 

implies that the finite element mesh follows the shape of the 

electrodes). One electrical degree of freedom of type voltage 

per piezoelectric layer is defined. The assembly takes into 

account the equipotentiality condition of the electrodes; this 

reduces the number of electric variables to the number of 

electrodes. For volume elements, one additional degree of 

freedom of type electric potential is defined in each node of 

the piezoelectric volume element. [5]  

C. State Space Model 

The idea behind modeling structures embedding 

piezoelectric actuators and sensors using finite elements is 

indeed to gather the necessary information to design a good 

control strategy. It is therefore necessary to interface the 

structural analysis software (finite element package) with a 

control design software. The assembled system of equations 

can be complemented with a damping term [ ]{ }C Uɺ  to obtain 

the full equation of dynamics and the sensor equation: 

 

{ } [ ]{ } [ ]{ } [ ]{ } { }( )0 i

UU UM U C U K U K Φ = + + + Φ 
ɺɺ ɺ  (25) 

 

{ } { } [ ]{ }(0)

UG K U KΦ ΦΦ = + Φ           (26) 

 

Where  

 

{ }U   represents the mechanical degree of freedom,  

 

{ }Φ   the electric potential degree of freedom,  

 

[ ]M   the inertial matrix,  

 

[ ]C    the damping matrix,  

 

[ ]UUK  the mechanical stiffness matrix,  

 

[ ] [ ]U UK K
Τ

Φ Φ=  the electromechanical coupling matrix,  

 

[ ]KΦΦ  is  the electric capacitance matrix.  

 

The voltage actuation and charge sensing are considered. 

Actuation is done by imposing a voltage { }Φ  on the actuators 

and sensing by imposing a zero voltage { } { }( )0Φ =  and 

measuring the electric charges { }G appearing on the sensors. 

Using a truncated modal decomposition ( n  decoupled modes) 

{ } [ ]{ }( )U Z x t= , where [ ]Z  represents the n  modal shapes 

and { }( )x t  the n  modal amplitudes, (20) and (21), become: 

 

{ } [ ][ ]{ } [ ][ ]{ }
[ ][ ]{ } { }( )

0

i

UU U

M Z x C Z x

K Z x K φ

= +

 + + Φ 

ɺɺ ɺ

     (27) 

 

{ } [ ]{ } { }(0)
t

UG K Z x KφφΦ   = + Φ         (28) 

 

From the property of  [ ] [ ]t
Z Z unitvactor=  will be: 

 

[ ] [ ][ ] ( )
t

kZ M Z diag µ=          (29) 

 

[ ] [ ][ ] 2
( )

t

k kZ K Z diag µ ω=         (30) 

 

[ ] [ ][ ] (2 )
t

k k kZ C Z diag ξ µ ω=        (31) 

 

The modal frequencies:  

 

[ ] ( )kdiag ωΩ =             (32) 

 

The modal masses:     

 

[ ] ( )kdiagµ µ=             (33) 

 

The modal classical damping ratios of the considered 

structure:     

[ ] ( )kdiagξ ξ=             (34) 

 

So, multiply [ ]tZ to both sides of (27), and use the quality of  

(29)-(34), will make : 

 

{ } { }x x= Ιɺ ɺ                    (35) 
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{ } [ ][ ]{ } { } [ ] { }2 1 ( )2
t i

Ux x x Z Kξ µ −
Φ     = − Ω − Ω − Φ     ɺɺ ɺ   (36) 

 

{ } [ ] [ ]{ }(0)
t

UG K Z x KΦ ΦΦ = + Φ            (37) 

 

Equations (35-37) can reformulated as (38-39) 

 

 

{ }1 ( )2

00

2
t i

U

x x

Z Kx x µξ −
Φ

Ι       
= − Φ      −Ω − Ω       

ɺ

ɺɺ ɺ
      (38) 

 

{ } [ ]{ }(0)
0

t

U

x
G K Z K

x
Φ ΦΦ

  = + Φ    ɺ
         (39) 

 

Which is in the same format as : 

 

x Ax Bu= +ɺ              (40) 

 

y Dx Hu= +              (41) 

 

Where  

[ ]tZ  is the modal shapes, [ ](0)

UK ZΦ    is the modal electric 

charge on the sensor, [ ] ( )t i

UZ K Φ    is the modal electric charge 

on the actuators, transposed (by reciprocity), representing the 

participation factor of the actuators to each mode,  are 

obtained from a dynamic finite element analysis. 

III. TRANSFER FUNCTION MODEL 

From (40) - (41) is converted to S-Domain will be: 

 

( ) ( ) ( )s s A s B sΧ = Χ + Φ          (42) 

 

( ) ( ) ( )s D s H sϒ = Χ + Φ          (43) 

 

  When set (42)-(43) to the new form: 

  

( ) ( ) ( )sI A s B s− Χ = Φ           (44) 

 
1

( ) ( ) ( )s sI A B s
−Χ = − Φ          (45) 

 

1( )
( )

( )

s
D sI A B H

s

−ϒ
= − +

Φ
        (46) 

 

where. 

2

0

2
A

ξ
Ι 

=  −Ω − Ω 
           (47) 

 

1 ( )

0
t i

U

B
Z Kµ −

Φ

 
=  

 
           (48) 

 

[ ]H KΦΦ=               (49) 

 

(0)
0

t

UD K ZΦ
 =               (50) 

 

I Unit matrix=                 

 

Of these values could be determined. Characteristic 

polynomial is. 

 

( ) 2

2
( ) 2

2

s
P s sI A s s

s
ξ

ξ
Ι

= − = = + Ω + Ω Ι
−Ω + Ω

   (51) 

 

Characteristic polynomial:  

 
2 2

2s sξ+ Ω + Ω Ι             (52) 

 

From (46) - (52) can be found in the following output/input  

ratio  

 

1( )
( )

( )

G s
D s A B H

s

−= Ι − +
Φ

         (53) 

 

[ ] [ ] [ ] (0) ( )2 2 1

2 2

2

2

( )

( )

t it
U UK s K s K K Z Z K

s s

G s

s

ξ µ

ξ

−
ΦΦ ΦΦ ΦΦ Φ Φ

 + Ω + Ω − Ι 
 

+ Ω +Ω Ι
=

Φ
  (54) 

IV. CONCLUSION 

Model (52) is the characteristic polynomial and model (54) 

is the output/input ratio. However, these values are in the form 

of a matrix. We can also make the calculation easier by using 

Cartesian coordinates to estimate the value in form of one-

dimensional system.  

ACKNOWLEDGMENT 

Authors would like to give special thanks for the support 

received throughout this research, including suggestions and 

guidance provided by the faculty of Electrical Engineering 

Department, and the research and development fund from 

Suranaree University of Technology. 

REFERENCES   

[1] Reinhard Lerch, “Simulation of Piezoelectric Devices by Two- and 

Three Dimensional Finite Elements,” IEEE Transactions on Ultrasonics, 

Ferroelectrics and Frequency Control, vol. 37,  pp. 233-247, May 1990. 
[2] C.Kusakabe, Y.Tomikawa, T.Takano, H.Tarnura and H.Okamoto, “Thin 

Vibrator Alarm Using a Cantilever Piezoelectric Actuator,” Journal of L. 

Appl. Phys. Vol. 35,pp. 5018-5022 1996. 
[3] R. Lerch, H. Kaarmann, “Three-Dimensional Finite Element  Analysis 

of Piezoelectric Media,” Proceeding of  IEEE Ultrasonics Symposiuni 

1987. 
[4] M. Sunar, S.S. Rao, “The piezoelectric Control Design and Actuator 

Placement,” AIAA Juornal, Vol. 35, NO. 3, pp.534-539, March 1997 

[5] Vincent PIEFORT, Andre’ PREUMONT ,“Finite element modeling of 
piezoelectric structures,” Active Structures Laboratory, ULB-CP 165/42, 
Av F.D. Roosevelt 50, B-1050 Brussels, Belgium. 

[6] Tiersten, H.F., 1967, “Hamilton’s Principle For Linear Piezoelectric 
Media,” in “Proceedings of the IEEE”, pages 1523-1524. 

[7] Allik, H. and T. J. R. Hughes, 1970, “Finite Element Method for 

Piezoelectric Vibration,” International Journal for Numerical Mathods in 
Engineering, 2:151-157. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:5, No:12, 2011

1881

 

 

[8] Gene H. Haertling, “Ferroelectric Ceramics: History and Technology,” 

Department of Ceramic and Materials Engineering, Clemson University, 
Clemson, South Carolina 29634-0907 

[9] J Ajitsaria, S Y Choe, D Shen and D J Kim, “Modeling and analysis of 

bimorph piezoelectric cantilever beam for voltage generation,” Auburn 
University, Auburn, Albama, 36849, U.S.A. 

[10] Chang-Hwan Lee, Hyun Kyo Jung, “Two-Dimensional Finite Element 

Analysis of Piezoelectric Cantilever for Silent Alarm System”, IEEE 
Transl. Electrical machines and systems., Vol. 2, pp. 1159-1162, 2001. 

 

Chalida Worakitjaroenphon, was born in Saraburi 
Province, Thailand, in 1986. She received a Bachelor’s 

Degree in Electrical Engineering, from King Mongkut’s 

Institute of Technology, Ladkrabang, Thailand, in 2008. 
She is currently pursuing a Master’s Degree in 

Electrical Engineering, at School of Electrical 

Engineering, Suranaree University of Technology, 
Thailand.  

Her Summer Internship was spent at Technical 

Department, Aircraft Maintenance Engineering Group, 
Suvarnabhumi Airport, with Thai Airways International Public Company 
Limited, Thailand, in 2007. She is currently the owner of 

Charoenpholkehapun Shop, General manager of Anankehapun Shop, 
Saraburi, Shareholder and General manager of Seejamnongkehakij.Co.,Ltd., 

Nakhon Ratchasima, and Electrical Engineerof Anawach Engineering Co., 

Ltd., Bangkok, Thailand. Her areas of interests are electrical power system, 
stability and piezoelectric. 

 
 

Anant Oonsivilai, was born in Khon Kaen Province, 

Thailand, in 1963. He received a Bachelor’s Degree 
from Khon Kaen University, and a Master’s Degree 

from King Mongkut’s Institute of Technology, North 

Bangkok, Thailand and a PhD. from Dalhousie 
University, Canada, all in field of Electrical 

Engineering, in 1986, 1992 and 2000, respectively. 

He is currently an Assistant Professor in School of 
Electrical Engineering, Suranaree University of 

Technology, Thailand. His areas of interests are electrical power system, 

stability, control technology, advance alternative, and sustainable energy. 
 

 

 

 


